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Abstract

This paper provides an overview of NVIDIA
NeMo’s speech translation systems for the
IWSLT 2023 Offline Speech Translation Task.
This year, we focused on end-to-end system
which capitalizes on pre-trained models and
synthetic data to mitigate the problem of di-
rect speech translation data scarcity. When
trained on IWSLT 2022 constrained data, our
best En—De end-to-end model achieves the
average score of 31 BLEU on 7 test sets from
IWSLT 2010-2020 which improves over our
last year cascade (28.4) and end-to-end (25.7)
submissions. When trained on IWSLT 2023
constrained data, the average score drops to
29.5 BLEU.

1 Introduction

We participate in the IWSLT 2023 Offline
Speech Translation Task (Agarwal et al., 2023)
for English—German, English—Chinese, and
English—Japanese. This year, we focus on an end-
to-end model, which directly translates English
audio into text in other languages.

In contrast to automatic speech recognition
(ASR) and text-to-text neural machine translation
(NMT), the data for direct speech translation (ST)
is scarce and expensive. Thus, to train a high-
quality end-to-end ST model, we heavily rely on a
number of auxiliary models for which the amount
of available data is enough. Specifically, we train
the following models:

¢ ASR model with FastConformer-
RNNT (Rekesh et al., 2023) architecture
trained on all allowed data.

e NMT model with Transformer encoder-
decoder architecture trained on all allowed
bitext and in-domain fine-tuned on TED talks.
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e Text-to-speech (TTS) model with Fast-
Pitch (Lancucki, 2021) architecture trained
on the English transcripts of TED talks.

* Supervised Hybrid Audio Segmentation
(SHAS) model (Tsiamas et al., 2022) trained
on TED talks.

Our constrained end-to-end ST model consists
of a FastConformer encoder and a Transformer
decoder. We initialize the encoder with the corre-
sponding component from ASR and train our ST
model on a mix of speech-to-text and text-to-text
data. We replace all ground truth translations (wher-
ever available) with synthetic ones generated with
the NMT model and voice the English portion of
parallel text corpora with TTS.

Our systems will be open-sourced as part of
NVIDIA NeMo! framework (Kuchaiev et al.,
2019).

2 Data

In this section, we describe the datasets used for
training (Table 1). For evaluation, we used the de-
velopment sets of Must-C v2 (Cattoni et al., 2021),
as well as the test sets from past IWSLT competi-
tions. We noticed that development data had a large
overlap with training data, mostly because of the
usage of the same TED talks in different datasets.
Thus, we discarded all samples with overlapping
transcripts and talk ids.

TED talks In the list of allowed data, there are
several datasets comprised of TED talks, namely
Must-C v1-v3, ST-TED (Jan et al., 2018), and TED-
LIUM v3 (Hernandez et al., 2018) which have sig-
nificant data overlap. After combining them to-
gether and doing deduplication, we ended up with
the dataset of 370K unique samples (611 hours of
English audio) we used for in-domain fine-tuning
of various models. Further in the text, we refer to

"https://github.com/NVIDIA/NeMo
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Table 1: Statistics of different datasets used for training
our models in a constrained regime.

Segments  Time
Model (millions)  (hours)
ASR 2.7 4800
NMT En—De 11 —
NMT En—Zh 7.5 —
NMT En—Ja 21 —
TTS 0.37 611

this dataset and its subsets with available transla-
tions to De/Zh/Ja as TED talks. See Table 2 for
the detailed statistics of this dataset.

ASR For training our ASR model, we used Lib-
riSpeech (Panayotov et al., 2015), Mozilla Com-
mon Voice v11.0 (Ardila et al., 2019), TED-LIUM
v3 (Hernandez et al., 2018), VoxPopuli v2 (Wang
et al., 2021), all available speech-to-English data
from Must-C v1-v3 (Cattoni et al., 2021) En-
De/Zh/Ja datasets, ST-TED (Jan et al., 2018), and
Europarl-ST (Iranzo-Sanchez et al., 2020).

We converted all audio data to mono-channel
16kHz wav format. Of all the datasets allowed un-
der the constrained submission, LibriSpeech and
TED-LIUM v3 were the only datasets that provided
transcripts with neither punctuation nor capitaliza-
tion (P&C). For LibriSpeech, we managed to re-
store P&C from the dataset metadata available at
their website’. For TED-LIUM v3, we applied
P&C restoration model trained on the English por-
tion of allowed bitext. Finally, we discarded all
samples shorter than 0.2s and longer than 22s and
all samples with transcripts present in the evalua-
tion dataset. As a result, our training dataset con-
tained 2.7M audio segments with a total duration
of 4.8k hours.

