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Abstract

In this paper, we present the KU x Up-
stage team’s submission for the Special Task
on Formality Control on Spoken Language
Translation, which involves translating En-
glish into four languages with diverse gram-
matical formality markers. Our methodology
comprises two primary components: 1) a
language-specific data-driven approach, and
2) the generation of synthetic data through
the employment of large-scale language mod-
els and empirically-grounded prompt engineer-
ing. By adapting methodologies and models
to accommodate the unique linguistic prop-
erties of each language, we observe a no-
table enhancement in performance relative to
the baseline, substantiating the heightened effi-
cacy of data-driven approaches. Moreover, our
devised prompt engineering strategy yields su-
perior synthetic translation instances.

1 Introduction

Neural machine translation (NMT) models have
achieved remarkable progress in recent years, as
evidenced by their high BLEU scores (Britz et al.,
2017; Stahlberg, 2020). Nonetheless, these models
generally rely on generic parallel corpora and as-
sume a single target translation for a given source
sentence, often overlooking the significance of
style and pragmatic aspects in translation, such as
formality or politeness (Li et al., 2022). To address
this issue, formality-sensitive machine translation
(FSMT) has emerged as a research area, aiming
to control grammatical formality in translated text
across languages (Niu et al., 2017).

The Special Task on Formality Control on Spo-
ken Language Translation introduces a new bench-
mark with high-quality training datasets for di-
verse languages, encompassing both supervised
and zero-shot language pairs. Despite these new
datasets (Nădejde et al., 2022), controlling formal-
ity in MT remains a challenging problem due to the

Source: It did, many people liked his show

so yeah, do you like Chris Pratt?

Korean Formal:그랬어요,많은사람들이그의

쇼를좋아했죠.그래서당신크리스프랫좋아해요?

Korean Informal:그랬어,많은사람들이그의

쇼를좋아했지.그래서너크리스프랫좋아해?

Table 1: Contrastive translations in formal and informal
styles into Korean are presented. Grammatical formal-
ity markers, which are bolded, can be aligned through
colors.

absence of gold translations with alternate formal-
ity levels and the extensive variation in grammatical
formality markers across languages.

In the 2023 shared task, an English source seg-
ment is paired with two references that are mini-
mally contrastive in grammatical formality, repre-
senting both formal and informal levels as shown
in Table 1. Training and test samples are provided
in the domains of “telephony data” and “topical
chat” (Gopalakrishnan et al., 2019) for two super-
vised language pairs, English-Korean (EN-KO) and
English-Vietnamese (EN-VI), and two zero-shot
language pairs, English-Portuguese (EN-PT) and
English-Russian (EN-RU). Grammatical formality
markers differ across these languages. Personal pro-
nouns and verb agreement signal formality in many
Indo-European languages (e.g., PT, RU), while in
Korean, formality control is notably challenging
due to the widespread use of morphological mark-
ers to convey polite, respectful, and humble speech,
making it an intriguing test case for FSMT.

In this paper, we present our approach to FSMT,
focusing on the supervised setting for the English-
Korean (EN-KO) and English-Vietnamese (EN-
VI) language pairs and evaluating our methods
on the zero-shot English-Portuguese (EN-PT) and
English-Russian (EN-RU) pairs. Our method con-
sists of two main strategies: 1) a language-specific
data-driven approach, and 2) synthetic data gener-
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ation using large-scale language models and em-
pirical prompt engineering. We apply techniques
and models tailored to the linguistic features of
each language. For Korean, we utilize a morpheme-
centric subword tokenization method, while for
Vietnamese, we employ a pre-trained EnViT5
model with high-quality Vietnamese parallel cor-
pora. Additionally, we generate synthetic trans-
lation datasets for Portuguese and Russian using
prompt engineering and refine these datasets using
formality classifiers for fine-tuning our models. Fur-
thermore, we founded significant performance im-
provements in EN-KO and EN-VI and conducted
an ablation study to utilize high-quality synthetic
examples.

