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ABSTRACT
This paper proposes a novel approach to French patent classification leveraging data-centric strategies.
We compare different approaches for the two deepest levels of the IPC hierarchy : the IPC group
and subgroups. Our experiments show that while simple ensemble strategies work for shallower
levels, deeper levels require more sophisticated techniques such as data augmentation, clustering,
and negative sampling. Our research highlights the importance of language-specific features and
data-centric strategies for accurate and reliable French patent classification. It provides valuable
insights and solutions for researchers and practitioners in the field of patent classification, advancing
research in French patent classification.

RÉSUMÉ
Exploration des stratégies centrées sur les données pour la classification des brevets français :
Une base de référence et des comparaisons

Cet article propose une nouvelle approche de classification des brevets français qui s’appuie sur des
stratégies centrées sur les données. Nous comparons différentes approches pour les deux niveaux les
plus profonds de la hiérarchie IPC : le groupe IPC et les sous-groupes. Nos expériences montrent
que les stratégies d’ensemble simples fonctionnent pour les niveaux peu profonds, mais que les
niveaux profonds nécessitent des techniques plus sophistiquées telles que l’augmentation de données,
le regroupement et l’échantillonnage négatif. Notre recherche met en évidence l’importance des
caractéristiques spécifiques à la langue et des stratégies centrées sur les données pour une classification
précise et fiable des brevets français. Elle fournit des informations et des solutions précieuses pour les
chercheurs et les praticiens dans le domaine de la classification des brevets, en faisant progresser la
recherche en classification des brevets en français.
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1 Introduction

A patent is a legal document that grants its holder the exclusive right to prevent others from making,
using, selling, offering for sale, or importing the patented invention within a certain jurisdiction for a
specific period of time. Patent databases are valuable sources of information that reflect global innova-
tions and technological developments. The number of patent applications has increased significantly
over the past two decades, which can be attributed to various factors such as the increasing importance
of technology in society, the role of patents in business valuation, and the globalization of commerce.
Due to the large volume of patents and patent documents, patent analysis and management have
become complex and time-consuming. Additionally, patents are granted within a specific domain,
and patent classification is critical for patent scope and patent law. For the reasons mentioned above,
automated patent classification systems have become essential for patent professionals to manage
large collections of patents.

FIGURE 1 – An example of International Patent Classification (IPC) code G06N3/02 1. The IPC
scheme is a hierarchical taxonomy with five levels.

The International Patent Classification (IPC) 1 is a widely used standard taxonomy for patent classifi-
cation. It comprises a hierarchy of five levels, including section, class, subclass, group, and subgroup.
The finest level, the subgroup, consists of over 70,000 leaf nodes. An example of an IPC code is
shown in Figure 1. When submitting a patent application, the relevant technical fields are indicated
by assigning one or multiple IPC codes at the subgroup level. This helps determine the workload of
examiners responsible for assessing the application.

However, the IPC undergoes regular minor updates and occasionally major restructuring. Develo-
ping an automatic patent classification system is thus challenging due to the constantly evolving
technological language and patent syntax, requiring ongoing efforts to address this moving target. In
addition, the classification of patent text is a widely studied problem, particularly in languages with
large patent markets, such as English, Chinese, and Japanese. However, due to variations in technical
fields across different countries and markets, it can be challenging to directly transfer models or data
trained on English patents to other languages. This problem is particularly challenging in the case of
French patents, in particular presents unique challenges that require a sizable annotated corpus and
experimentation with various classification models. Despite the critical importance of French patents,

1. https://www.wipo.int/classifications/ipc/
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few studies, such as (Zuo et al., 2022), has focused on patent classification in French, and even those
have only reported results on IPC subclass or group levels.

To address this gap, this paper proposes a novel approach to French patent classification that builds
upon different strategies aimed at addressing several unique challenges, including input length
limitation, label imbalance, and data sparsity. Our approach compares and evaluates different strategies
for French patent classification at the two deepest levels of the IPC hierarchy : the IPC group and
subgroups. To the best of our knowledge, this is the first comprehensive work specifically focused on
patent classification at such deep levels for the French language.