MT For training our NMT models, we used
all available bitext allowed for IWSLT 2023 con-
strained submission. After training, we additionally
fine-tuned our models on bitexts from TED talks
for each language.

We applied 1angid and bicleaner filtering
following Subramanian et al. (2021) and discarded
all sentences longer than 128 tokens and sentences
with the length ratio between source and target
exceeding 3. We also applied Moses tokenization

Zhttps://www.openslr.org/12

Table 2: Statistics of TED talks dataset.

Segments Time
Model (thousands) (hours)
En audio — En text 370 611
En audio — De text 280 459
En audio — Zh text 350 580
En audio — Ja text 321 528

for En/De, jieba tokenization for Zh, and ja-mecab
tokenization for Ja.

TTS For training our TTS model, we used TED
talks with English transcripts. The combination of
Must-C v1-v3 and ST-TED contained 3696 speak-
ers, however, some of them were not unique. Capi-
talizing on the huge overlap with TED-LIUM v3
and the speaker names from there, we managed to
attribute several talks to a single speaker reducing
the number of unique speakers to 3361. We also
removed capitalization from English transcripts in
TED talks.

ST For training our end-to-end ST models, we
used the combination of 1) ASR data with the
ground truth transcripts replaced by synthetic trans-
lations; 2) NMT data with TTS-generated English
audios on source side (Table 1).

3 System

In this section, we describe the essential compo-
nents of our end-to-end submission.

ASR We trained 17-layer large conformer-
transducer (Gulati et al., 2020) with FastCon-
former (Rekesh et al., 2023) encoder and RNN-
T loss and decoder (Graves, 2012). The pre-
diction network consisted of a single layer of
LSTM (Hochreiter and Schmidhuber, 1997), and
the joint network is an MLP. All the hidden sizes
in the decoder were set to 640. Unigram Senten-
cePiece (Kudo and Richardson, 2018) with 1024
tokens was used for tokenization.

The ASR models were trained for 45 epochs,
starting with a checkpoint pre-trained on Lib-
riSpeech. We used AdamW (Loshchilov and Hut-
ter, 2017) optimizer and Noam Annealing (Vaswani
et al., 2017) with 10K warmup steps and a maxi-
mum learning rate of 1.15. Weight decay of 0.001
on all parameters was used for regularization. The
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effective batch size was set to 1200, and we could
fit larger batch sizes via batch splitting for the RNN-
T loss. Time-Adaptive SpecAugment (Park et al.,
2020) with 2 freq masks (F' = 27) and 10 time
masks (T = 5%) was used as the augmentation
scheme. We also used dropout of 0.1 for both the
attention scores and intermediate activations.

NMT We trained our NMT models (Transformer,
12 x 6 layers, dmodel = 1024, dipner = 4096,
Nheads = 16) with Adam optimizer (Kingma
and Ba, 2014) and inverse square root anneal-
ing (Vaswani et al., 2017) with 7.5K warmup steps
and a maximum learning rate of 10~3. The mod-
els were trained for a maximum of 75K steps with
a dropout of 0.1 on intermediate activations and
label smoothing with o = 0.1. Our En—De mod-
els used joint BPE vocabulary of 16384 tokens
and En—Zh/Ja used separate vocabularies with the
same number of tokens per language.

After training, we did checkpoint averaging and
fine-tuned all our base NMT models on TED talks
for 3 epochs with an initial learning rate of 2x 1075,
inverse square root annealing, and a warmup of
10% steps. Finally, we ensembled 2 models trained
with different initializations for each language di-
rection.

TTS Our TTS model was multi-speaker Fast-
Pitch (Lancucki, 2021) text-to-mel-spectrogram
generator. Training vocoder was not necessary
for our setup as the parameters of spectrograms
matched ones for ST models following the ap-
proach described in (Bataev et al., 2023). TTS-
generated spectrograms were fed directly into
the FastConformer encoder when training the ST
model. Our TTS model was trained for 200 epochs
on TED talks with restored speakers from TED-
LIUM v3 (Hernandez et al., 2018).

Segmentation We used Supervised Hybrid Au-
dio Segmentation (SHAS) approach following Tsia-
mas et al. (2022). As using speech representation
pre-trained wav2vec 2.0 (Baevski et al., 2020) goes
beyond the scope of constrained submission,
we replaced it with Conformer ASR encoder, pre-
trained on LibriSpeech.

