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Abstract

We present a simple yet efficient method to en-
hance the quality of machine translation models
trained on multimodal corpora by augmenting
the training text with labels of detected objects
in the corresponding video segments. We then
test the effects of label augmentation in both
baseline and two automatic speech recognition
(ASR) conditions. In contrast with multimodal
techniques that merge visual and textual fea-
tures, our modular method is easy to imple-
ment and the results are more interpretable.
Comparisons are made with Transformer trans-
lation architectures trained with baseline and
augmented labels, showing improvements of
up to +1.0 BLEU on the How2 dataset.

1 Introduction

Video streams are rich sources of content and the
application of machine translation to videos present
open research challenges. Specifically, we are in-
terested in translating the speech content present
in videos, using the visual modality as auxiliary
input to improve translation quality. Intuitively, vi-
sual signals may help disambiguate under-specified
words or correct speech recognition errors.

There has been much research in speech trans-
lation, which focuses on speech input, and multi-
modal machine translation, which focuses on vi-
sual and textual inputs; this work combines aspects
of both areas. We assume a cascaded pipeline,
where the speech in a video input is first passed to
a speech recognition component, then the text tran-
scripts together with the video frames are passed to
a multimodal machine translation (MMT) system.
Our contribution is a MMT system that augments
text-based training data with labels obtained from
a computer vision object detector (Fig. 1).

In contrast to more complex multimodal fusion
techniques that combine vision and translation neu-
ral networks into end-to-end models, our modu-
lar approach is simple to implement, requiring no

toolkit changes, and allows for easier interpretation
of results.

On the How2 dataset (Sanabria et al., 2018), we
experiment with using clean transcripts and au-
tomatic speech recognition transcripts of varying
quality as input to our translation systems. This
tests the effectiveness of our multimodal approach
in noisy conditions, beneficial in real-world use
cases. Results show gains of +0.4 to +1.0 BLEU
on the How2 held-out test set.

src: And then you’re going to stir it so have your
stirrer available. PERSON CUP BOTTLE

tgt: E então você vai mexer, então tenha seu
agitador disponível.

Figure 1: Demonstration of augmenting source data
with detected object labels to provide additional context.

2 Object Class Label Augmentation

When considering the translation of instructional
videos, the speaker’s narration may use ambiguous
language when describing the steps to the task as
the viewer may be able to infer the intent through
objects or actions in the scene. If MT systems
are trained on the speaker’s words and translations,
these cues from the scene are not present. We
proposed to address this omission by analyzing
clips of the video and augmenting the text data
with objects found in that clip.

Augmentation Process: To augment training
data with object labels, an object recognition model
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Figure 2: Illustration of the object label augmentation processing pipeline.

was applied to each of the videos in the training
set in order to generate lists of objects present. To
that end, we apply the YOLOv51 (Jocher et al.,
2021) model (specifically yolov5s) to the 189k
video clips corresponding to the utterances from the
How2 training data. The object detection model
can detect 80 types of objects as outlined in the
COCO (Lin et al., 2015) dataset.

The detected labels for the time-slices in the
video clip are collated and collapsed in order to
keep final sentence length to a manageable size -
we are interested in the presence of an object class
versus how many times that class has occurred in
the scene or the time slices in the video clip.

Once processed, the per-clip labels are appended
to the source side of the training, dev and test sets
as “context-markers”. We do not apply these labels
to the target side as we wish to generate coherent
sentences in the target language. This processing
pipeline is illustrated in Figure 2.

In particular, we note in the example in Figure 1
that the transcription discusses a stirrer but does not
give context to what kind of stirrer: A laboratory
sample stirrer, a paint stirrer, or in this case a stirrer
to mix a drink. Using the object labels from the
example, we see that the stirrer in this case refers
to a drink - adding valuable context.

The augmented How2 corpus will be available
for download at a future date.

Distribution of Augmentation Labels: When
examining the counts of per-segment object class
annotations in the training set (shown in Figure
3), we note that over 64% of the segments have
between one and three object classes present, 13%
have no detected object classes, and the remain-
ing 23% have four or greater classes present with
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Figure 3: Training segments with N object classes de-
tected.

higher class counts forming a long tail. Full class
object counts are shown in Table 1.