2 Proposed Method

2.1 Task Definition

In this submission, we focus on the supervised and
zero-shot settings on unconstrained formality con-
trol machine translation task. Formally, provided
with a source segment X = {x1, x2, . . . , xm} and
a formality level l ∈ {formal, informal}, the ob-
jective is to identify a model defined by parame-
ters Θ that produces the most probable translation
Y = {y1, y2, . . . , yn} in accordance with the for-
mality level:

Y = arg max
Yl

P (X, l;Θ)

In simpler terms, the goal is to find the optimal
model parameters Θ that produce the most likely
translation Y , given the source segment X and the
desired formality level l (either formal or informal).
This is achieved by maximizing the probability
P (X, l;Θ) of obtaining the translation Y at the
specified formality level.

2.2 Language Specialized Data-Centric
Approach

In this work, we employ a language special-
ized data-centric approach by integrating trans-
fer learning techniques from Zoph et al. (2016)
and language-specific subword methods, such as
Unigram (Kudo, 2018) or byte-pair encoding
(BPE) (Sennrich et al., 2015b). This combina-
tion effectively captures the unique morphologi-
cal and syntactic structures of the target language,
resulting in substantial improvements in transla-
tion performance, especially for low-resource lan-
guages (Zoph et al., 2016; Bojanowski et al., 2017;

Park et al., 2020, 2021). Finally, we fine-tuned the
pre-trained model (PLM) on the supervised train
set each language pair.

EN-KO We discuss our approach to improve the
English-Korean (EN-KO) translation performance
by pre-training a Transformer using a high-quality
dataset and leveraging morpheme-aware subword
tokenization to better capture the linguistic charac-
teristics of the Korean language such as agglutina-
tive nature and structure.

We adopted a data-centric approach by pre-
training a Transformer for EN-KO translation. To
do so, we used a high-quality dataset from the AI
Hub (Park et al., 2022)1 data platform, which is
operated by the Korean government. This compre-
hensive dataset includes various parallel corpora
encompassing diverse domains such as technical
and scientific fields, daily life and colloquial ex-
pressions, news articles, government and local gov-
ernment websites, publications, administrative reg-
ulations, Korean culture, and formal and informal
language. By using a dataset specifically tailored
for English-Korean translation, we aimed to cap-
ture finer nuances in both languages and enhance
the translation quality by incorporating domain-
specific knowledge and addressing the linguistic
variations in different contexts.

Furthermore, we addressed the linguistic char-
acteristics of the Korean language by applying a
morpheme-aware subword tokenization method,
which combines a segmentation strategy based on
linguistic features with subwords. This approach
has been shown to be effective in various Korean
NLP tasks (Park et al., 2020). We utilized MeCab-
ko 2, a widely-used morphological analyzer for the
Korean language, for morpheme analysis. After ob-
taining the morphemes, we applied the Unigram
subword tokenization method, which allowed our
model to capture linguistic patterns specific to the
Korean language, ultimately improving the overall
translation performance.

EN-VI For the EN-VI language pair, we em-
ployed the EnViT5 (Ngo et al., 2022), a Text-to-
Text Transfer Transformer (T5) model proposed
by Raffel et al. (2020). We aimed to improve the
fine-tuning translation performance of EN-VI in a
low-resource setting by applying this data-centric
approach to the multi-domain pre-trained EnViT5

1https://aihub.or.kr/
2https://bitbucket.org/eunjeon/

mecab-ko-dic
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model, which has been specifically designed for
Vietnamese language tasks. Notably, EnViT5 mod-
els outperformed existing multilingual models such
as mBART and M2M-100 while maintaining a sig-
nificantly smaller parameter size, making them scal-
able and promising for both academic and industry
applications (Ngo et al., 2022).

EnViT5 was pre-trained with the CC100
Dataset (Wenzek et al., 2020) which comprises
monolingual data for over 100 languages. Subse-
quently, EnViT5 was fine-tuned on the MTet (Ngo
et al., 2022) and PhoMT (Doan et al., 2021)
datasets. MTet is a multi-domain EN-VI machine
translation dataset encompassing a diverse range
of domains, including educational videos, soft-
ware user interfaces, COVID-related news arti-
cles, religious texts, subtitles, Wikipedia, and TED
Talks (Reimers and Gurevych, 2020). Ultimately,
when combined with PhoMT and IWSLT’15 (Cet-
tolo et al., 2015), the final MTet dataset expands
the training set size to 6 million examples, covering
previously neglected areas such as law and biomed-
ical data, which contains monolingual data for over
100 languages.