2 Background

A patent is a well-structured document that typically includes several sections, such as a title, abstract,
background, brief summary of the invention, detailed description, one or more claims, drawings, and
classification information. The International Patent Classification (IPC) is a widely used system for
uniformly classifying the content of patents, with over 100 countries currently employing it. The IPC
scheme, which was established by the World Intellectual Property Organization (WIPO) 2 in 1971,
is hierarchical and serves as the preferred classification system for French patent classification. The
IPC system consists of eight general categories of patents, represented by the section level of IPC.
These categories are hierarchical and represent the broadest possible areas of technology, providing a
starting point for patent classification. Table 1 illustrates the eight most general categories of patents.

Section Title
A HUMAN NECESSITIES
B PERFORMING OPERATIONS; TRANSPORTING
C CHEMISTRY; METALLURGY
D TEXTILES; PAPER
E FIXED CONSTRUCTIONS
F MECHANICAL ENGINEERING ; LIGHTING; HEATING; WEAPONS; BLASTING
G PHYSICS
H ELECTRICITY

TABLE 1 – The eight IPC section categories.

In practice, patent offices assign classification codes to patent applications to accurately describe the
subject matter of the invention. They typically assign the most specific level of the International Patent
Classification (IPC) to classify the documents in their database. By assigning a specific subgroup level
of IPC, broader groups and higher levels of the IPC hierarchy that encompass it can be determined,
as the IPC hierarchy is organized in a tree-like structure. This avoids any double classification of
"parent" and "child" classes in the IPC hierarchy.

In this work, we focus on exploring the effectiveness of classification methods on groups and
subgroups separately.

2. https://www.wipo.int
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3 Related Work

Prior research on automated patent classification systems has typically relied on traditional algorithms
and feature extraction methods (Verberne & D’hondt, 2011; Yun & Geum, 2020; Wu et al., 2010; Cai
& Hofmann, 2007; Qiu et al., 2011). However, designing hand-crafted features can be time-consuming
and lead to efficiency problems, making them difficult to apply to large patent collections.

More recently, researchers have turned to deep learning techniques to leverage large-scale training
data and generalize well to unseen data. For example, (Grawe et al., 2017) used LSTM on 50 IPC
subgroups, while DeepPatent (Li et al., 2018) employed a CNN with skip-gram word embeddings.
(Risch & Krestel, 2019) trained fastText word embeddings on full-text patents and then used GRU
models on top of these embeddings. Pre-trained language models, such as ULMFiT (Hepburn, 2018)
and BERT (Lee & Hsiang, 2019), have also been fine-tuned for this specific task. Comparing the
performance of different pre-trained models for multi-label patent classification, XLNet (Yang et al.,
2020) was found to outperform other models (Roudsari et al., 2021). Moreover, (Zhang et al., 2022)
reduced the uncertainty of classification results through the fusion of multiple patent views. Ensemble
techniques have also been explored in patent classification. For instance, (Kamateri et al., 2022) found
that an ensemble of classifiers with separate inputs for title-abstract, claims, and description achieved
the best performance.

Some researchers have explored mapping patent texts to International Patent Classification (IPC)
codes using KNN classification and hybrid methods that combine neural feature encoders with KNN
(Cai et al., 2010; Bekamiri et al., 2021, 2022). Another approach is to use a Wide and Deep (WnD)
network (Cheng et al., 2016) to combine string-level similarity and semantic embeddings of patent
text (Niu & Cai, 2019).

The previous research on patent classification has primarily focused on flat classification, where the
classification problem is considered at one specific shallow level of the hierarchy, such as the class or
subclass level of the IPC. Only a few studies have addressed the more detailed classification of patent
data at the group and subgroup levels. For instance, (Chen & Chang, 2012) proposes a three-phase
categorization algorithm using SVM classifiers, (Risch et al., 2020) formulates the hierarchical
classification problem as a sequence generation task, and (Zuo et al., 2022) formulates the patent
classification problem at deeper levels as an extreme multi-label text classification (XMTC) task.