Observing the most-detected class labels in train-
ing segments (shown in Figure 4), we see that PER-
SON is by far the most common object class with
over 164k occurrences, while CUP and BOTTLE
are the next most common with around 23.8k occur-
rences each. As How2 is comprised of instructional
videos in which the authors are demonstrating how
to perform a task, PERSON’s high occurrence rate
seems reasonable. The figure shows the top 15
object classes detected, the full list of detection
counts is shown in Table 2.

While the above analyses focus on the train-
ing portion of the dataset, similar distributions are
present in both the validation and test sets.

3 How2 Dataset

The How2 (Sanabria et al., 2018) dataset is a collec-
tion of instructional videos hosted on YouTube that
are paired with spoken utterances, English subtitles
and a set of crowdsourced Portuguese translations.
Additional metadata such as video descriptions and
summaries are also available. The dataset contains
upwards of 2,000 hours of videos, but only a 300
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Classes Segments Classes Segments Classes Segments

0 15,544 6 7,508 12 143
1 44,496 7 4,300 13 79
2 41,950 8 2,259 14 42
3 32,077 9 1,166 15 14
4 21,428 10 626 16 7
5 13,011 11 293 17 3

Table 1: Video segments with n object classes present.

Class Count Class Count Class Count

PERSON 164,605 MICROWAVE 4,298 TOILET 1,333
CUP 23,870 REFRIGERATOR 4,014 BROCCOLI 1,327
BOTTLE 23,809 CAKE 3,911 SURFBOARD 1,281
CHAIR 17,806 DONUT 3,729 HORSE 1,222
CELL_PHONE 17,016 DOG 3,496 BED 1,141
REMOTE 16,127 TOOTHBRUSH 2,839 BOAT 1,056
BOWL 13,524 SUITCASE 2,730 BACKPACK 1,034
POTTED_PLANT 13,045 APPLE 2,714 TRUCK 924
TV 11,455 BASEBALL_GLOVE 2,682 TRAFFIC_LIGHT 919
SPORTS_BALL 10,290 SPOON 2,636 ORANGE 841
TIE 9,971 HANDBAG 2,352 COW 794
LAPTOP 9,066 COUCH 2,316 SANDWICH 763
VASE 9,033 BASEBALL_BAT 2,293 FIRE_HYDRANT 722
BOOK 7,612 BIRD 2,292 TEDDY_BEAR 713
WINE_GLASS 7,229 BANANA 2,145 AIRPLANE 576
DINING_TABLE 6,315 PIZZA 2,103 BUS 516
TENNIS_RACKET 5,922 CAT 2,054 SKIS 456
KNIFE 5,355 CARROT 1,986 SNOWBOARD 387
CAR 5,198 BENCH 1,899 TRAIN 338
MOUSE 5,107 MOTORCYCLE 1,872 ELEPHANT 265
SINK 4,688 BICYCLE 1,856 STOP_SIGN 246
FRISBEE 4,675 HOT_DOG 1,652 PARKING_METER 218
OVEN 4,450 SCISSORS 1,529 SHEEP 215
CLOCK 4,382 FORK 1,480 BEAR 198
KEYBOARD 4,353 UMBRELLA 1,408 GIRAFFE 177
SKATEBOARD 4,304 KITE 1,384 ZEBRA 158

Table 2: Detected class counts for training segments.

hour subset contains the full set of annotations.
This work focuses on that subset.

Videos Hours Sentences

train 13,168 298.2 184,949
validation 150 3.2 2,022
test 175 3.7 2,305

Table 3: How2 300h subset statistics

This portion consists of 13,493 videos consist-
ing of a total run-time of 305.1 hours from which
189,276 utterances are extracted. These videos and
segments are then segregated into training, vali-
dation and test sets as shown in Table 3. These
segments are then used to train systems in down-
stream tasks such as MT.
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Figure 4: Top 15 classes present in training video snip-
pets.

4 Experiments

To gauge the effectiveness of the label augmenta-
tion approach, we train baseline and object-label
augmented systems in Marian (Junczys-Dowmunt
et al., 2018) with a transformer-base (Vaswani et al.,
2017) architecture. We also replicate the base-
line and image feature augmented shallow recur-
rent neural network (RNN systems) described in
(Sanabria et al., 2018) for comparison.

4.1 Training Hyperparameters
The Marian (Junczys-Dowmunt et al., 2018) sys-
tems trained for our experiments use transformer-
base settings as described in Vaswani et al. (2017):
6-layer encoder, 6-layer decoder, 8 transformer
heads, 2048 hidden units. These training sessions
were performed on 2 NVidia Titan-X Pascal de-
vices each with 12Gb GPU RAM, taking 6.5-7.5
hours per model.