2.3 Synthetic Data Generation via Prompt
Engineering

Leveraging synthetic examples in machine trans-
lation is crucial for improving translation quality,
especially in low-resource settings (Edunov et al.,
2018; Sennrich et al., 2015a). ChatGPT with GPT-4
engine (OpenAI, 2023), in particular, exhibits trans-
lation performance comparable to state-of-the-art
WMT system and demonstrate good quality of gen-
eration conditioned translation generation in both
few-shot and zero-shot settings (Hendy et al., 2023).
To generate synthetic data, we employ ChatGPT to
condition on formality and translate the IWSLT’22
Formality Track (Salesky et al., 2022) for all lan-
guage pairs with English as the source language.
Furthermore, we use a formality classifier (Rippeth
et al., 2022) to filter synthetic examples, ensuring
that both formal and informal examples are accu-
rately translated for each language.

Supervised Setting We follow the prompt tem-
plate depicted in Appendix A, which is based on
the approach proposed by Hendy et al. (2023). To
provide context for the model, we utilize n ran-
domly selected shots from the English training set
of other language pairs in the IWSLT 23 Formality
Track (Agarwal et al., 2023). The few-shot exam-

ples are sourced from the target language’s training
set and include both informal and formal levels.
ChatGPT is then tasked with translating the input
text into either an informal or formal target lan-
guage, depending on the specified prompt. For the
input text, we use English source sentences from
the IWSLT 22 Formality Track’s other language
pairs. After filtering the translated examples us-
ing a formality classifier, we fine-tuned the respec-
tive PLMs for EN-KO and EN-VI by incorporating
synthetic examples into the training sets for each
language pair. To verify the effectiveness of data
augmentation through prompt engineering, we con-
duct experiments comparing the results with and
without the augmented data.

Language Size
Train Test

EN-KO 400 600
EN-VI 400 600
EN-PT 0 600
EN-RU 0 600

Table 2: Data statistics in train and test sets of Formality
Dataset

Zero-shot Setting In the EN-PT and EN-RU
zero-shot settings, we generate synthetic exam-
ples for fine-tuning using the IWSLT’22 train set.
We translate the source into both formal and in-
formal target language levels, employing suitable
prompts and filtering with a formality classifier to
ensure conditioned formality. The template, shown
in Appendix A, is adapted from the OpenAI Play-
ground’s default sentence-level translation task3.
The model is instructed to translate English in-
put into either informal or formal target language,
guided by n random shots from the training set.
Generated examples are then filtered using a for-
mality classifier before fine-tuning the pre-trained
multilingual translation model.

This zero-shot approach enables effective con-
ditioned task performance with limited exposure
to specific language pairs and formality levels. By
generating synthetic translation data for fine-tuning,
we capitalize on the model’s generalization ability
across languages and formality levels, enhancing
translation performance in zero-shot settings. This
highlights the potential of synthetic data in extend-
ing pre-trained language models’ capabilities, even

3https://platform.openai.com/examples/
default-translate
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with novel language pair and formality combina-
tions.

3 Experiment Settings

3.1 Dataset Details

The IWSLT shared task provides Formality Dataset
which contains English source segments, each ac-
companied by two contrasting reference transla-
tions representing informal and formal formality
levels. This is available for two language pairs,
EN-{KO, VI}, in the supervised setting and two
additional language pairs, EN-{PT, RU}, in the
zero-shot setting. The statistics for the train and
test sets of the dataset are shown in Table 2

For training and testing purposes, we randomly
sampled 50 pairs of examples across each domain
from the train set of Formality Dataset, and set
them aside as validation sets (TASK DEV) for each
supervised language. The remaining samples were
utilized for training (TASK TRAIN).