Despite these efforts, many of these works still rely on feature extraction and model architecture
improvements, which only partially address the challenges of accurate patent classification. In contrast,
our work focuses on enhancing the quality of the training set and its input format for automatic
patent classification, leveraging the same dataset proposed in (Zuo et al., 2022), to improve model
performance specifically at the most detailed levels of the IPC hierarchy.

4 Methodology

The task can be framed as follows : given a patent document x, it is assigned with one or more IPC
codes l ∈ L = {l1, l2, . . . , lL}, where L represents the total number of predefined IPC codes at a
specific level. Our training set D = {(xi, yi)|xi ∈ X , yi ∈ {0, 1}L, i = 1, 2, . . . , N} comprises
instances xi and their corresponding labels yi, with the objective of learning a scoring function f .
This function maps an input xi and a label l to a score f(xi, l) ∈ R and is optimized to maximize
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the score when yi,l = 1 (i.e., the label l is relevant to the instance xi) and minimize the score when
yi,l = 0 (i.e., the label l is irrelevant to the instance xi).

4.1 Baseline Model

We selected LightXML (Jiang et al., 2021) as our baseline model because it has shown the best
performance on INPI-CLS according to (Zuo et al., 2022). LightXML is a transformer-based model
specifically designed for multi-label text classification in English. It employs multiple pre-trained
language models, such as BERT (Devlin et al., 2018), Roberta (Liu et al., 2019), and XLNet (Yang
et al., 2020), and concatenates the representations of the special token [CLS] in the last five hidden
states to create a text representation. To handle negative sampling during training, LightXML utilizes
a label-recalling network to dynamically sample negative samples during training, followed by a
label-ranking network to separate positive from negative labels. We obtained the codes we used from
the online extreme classification repository (Bhatia et al., 2016) 3.

Since our corpus is in French, we also used three BERT-like language models specifically designed
for French (Martin et al., 2020) or multilingual contexts (Pires et al., 2019; Conneau et al., 2019). The
final result of LightXML is the ensemble of the three classifiers. In Table 2, we provide a preliminary
comparison of the selected pre-trained models.

Checkpoint
camembert-base

(Martin et al., 2020)
bert-base-multilingual-cased

(Pires et al., 2019)
xlm-roberta-base

(Conneau et al., 2019)
Pre-training Dataset OSCAR(Suárez et al., 2019) Wikipedia cleaned CommonCrawl
Pre-training Tasks MLM MLM + NSP MLM
# Languages 1 104 100
# Parameters 110M 110M 125M
Tokenization SentencePiece WordPiece SentencePiece

TABLE 2 – Overview of pre-trained models we use for LightXML for the classification of French
patents.

The methods presented in the remainder of this paper aim to enhance the performance of the baseline
approach. We conduct a comprehensive ablation study to offer additional insights for future research
on the patent classification problem.

4.2 Weighted Sum Ensemble

An ensemble is a collection of models designed to improve the performance of individual base models
by combining their predictions. In this study, we employed the weighted sum ensemble method,
which assigns a weight to each base model based on its performance on a validation set. We evaluated
the performance of each base model using the precision@k(k = 1) score, which measures the
proportion of correct predictions among the top-ranked k categories suggested by the model. This
method assumes that some models in the ensemble are more effective than others.

To build our ensemble, we first trained multiple base models using different architectures or training
strategies. Next, we evaluated the performance of each model using a separate validation set and

3. http://manikvarma.org/downloads/XC/XMLRepository.html
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selected the top-performing ones. Finally, we combined the predictions of the selected models by
taking a weighted sum of their output probabilities, where the weight of each model is proportional to
its precision@1 score.

4.3 Information Extraction

Due to the maximum input length restrictions of BERT-like models (512 tokens), we explored different
approaches to extract the most critical information from patent content.