4.2 Data preprocessing
In order to prepare the augmented data for use in
training MT systems, we employ SentencePiece
(Kudo and Richardson, 2018) unigram-model sub-
word processing with a disjoint2 vocabulary size
of 32k. One important change we introduce is to
preserve each of the COCO class labels as atomic
tokens that are not broken apart. These labels are
additionally in all caps to both disambiguate from
natural occurrences of the label words and provide
a convenient marker for diagnosis.

4.3 Pruning Over-represented Object Labels
As noted in Section 2, PERSON is by far the
most represented object class label. We posit this
prevalence may have a negative effect on perfor-
mance. To investigate this hypothesis, we examine

2Separate vocabularies for English and Portuguese.

three methods to prune over-prevalent or under-
represented object class labels: naïve dropping of
the N most-represented labels, inverse document
frequency (IDF) thresholding and normalized term
frequency-inverse document frequency (TF-IDF)
thresholding. For the first method, object labels are
simply removed in the most common order - e.g.
drop-3 removes the three most common classes:
PERSON, CUP, and BOTTLE.

IDFT = log2
Total Corpus Lines

# Lines with T present
(1)

Inverse document frequency thresholding (as cal-
culated by Equation 1) removes labels that fall be-
low a specified threshold compared to a precom-
puted table of IDF scores for each class, effectively
removing the most represented labels.

Lastly, normalized TF-IDF thresholding does the
same using the product of TF (calculated by the
number of times an object label occurs in video
time-slices3) and IDF scores normalized from 0
to 1 - this tries to bring a balance between most
represented labels and more unique labels that may
add a distinct contribution to a translation.

4.4 ASR-Degraded experiments
The How2 dataset is provided with reference
speech transcription, but in realistic settings one
may need to derive these automatically. Automatic
speech recognition (ASR) errors may lead to ad-
ditional ambiguity in the MT input, but hopefully
can be recovered partially with image context. We
build Kaldi (Povey et al., 2011) ASR systems to
recognize the speech of the speakers in the How2
videos, then match the ASR output timings to those
of the gold-standard utterances. These new utter-
ances are used as the source side of the training
corpus for both the baseline and object label aug-
mented condition.

In a second experiment, we add 5 dB of back-
ground noise to the audio in the How2 videos using
noise samples from the MUSAN corpus (Snyder
et al., 2015). The same ASR system described
above is then evaluated on the noisy audio to pro-
duce a second set of ASR hypotheses.

The English speech recognition system was
trained using the Kaldi ASR toolkit. The acoustic
models utilized 2400 hours of audio from Fisher

3This is different than our use of object class occurrences
in augmentation; the larger video-timeslice object count is
needed for the TF-IDF calculation to work properly.
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(Cieri et al., 2004–2005), TEDLIUM-v3 (Hernan-
dez et al., 2018), and ATC (Godfrey, 1994); the
language models (LM) were estimated on 1 bil-
lion words from Fisher, News-Crawl 2007-2017
(Kocmi et al., 2022), News-Discuss 2014-2017
(Kocmi et al., 2022), and TED. This system used
Mel frequency cepstral coefficient (MFCC) fea-
tures as input to a factorized time delay neural
network (TDNN) with residual network style skip
connections. Initial decoding was performed using
a finite state transducer (FST) built from a bigram
LM, and the resulting lattices were rescored with a
RNN LM. The vocabulary included 100k words.

4.5 Results
Armed with an array of label pruning strategies,
we run a series of experiments to determine the
effectiveness of each method.

4.5.1 Marian Label Augmented Systems
Marian label augmentation and pruning results are
shown in Table 4 reporting scores for BLEU (Pap-
ineni et al., 2002), chrF2 (Popović, 2015) and TER
(Snover et al., 2006) as calculated by SacreBLEU
(Post, 2018) and COMET (Rei et al., 2020) with
the default wmt20-comet-da model.

We note that drop-3, tfidf at 0.20, and idf at 4.0
each yield a +0.9-1.0 gain in BLEU over baseline.
We also report the number of labels pruned at each
experimental threshold noting that drop and tfidf
remove approximately 42-43% of object class la-
bels at maximum performance, while idf removes
a much larger 74.73%.