ST Our end-to-end model consisted of FastCon-
former encoder followed by Transformer trained on
pairs of English audio and transcripts in other lan-
guages (17-layer FastConformer encoder, 6 x 6
Transformer, both with dpoder = 512, dipper =

Table 3: Word error rate (WER) of the English ASR
model evaluated on TED talks from Must-C v2 and past
test sets from IWSLT. All predictions and ground truths
transcripts were normalized for WER computation.

Model tst-COM IWSLT.tst

De Zh/Ja | 2018 2019 2020
norm 5.9 5.8 9.8 5.6 8.0
punct 5.7 54 9.4 4.9 7.0

punct+capit 5.7 5.5 9.5 5.7 8.5

2048, Npeads = 8). We used the vocabulary
of 16384 YouTokenToMe® byte-pair-encodings,
trained jointly for En—De and separately for
En—Zh/Ja. All models were trained for 30k steps
with ASR-initialized encoder and randomly initial-
ized decoder.

To speed up training and improve GPU utiliza-
tion, we bucketed our ASR and NMT datasets on
sequence length so each batch contained a simi-
lar number of tokens. On each iteration, we pick
one batch from ASR and one batch which resulted
in approximately 3:2 ratio between segments from
ASR and NMT for En—De. TTS mel spectrograms
were generated on-the-fly for a randomly selected
speaker for each sample.

After pretraining on the ASR task, we fused
BatchNorm in FastConformer layers as proposed
in (Bataev et al., 2023) to avoid a mismatch be-
tween statistics for natural and generated mel spec-
trograms. The batch normalization layer was re-
placed with a trainable projection initialized from
the original parameters. We observed meaningful
improvements when using such an approach com-
pared to retaining the original batch normalization.

4 Experiments

4.1 Results

ASR Table 3 shows word error rate (WER) of our
ASR models on different evaluation datasets. We
trained 3 models which differed by the format of
transcripts: normalized (norm), with punctuation
only (punct), with punctuation and capitalization
(punct+capit).

All models exhibited similar results, with
punct being slightly better on all evaluation
datasets. However, in our further experiments of
training end-to-end ST with an ASR-initialized en-

3https://github.com/VKCOM/YouTokenToMe
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Table 4: En—De BLEU scores calculated on IWSLT test sets from different years by using automatic re-
segmentation of the hypothesis based on the reference translation by mwerSegmenter implemented in
SLTev (Ansari et al., 2021). Avg A computes the improvement over the cascade baseline averaged over 7 test sets.

Model description 2010 2013 2014 2015 2018 2019 2020 | Avg
Text-to-text NMT models
Transformer 12 x 6 constrained 329 36.7 327 342 305 294 33.0 | 328
+ checkpoint averaging 33.1 374 328 351 303 29.8 335|331
+ TED talks fine-tuning 345 39.1 341 353 308 303 33.8 | 34.0
+ x2 ensembling 352 40.2 349 36.0 325 31.6 354 | 35.1
NeMo IWSLT’22 NMT model 35.7 41.2 36.2 381 347 31.7 35.0 | 36.1
End-to-end ST models
Conformer (17) + Transformer (6 x 6) 29.8 33.8 30.2 27.1 26.2 26.8 29.1 | 29.0
+ better WebRTC VAD parameters  31.2 35.4 31.8 28.6 273 276 29.7 | 30.2
+ SHAS segmentation 321 36.1 326 290 284 279 309 |31.0
NeMo IWSLT 2023 constrained 31.0 349 30.7 286 274 277 30.3 | 29.5
NeMo IWSLT 2022 (end-to-end) 24.5 30.0 252 253 249 241 26.2|25.7
NeMo IWSLT 2022 (cascade) 26.6 322 26.8 283 281 273 29.7 | 284
KIT IWSLT 2022 — — — 27.9 — 276 30.0 | —
USTC-NELSLIP IWSLT 2022 — — — — 299 282 306 | —
YiTrans IWSLT 2022 — — — — — 31.6 34.1 —

coder, we did not notice a significant difference in
the corresponding BLEU scores.

ST En—De Table 4 shows the performance of
our baseline En—De system and its ablations on
7 different IWSLT test sets over the years. All ab-
lation experiments used the last year’s constrained
setup that included more NMT data from WMT to
be comparable with the last year submissions. The
systems we submit were retrained on the allowed
data to comply with constrained restrictions.

We improve the average BLEU score by 5.3 over
our last year end-to-end submission. We believe
that such gain is attributed to several factors, most
importantly, switching to synthetic transcripts, in-
cluding TTS-generated data, and a better segmen-
tation model. On some of the evaluation datasets,
we approached the BLEU scores of top contestants
from last year.