TextRank (Mihalcea & Tarau, 2004). TextRank is a graph-based ranking model that identifies the
most relevant sentences and keywords in text. We considered using TextRank because we observed
that using a patent description as input yielded good results. However, the lengthy description text
posed a challenge since only the first few hundred words could be entered. To address this issue, we
used TextRank 4 to extract the most critical sentences from the patent description as input.

SAO (Subject-Action-Object) Extraction. The SAO structure is a widely used approach in patent
analysis for representing technology concepts in a subject-action-object format (Choi et al., 2010;
Radauer & Walter, 2010). This structure can be extracted through grammatical processing of patent
text and enables a more systematic understanding of the central functional properties of the patent
application. For example, consider the sentence, "The super-capacitor electrode further comprising
a silane coupling agent." In this sentence, the subject is "super-capacitor electrode," the action is
"comprise," and the object is "silane coupling agent." By analyzing many SAO structures in a patent’s
text, we can extract the underlying functional relationships, identify key features of the invention, and
reformulate it as input for classifier models.

To make use of the extracted SAO structures, we typically reformulate them as simple sentences
for easier interpretation. For example, the SAO triplet extracted from the above sentence can be
reformulated as "The super-capacitors comprise a silane coupling agent." This method 5 has been
applied to the claims section of a patent, which is in a strict syntactic format and hence more amenable
to rule-based extraction. The extracted SAO structures can then be used as input for our classifier
models to improve their performance.

4.4 Vocabulary Enlargement

Another limitation of using pre-trained language models for patent classification is the presence
of a large number of scientific and technological terminologies that are seldom encountered in the
pre-training corpus, leading to suboptimal model performance. To address this challenge, we propose
incorporating external vocabularies from other models. Specifically, we leverage features from sparse
classifiers, such as logistic regression with TF-IDF, to extract its 100 most important terms and
add them to the vocabulary of the neural encoder. Examples of lemmatized terms can be found in
Appendix A.

4. https://summanlp.github.io/textrank/
5. Codes used for SAO extraction : https://github.com/ZoeYou/SAO-extraction
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4.5 Sampling Strategies

Dynamic Negative Sampling. LightXML(Jiang et al., 2021) offers a dynamic negative sampling
approach that incorporates generative cooperation networks to recall and rank labels from recalled
label clusters and dynamically sample negative labels during label ranking. However, for datasets
with a small label space, the paper suggests that there is no need to build label clusters and the label
recall and re-ranking module degenerates to a linear layer. It can be challenging to determine the
appropriate size of the label space to decide whether to set aside the recall and ranking modules. In
our study, we compare the classification performance of LightXML with and without the recall and
ranking modules at the group and subgroup levels of the IPC.

Oversampling. Class imbalance is a common problem in patent classification datasets that can lead
to biased models and poor performance on underrepresented classes. Oversampling is a technique
that can address class imbalance by increasing the number of samples in the minority class, thereby
providing a better representation of rare concepts. Different oversampling techniques are available
for patent classification, such as weighted oversampling and SMOTE (Chawla et al., 2002). In our
study, we use the weighted oversampling strategy, where the weight of each label is represented by its
inverse frequency in the dataset. We leave the exploration of other oversampling methods for future
studies.

4.6 Data Augmentation

The scarcity of training data is a significant challenge for accurate French patent classification. To
overcome this obstacle, we explore the possibility of leveraging annotated data from external sources.
Although multilingual patent datasets, such as MAREC/IREC (Piroi, 2021) and (Roda et al., 2009;
Piroi, 2010; Piroi et al., 2011), have been previously proposed, we opted not to use them because
their publication dates significantly differ from our test set. Instead, we obtained a more recent dataset
of annotated patent texts published between 2010 and 2019 from the European Patent Office (EPO).
This dataset closely resembles our target test set in terms of label distribution and format.