As we see from the results, each of the three label
pruning methods yields improvements over both
the text-only and non-pruned augmented systems.
Using the compare-mt (Neubig et al., 2019) tool,
we take a closer look at various characteristics of
the translation hypotheses of each of these five
systems to see if any trends emerge. Table 5 shows
averaged sentence BLEU scores for hypotheses
with outputs of varying lengths. The intuition is
that these average scores will help determine if a
given system or pruning strategy is better at certain
output lengths.

From these averaged scores, we note that plain
label augmentation tends to improve over base-
line with hypothesis lengths between 30 and 60
tokens but performs worse when outside of those
ranges. Of the three pruning strategies, drop 3
tends to bring the most improvement, especially
with shorter hypotheses and idf 4.0 tends to help

the longer sequences.

4.5.2 Nmtpytorch Baseline Experiments
For nmtpytorch baseline comparison systems, we
note that maximum training sequence has an ef-
fect on system performance, most likely due to the
shallow RNN architecture. Table 6 shows that us-
ing the default 120 max token limit from Sanabria
et al. (2018) yields better performance (+0.9-1.1
BLEU) with both the visual perturbation and our
label augmentation approach. These results show
our approach yields a similar performance gain.

4.5.3 ASR Noise Experiments
For the ASR-based experiments shown in Table 7,
we see improvements of +0.7 BLEU with both the
clean and noisy Kaldi systems. We expect that
the speech-recognition based systems would not
perform as well as the gold-standard systems, but
the use of object labels can help mitigate this loss
in performance.

4.6 Analyzing Attention Outputs
We use Marian’s ability to output soft attention
weights to compare an augmented system against
its baseline counterpart, as shown in Figure 5. For
this example, line 221 of the test set, the baseline
system scores a sentence-BLEU of 30.66 versus the
augmented system’s 61.32. We note the attention
contributions of the object labels on the output
tokens. Utilizing this feature as part of an unaltered
MT toolkit allows for quick and easy analysis of
the benefits of object label augmentation.

5 Related Work

Perhaps most closely related to our approach is
ViTA (Gupta et al., 2021), which adds object labels
extracted from images in an image captioning trans-
lation task. While the motivation of adding object
labels are similar, there are important differences
with our setup: 1) We work on video narration of
an author’s task demonstration where objects ap-
pear at different points in the clip, which differs
significantly from static image captions. 2) Our
work focuses on training MT systems from scratch
as opposed to fine-tuning existing models.

For a broad survey of multimodal translation,
refer to Sulubacak et al. (2020). Specifically
for video translation on How2, Sanabria et al.
(2018) investigates a MT system that adds a 2048-
dimensional feature vector averaging features for
every 16 frames to create a global feature vector for
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System BLEU chrF2 TER COMET Dropped Labels

Marian baseline 57.9 75.0 29.6 0.6819 –
nmtpy baseline 56.2 74.2 30.7 0.6234 –
nmtpy visual 55.9 74.0 31.1 0.6090 –

drop 0 57.6 74.9 29.9 0.6732 0 (0%)
drop 1 58.6 75.4 28.9 0.6785 164,605 (33.55%)
drop 2 58.7 75.5 28.9 0.6840 188,475 (38.41%)
drop 3 58.9 75.7 28.7 0.6907 212,284 (43.26%)
drop 4 58.5 75.3 29.1 0.6766 230,090 (46.89%)
drop 5 58.5 75.2 29.3 0.6687 247,106 (50.36%)

tfidf 0.10 58.3 75.1 29.5 0.6778 162,762 (33.17%)
tfidf 0.20 58.8 75.4 28.8 0.6817 205,938 (41.97%)
tfidf 0.30 58.8 75.5 29.0 0.6812 398,643 (81.24%)

idf 3.0 58.4 75.2 29.2 0.6832 212,284 (43.26%)
idf 4.0 58.9 75.5 29.0 0.6887 366,695 (74.73%)
idf 5.0 58.5 75.4 29.0 0.6857 428,655 (87.36%)

Table 4: Marian system scores for How2 en–pt test set, measured in BLEU, chrF2, TER and COMET. There are
490,697 object class labels present in the entire augmented training corpus.