Retraining our model in accordance with this
year constrained setup resulted in the aver-
age degradation of 1.5 BLEU. Most of this perfor-
mance drop was attributed to worse NMT models
trained on limited amount of data which did not
include large bitexts from WMT.

ST En—Zh/Ja To train English-Chinese and
English-Japanese ST systems, we followed a sim-
ilar recipe to the English-German system. Specif-
ically, we re-trained NMT components and used
them to generate synthetic translations of audio
segments. With other auxiliary models intact, we
replaced bitexts used for TTS augmentations and
trained En—Zh (Table 5) and En—Ja (Table 6) ST
end-to-end models in a constrained setup.

The only difference in our submission was that
the English-Chinese model used punct+capit
ASR, while the English-Japanese model used
norm ASR. This choice was based on a slightly
higher (less than 0.5) BLEU score on Must-C v2
dev dataset.

4.2 Discarded alternatives

When designing our submission, we explored a
number of alternatives that did not lead to a clear
improvement in preliminary experiments and, thus,
were not included in the final submission.

ASR  We tried to replace BatchNorm with Layer-
Norm in the FastConformer backbone to mitigate
the statistics mismatch between natural and TTS-
generated mel-spectrograms. The resulting model
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Table 5: En—Zh BLEU scores calculated on Must-C
dev and t st-COMMON with official segmentation.

Table 6: En—Ja BLEU scores calculated on Must-C
dev and t st-COMMON with official segmentation.

Model description dev tst-COM Model description dev tst-COM
Text-to-text NMT models Text-to-text NMT models

Transformer 12 x 6 22.9 26.4 Transformer 12 x 6 12.8 15.5

+ ckpt avg 23.0 26.4 + ckpt avg 13.3 16.2

+ TED talks fine-tuning 24.7 28.0 + TED talks fine-tuning 14.7 18.5

+ x2 ensembling 25.5 28.9 + x2 ensembling 15.0 19.2

End-to-end ST models End-to-end ST models

NeMo IWSLT 2023 23.9 27.5 NeMo IWSLT 2023 14.5 18.3
USTC-NELSLIP IWSLT’ 22 — 28.7 USTC-NELSLIP IWSLT 22 — 18.2
YiTrans IWSLT 22 — 29.3 YiTrans IWSLT 22 — 19.1

required more epochs to converge and resulted in
slightly higher WER.

NMT We experimented with larger models of up
to 12 x 8 layers, larger vocabularies of up to 32k
tokens, and label smoothing of up to 0.2 but did not
notice any improvements to BLEU scores. We also
saw diminishing returns when using more than 2
models in the ensemble. Thus, we decided to stick
to the ensemble of two 12 x 6 models with 16k
vocab to speed up synthetic data generation.

TTS While debugging the code, we noticed that
TTS model generating mel-spectrograms used the
same single speaker and had dropout enabled. Sur-
prisingly, it did not lead to performance degrada-
tion. We hypothesize that this was caused by using
well converged pre-trained ASR encoder, which
was not altered significantly by the low-quality sig-
nal. We also experimented with improving gener-
ated spectrograms with GAN enhancer following
Bataev et al. (2023), which led to similar results at
the cost of significant computation overhead.

Segmentation We experimented with voice ac-
tivity detection implemented in WebRTC* toolkit,
however, the BLEU scores on IWSLT test sets were
lower even after extensive hyperparameter search.

ST Given the effectiveness of ensembling in last
year’s competition, we evaluated the performance
of an ensemble of up to 3 models with different
ASR encoder initializations. Unlike NMT, we did
not observe any improvement in using the best
model from the ensemble.

*https://github.com/wiseman/py-webrtcvad

We experimented with using RNN-T instead
of the Transformer decoder. Despite its remark-
able performance in ASR, RNN-T converged much
slower and underperformed our Transformer de-
coder by more than 2 BLEU in our ST model.

5 Conclusion

We present NVIDIA NeMo group’s offline speech
translation systems for En—De, En—Zh, and
En—Ja IWSLT 2023 Tasks.

Our primary end-to-end models that translate
English speech directly into German, Chinese, and
Japanese texts, consist of FastConformer encoder
and Transformer decoder. To alleviate the prob-
lem of direct ST data scarcity, we capitalized on a
number of auxiliary ASR, TTS, and NMT models,
and their ability to generate high-quality audio and
translations. The resulting models achieve com-
petitive performance without using any amount of
direct ST data.

Although we participated in constrained
scenario, our pipeline can be easily scaled to ar-
bitrarily large amounts of ASR and NMT data.
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