We present a comprehensive analysis of the label distribution across IPC sections in various datasets
in Appendix B. Table 3 provides a summary of the statistics of the EPO data 6 that we used.

Language # Title # Abstract # Claims # Description
French 1,087,313 352,410 507,998 29,539
English 1,082,679 591,045 1,099,062 981,128

TABLE 3 – Statistics of EPO in English and French.

Introduction of EPO French Data. We incorporated French patent data published by the EPO
from 2010-2019 into our training set to address the issue of limited training data for French patent
classification. Our test set remained the same throughout our work.

Translation of EPO English Data. Introducing French data from the EPO alone did not yield
satisfactory performance in deeper levels of IPC classification. To overcome this challenge, we fine-
tuned a T5 model (Raffel et al., 2020) using various strategies to translate EPO English patents into
French, which augmented the French training data. We utilized the parallel European patent dataset

6. EPO data extracted from EP full-text data for text analytics
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EuroPat (Heafield et al., 2022) to train our models. Further details of the fine-tuning experiments can
be found in Appendix C.

5 Experiments and Results

5.1 Dataset Description

In this study, we employ the French Patent corpus INPI-CLS (Zuo et al., 2022) as the dataset for
our patent classification task. This corpus consists of patents extracted from the internal database
of the French National Institute of Industrial Property (INPI) 7 and covers patent texts from 2002 to
2021, including the title, abstract, claims, and description. Each patent in the corpus has been labeled
with IPC codes at all levels, from the most general sections to the more specific subgroup labels. In
this study, we specifically focus on the group and subgroup levels of IPC, which have been identified
as more challenging in previous research. We conducted a time-based split of the corpus to create
separate training and test sets. The training set includes patents published between 2002 and 2019,
while the test set is composed of patents published between 2020 and 2021.

Dataset N L6 L̄6 L̂6 L8 L̄8 L̂8

Train 268,254 6,788 2.21 39.52 48,932 2.73 5.48
Test 28,017 4,351 2.20 6.44 19,593 2.64 1.43

TABLE 4 – Basic Statistics of INPI-CLS dataset used for our experiments. L indicates the label
count, L̄ stands for the average number of IPC labels per patent document, and L̂ represents the
average number of patent documents per label. The subscripts 6 and 8 indicate the IPC code’s length
in characters for the IPC’s group and subgroup levels, respectively.

5.2 Experimental Setup

We evaluate the performances of models with the rank-based metrics Precision@K and Recall@K
(k = 1, 3, 5). Precision@K and Recall@K are calculated for each test patent and then averaged
over all the patent documents. Theoretically, each patent document is assigned firstly a primary IPC
code, followed by an unlimited number of secondary IPC codes. However, during our evaluation, we
did not take into account the order in which the predicted IPC codes are assigned. This aspect is left
for future work.

To improve the training efficiency, we fix the maximum input length of each encoder to 128. For other
configurations of LightXML, we fix learning_rate = 1e− 4 with warm-up, batch_size = 16, and
number_epoch = 3.

5.3 Results and Discussion

We evaluated the performance of the LightXML model with baseline configurations at the IPC group
and subgroup level, and present the results in Table 5 and Table 6, respectively. Our experiments

7. https://data.inpi.fr/recherche_avancee/brevets
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show that the choice of dataset has a significant impact on the performance of the LightXML model
for patent classification. In particular, we found that the title+abstract dataset achieved the best
performance in terms of Precision@k and Recall@k values for IPC group classification, while the
description dataset yielded the highest performance for IPC subgroup classification.

Moreover, our results indicate that the LightXML algorithm performs better at the IPC group level
than at the IPC subgroup level. This is because the latter level requires more detailed information
about the invention, and the subgroup classes are often imbalanced, making it more challenging
to achieve high performance. However, we believe that our approach can be further improved by
addressing these issues, such as by incorporating more relevant information or using more advanced
modeling techniques.