Figure 5: Attention grid for the same output sentence for
Baseline (top, 30.66 sentence-BLEU) and Augmented
(bottom, 61.32 sentence-BLEU) systems. We note the
attention contributions of the augmented object labels.

length base aug drop3 tfidf0.2 idf4.0

<10 52.7 51.8 53.4 52.8 53.1
[10,20) 57.6 57.1 58.7 58.3 57.8
[20,30) 53.7 53.6 54.8 55.1 55.2
[30,40) 53.1 54.1 55.4 54.9 55.8
[40,50) 52.4 52.0 52.9 52.6 53.1
[50,60) 48.3 49.3 52.1 49.8 48.8
>=60 46.6 44.6 45.5 47.3 48.8

Table 5: Averaged sentence BLEU scores for hypotheses
in incremental length bins.

that entire video. This differs from our approach
of creating labels solely for the objects in a clip
directly corresponding to that text segment. Mad-
hyastha et al. (2017) uses a similar approach as
How2 on static imagery.

The Vatex (Wang et al., 2020) video description
dataset includes a Video-guided Machine Transla-
tion (VMT) approach that utilizes an action detec-
tion model feeding a video encoder with temporal
attention and a text source encoder with attention
that both inform the target decoder, producing trans-
lated output from a unified network. The authors
perform experiments in an video captioning setting,
as opposed How2’s task narration setting.

As part of the work in Calixto and Liu (2017),
the authors project static image features into the
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System Max Tok BLEU

nmtpy base 120 55.0
nmtpy vis 120 56.1
nmtpy aug 120 55.9

nmtpy base 250 56.2
nmtpy vis 250 55.9
nmtpy aug 250 55.7

Table 6: Max token length effect on BLEU for nmtpy-
torch baseline, visual perturbation and our label aug-
mented systems.

System BLEU COMET

Kaldi clean base 52.0 0.556
Kaldi clean aug 52.7 0.583

Kaldi 5 dB noise base 50.8 0.459
Kaldi 5 dB noise aug 51.5 0.459

Table 7: Results for clean and noisy Kaldi systems for
both baseline and augmented conditions.

word embedding space to produce image-based
first and last words to influence word choice in
their bidirectional RNN systems.

While there are a few examples of object detec-
tion as a separate task (including our work), Bal-
trusaitis et al. (2019) notes the rapid jump to joint
representations as neural networks became popular
tools for a variety of multimodal tasks, explaining
the prevalence of work following that approach.

6 Future Work

Having proven our object label augmentation tech-
nique on How2, future work includes applying
label augmentation to other datasets such as the
VATEX (Wang et al., 2020) video description
and VISA (Li et al., 2022) ambiguous subtitles
datasets. Further research into the effects of
ASR degraded speech and examining task-agnostic
image-language models such as CLIP (Radford
et al., 2021) for label augmentation may also be
useful.

7 Conclusion

We present a straight-forward method to improve
MT context quality by augmenting training data
with objects detected in corresponding video clips.
Using these augmented corpora, we realize gains of
up to +1.0 BLEU over baselines without changes

to the underlying MT toolkits used to build mod-
els. We additionally show improvements of up to
+0.7 BLEU with object label augmentation when
substituting ASR speech for gold standard inputs.

References
Tadas Baltrusaitis, Chaitanya Ahuja, and Louis-Philippe

Morency. 2019. Multimodal machine learning: A
survey and taxonomy. IEEE Trans. Pattern Anal.
Mach. Intell., 41(2):423–443.

Iacer Calixto and Qun Liu. 2017. Incorporating global
visual features into attention-based neural machine
translation. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Process-
ing, pages 992–1003, Copenhagen, Denmark. Asso-
ciation for Computational Linguistics.

Christopher Cieri, David Graff, Owen Kimball, David
Miller, and Kevin Walker. 2004–2005. Fisher En-
glish Training Part 1 and 2 Speech and Transcripts.
Linguistic Data Consortium, Philadelphia.

John Godfrey. 1994. Air Traffic Control Complete.
Linguistic Data Consortium, Philadelphia.

Kshitij Gupta, Devansh Gautam, and Radhika Mamidi.
2021. ViTA: Visual-linguistic translation by aligning
object tags. In Proceedings of the 8th Workshop
on Asian Translation (WAT2021), pages 166–173,
Online. Association for Computational Linguistics.

François Hernandez, Vincent Nguyen, Sahar Ghan-
nay, Natalia Tomashenko, and Yannick Estève. 2018.
TED-LIUM 3: Twice as much data and corpus
repartition for experiments on speaker adaptation.
In Speech and Computer, pages 198–208, Cham.
Springer International Publishing.