Dataset P@1 P@3 P@5 R@1 R@3 R@5
title+abstract 61.08 37.24 26.84 27.67 50.61 60.80
claims 58.60 35.61 25.83 26.54 48.39 58.50
description 58.99 36.30 26.26 26.72 49.33 59.48

TABLE 5 – Baseline performance at IPC group level.

Dataset P@1 P@3 P@5 R@1 R@3 R@5
title+abstract 12.59 8.80 7.12 4.76 9.99 13.47
claims 15.34 10.65 8.50 5.80 12.09 16.07
description 18.52 12.54 9.87 7.01 14.23 18.67

TABLE 6 – Baseline performance at IPC subgroup level.

Furthermore, in our experiments comparing the performance of classifiers based on different encoders
(as shown in Figure 2), we consistently found that mbert outperformed other encoders. These results
suggest that mbert is highly effective in capturing the nuances of the French language in patent
documents. One possible reason for its superior performance is that it is trained on a large and diverse
corpus, which includes the Wikipedia corpus that contains a vast range of technical terms and topics
relevant to patent texts.

FIGURE 2 – P@1 of classifiers based on different encoders (models trained on IPC group level).
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Our experiments comparing different strategies for French patent classification are summarized in
Tables 7 and 8. Notably, our results indicate that the weighted sum ensemble approach was not always
effective in improving classifier performance, particularly for the subgroup level when the ensemble
includes a basic classifier with poor performance. We also observed that methods for extracting
the most essential information from patent texts, such as TextRank and SAO extraction, led to a
significant decrease in classification performance, particularly for the claims dataset. One possible
reason for this is that these methods may have removed important details and nuances from the patent
texts that are necessary for accurate classification. In addition, TextRank may have selected sentences
from different subsections of the patent description that serve different functions, resulting in a loss
of coherence among sentences.

Furthermore, we discovered that enlarging the vocabulary did not enhance the baseline performance.
One possible reason for this could be that the additional vocabulary was not well-tuned during the
pre-training process, and fine-tuning only the last five feature layers did not provide accurate semantic
meaning for the added vocabulary.

Our experimental results for dynamic negative sampling indicate that this technique, proposed in the
original LightXML paper, had varying effects on the classifiers’ performance at different levels of
the IPC hierarchy. Specifically, while this technique led to a decrease in performance for classifiers
trained at the IPC group level, it resulted in significant performance improvements for classifiers
trained at the subgroup level. These results suggest that in the context of multi-label classification,
where long-tail distribution is a significant challenge, clustering techniques and effective negative
sampling methods can greatly enhance classification performance.

Moreover, our experiments also showed that the oversampling technique, which involved duplicating
minority samples to address class imbalance, did not always improve performance. This suggests
that weighted oversampling of long-tail labels may not be an effective approach for addressing label
imbalance in French patent classification.

To improve our classification performance, we also investigated the use of supplementary training
data, including French data sourced from the EPO, as well as English data translated to French using
neural machine translation. We focused on incorporating claims data from the EPO dataset, as it is
typically longer and more complete than other sections of patents such as abstracts and descriptions.
Our experiments show that the introduction of additional French data from the EPO led to a significant
improvement in performance, as demonstrated in Table 8. Furthermore, our models were able to
benefit from the increased volume and variety of training examples when augmenting the EPO French
data with EPO English data, even when part of the latter dataset was translated from English.

Methods title+abstract claims description
Baseline 61.08 58.60 58.99
Ensemble 63.97
TextRank 47.11 56.35
SAO Extraction 47.57
Vocabulary Enlargement 60.98 58.52 58.08
Dynamic Negative Sampling 54.16 48.90 52.38
Oversampling 56.86 53.62 55.47

TABLE 7 – Overall Precision@1 of proposed methods on IPC group level.
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Methods title+abstract claims description
Baseline 12.59 15.34 18.52
Ensemble 17.40
Dynamic Negative Sampling 28.93 26.91 28.18
++data EPO_fr 32.43
++data EPO_fr & EPO_en by NMT 34.06

TABLE 8 – Overall Precision@1 of proposed methods on IPC subgroup level.

6 Conclusion

In this paper, we proposed and compared various data-centric approaches for French patent classifica-
tion. Through extensive experiments, we demonstrated that an ensemble strategy can significantly
improve patent classification at shallower levels, such as the IPC group level. However, for deeper
levels of classification, such as the IPC subgroup level, where data scarcity and long-tail label distri-
bution are common problems, we recommend using data augmentation techniques, clustering, and
negative sampling during the training process to improve model performance.

Our research makes a valuable contribution to the development of automated patent classification
systems in the French language, and we hope that our findings will inspire further research in this area.
In summary, our work highlights the potential of data-centric strategies to overcome the challenges
associated with patent classification and lays the groundwork for future studies in this field.
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A Important Features from Sparse Classifiers

We utilized a Logistic Regression model with TF-IDF sparse features, in which each category
corresponds to a classifier. In our data preprocessing step, we first removed stop words and then
lemmatized each remaining word. We set the dimensionality of the features to 10,000 and excluded
words that occurred in more than 90% of the documents. The most important features are represented
by the coefficients in the z-equation of the logistic regression, denoted by w1 to wn in the following
equation :

y =
1

1 + e−z

z = w0 + w1x1 + w2x2 + w3x3 + · · ·+ wnxn

To select the most important features for each classifier, we took the top five features with the highest
coefficient values. We then identified the 100 words that appeared most frequently across all classifiers
and added them to our final encoder. These words will be used to improve the model’s accuracy in
classification tasks.

title+abstract claims description
composition
moteur
outil
composé
machine
roue
eau
signal
formule
polymère
véhicule
combustion
fabrication
produit
gaz
air
commande
fibre
fluide
mesure

outil
pourcent
composition
moteur
véhicule
formule
machine
atome
dispositif
signal
roue
groupe
couche
acide
polymère
gaz
air
eau
combustion
fibre

moteur
véhicule
outil
eau
composé
polymère
roue
composition
fibre
signal
combustion
machine
gaz
acide
air
électrique
atome
mesure
fluide
piston

TABLE 9 – Examples of important features of logistic regression models trained on different patent
parts
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B Visualization of IPC distributions

Given that different countries have varying priorities in protecting different technical fields, it is
important to consider the distance between training and testing data when performing patent classifi-
cation. Simply adding more data for training without considering the distribution of the data across
countries may lead to suboptimal classification results. To demonstrate this phenomenon, we visualize
the distribution of labels at the IPC subclass level in Figure B.
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FIGURE 3 – Distribution of labels per IPC section.
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C Machine Translation en-fr

In order to improve the classification of French patents, we used a T5 (Raffel et al., 2020) model that
was trained on aligned English-French data. Specifically, we leveraged the first release of the EuroPat
dataset (Heafield et al., 2022), restricting our analysis to patents that were published after 2010. This
allowed us to compile a corpus of 2 million sentence pairs for training our model.

We drew inspiration from (Jehl & Riezler, 2018) to investigate the effectiveness of incorporating spe-
cial tokens to introducing information as patent sections (<A>, <B>,. . .,<H>) or text types (<title>,
<abstract>, <claims>, <description>). Our study compares various methods to determine
the optimal approach.

For each approach, we fine-tuned the t5-base with 220 million parameters for a single epoch, using
a batch size of 16 and a learning rate of 1e-4. The maximum input and output lengths were set to 256.
This configuration was selected to optimize the balance between training time and model performance.
To evaluate the performance of our model, we relied on the widely used machine translation metric,
BLEU score.

BLEU
Original Text 79.15
IPC1 79.10
Text Type 78.85
IPC1, Text Type 79.19

TABLE 10 – Performances of translation models.

We can see that the translation model achieves the best performance when it differentiates between
text types and text domains. Therefore, in our main experimental results, we demonstrate the use
of the model with special tokens of IPC1s and text types during training for translation and data
augmentation.
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