Glenn Jocher, Alex Stoken, Ayush Chaurasia, Jirka
Borovec, NanoCode012, TaoXie, Yonghye Kwon,
Kalen Michael, Liu Changyu, Jiacong Fang, Abhiram
V, Laughing, tkianai, yxNONG, Piotr Skalski, Adam
Hogan, Jebastin Nadar, imyhxy, Lorenzo Mammana,
AlexWang1900, Cristi Fati, Diego Montes, Jan Ha-
jek, Laurentiu Diaconu, Mai Thanh Minh, Marc, al-
binxavi, fatih, oleg, and wanghaoyang0106. 2021.
ultralytics/yolov5: v6.0 - YOLOv5n ’Nano’ models,
Roboflow integration, TensorFlow export, OpenCV
DNN support.

Marcin Junczys-Dowmunt, Roman Grundkiewicz,
Tomasz Dwojak, Hieu Hoang, Kenneth Heafield,
Tom Neckermann, Frank Seide, Ulrich Germann,
Alham Fikri Aji, Nikolay Bogoychev, André F. T.
Martins, and Alexandra Birch. 2018. Marian: Fast

The views expressed are those of the authors and do not
necessarily reflect the official policy or position of the Depart-
ment of the Air Force, the Department of Defense, or the U.S.
government. Distribution Statement A. Approved for public
release: distribution is unlimited. Originator reference number
RH-22-123269. Case number AFRL-2022-3098.

136

https://doi.org/10.1109/TPAMI.2018.2798607
https://doi.org/10.1109/TPAMI.2018.2798607
https://doi.org/10.18653/v1/D17-1105
https://doi.org/10.18653/v1/D17-1105
https://doi.org/10.18653/v1/D17-1105
https://doi.org/10.35111/da4a-se30
https://doi.org/10.35111/da4a-se30
https://doi.org/10.35111/2bg6-nn53
https://doi.org/10.18653/v1/2021.wat-1.19
https://doi.org/10.18653/v1/2021.wat-1.19
https://doi.org/10.5281/zenodo.5563715
https://doi.org/10.5281/zenodo.5563715
https://doi.org/10.5281/zenodo.5563715
https://doi.org/10.18653/v1/P18-4020
https://doi.org/10.18653/v1/P18-4020
https://doi.org/10.18653/v1/P18-4020
https://doi.org/10.18653/v1/P18-4020
https://doi.org/10.18653/v1/P18-4020
https://doi.org/10.18653/v1/P18-4020
https://doi.org/10.18653/v1/P18-4020


neural machine translation in C++. In Proceedings of
ACL 2018, System Demonstrations, pages 116–121,
Melbourne, Australia. Association for Computational
Linguistics.

Tom Kocmi, Rachel Bawden, Ondřej Bojar, Anton
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Maja Popović. 2015. chrF: character n-gram F-score
for automatic MT evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation,
pages 392–395, Lisbon, Portugal. Association for
Computational Linguistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on

Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas
Burget, Ondrej Glembek, Nagendra Goel, Mirko
Hannemann, Petr Motlicek, Yanmin Qian, Petr
Schwarz, Jan Silovsky, Georg Stemmer, and Karel
Vesely. 2011. The kaldi speech recognition toolkit.
In IEEE 2011 Workshop on Automatic Speech Recog-
nition and Understanding. IEEE Signal Processing
Society. IEEE Catalog No.: CFP11SRW-USB.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. 2021. Learn-
ing transferable visual models from natural language
supervision. In Proceedings of the 38th International
Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pages
8748–8763. PMLR.

Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon
Lavie. 2020. COMET: A neural framework for MT
evaluation. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 2685–2702, Online. Association
for Computational Linguistics.

Ramon Sanabria, Ozan Caglayan, Shruti Palaskar,
Desmond Elliott, Loïc Barrault, Lucia Specia, and
Florian Metze. 2018. How2: a large-scale dataset for
multimodal language understanding. In Proceedings
of the Workshop on Visually Grounded Interaction
and Language (ViGIL). NeurIPS.

Matthew Snover, Bonnie Dorr, Rich Schwartz, Linnea
Micciulla, and John Makhoul. 2006. A study of trans-
lation edit rate with targeted human annotation. In
Proceedings of the 7th Conference of the Association
for Machine Translation in the Americas: Technical
Papers, pages 223–231, Cambridge, Massachusetts,
USA. Association for Machine Translation in the
Americas.

David Snyder, Guoguo Chen, and Daniel Povey. 2015.
MUSAN: A Music, Speech, and Noise Corpus.
ArXiv:1510.08484v1.
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