Additionally, we utilized external datasets in
conjunction with the data provided in the shared
task. For EN-KO, we employed a parallel corpus
comprising Formal/Informal, Social Science, Tech-
nology Science, and News domains from AI Hub
for the pretraining of the PLM. For EN-VI, we
utilized EnViT5, which was fine-tuned using the
MTet (Ngo et al., 2022) and PhoMT (Doan et al.,
2021) datasets.

In our research, we leverage ChatGPT for the
augmentation of the EN-KO and EN-VI and the
generation of synthetic examples for fine-tuning
on EN-PT and EN-RU. This was done by using
the source data from all available English-other
language pairs (EN-XX) in the IWSLT’22 Formal-
ity Track (Anastasopoulos et al., 2022). To secure
the quality and uniqueness of our training set, we
implemented a preprocessing step that excludes du-
plicate sentences. Furthermore, to determine the op-
timal hyperparameters, we conducted a case study
utilizing TASK DEV (details can be found in Sec-
tion 4.3). The hyperparameters that led to the high-
est Matched-Accuracy (M-Acc) were selected for
use. For all language pairs, we utilized a temper-
ature of 0.9; specifically, we implemented 4-shot
learning for EN-KO and 2-shot learning for EN-
VI. For EN-PT and EN-RU, we proceeded with
a zero-shot setting. More detailed information re-
garding the datasets and the preprocessing steps
are presented in Table 3.

Language Size Source

EN-KO 6M AI Hub (Formal/Informal
+ Tech/Sci + Social/Sci + News)

EN-VI 6.2M MTet (Ngo et al., 2022)
+ PhoMT (Doan et al., 2021)

EN-{PT, RU} 1.6K EN source from IWSLT’22
(Anastasopoulos et al., 2022)

Table 3: Additional external datasets used for the for-
mality track in various language pairs.

3.2 Training Details

In the training details for the EN-KO language
pair, we applied a morpheme-aware tokenization
method to the translation dataset. To achieve this,
we followed the training methods proposed by Park
et al. (2020) and Gowda and May (2020), using
MeCab-ko and Unigram to construct a vocabu-
lary of 48K tokens. We then pre-trained the Trans-
former model (Vaswani et al., 2017). We used the
fairseq library with 12 encoder and 12 decoder
layers, each having 16 attention heads. Both en-
coder and decoder had an embedding dimension
of 1024 and a feed-forward network (FFN) dimen-
sion of 4096. During pre-training, we trained for
20 epochs with a learning rate of 5e-4 and 4000
warmup updates. For fine-tuning, we trained for
200 epochs using a learning rate of 4e-5 and 100
warmup updates. We fine-tuned using the TASK

TRAIN for all language pairs.
For EN-{VI, PT, RU} pairs, we fine-tuned us-

ing the huggingface library. For EN-VI, we
used the VietAI/envit5-translation as
the PLM. Fine-tuning was performed for 200
epochs with a learning rate of 4e-5, 200 warmup
steps, and a batch size of 64. For EN-{PT,RU}
pairs, we used facebook/mbart-large-50
and trained for 200 epochs with a learning rate of
3e-5, 100 warmup steps, and a batch size of 16. All
models were trained using four RTX A6000 GPUs.
Detailed hyperparameters and training information
can be found in the Appendix B.

3.3 Evaluation Details

In our experimental setting, we used the official test
set from Formality Dataset (IWSLT’23) to evaluate
our translation model’s performance. The evalua-
tion was conducted across two dimensions: overall
translation quality and formality control. To as-
sess the overall translation quality, we employed
BLEU (Papineni et al., 2002) and COMET (Rei
et al., 2020) (eamt22-cometinho-da) as au-
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EN-KO EN-VI
METHOD BLEU COMET %M-ACC %C-F BLEU COMET %M-ACC %C-F

Fo
rm

al

Official Baseline 4.91 0.211 78.3 98.6 26.71 0.363 96.0 99.7
ChatGPT 5.65 0.524 83.3 100.0 27.07 0.510 100.0 98.0
Ours 26.60 0.727 87.0 100.0 47.00 0.669 99.4 100.0
Ours + Augmentation 17.09 0.667 79.4 99.5 41.57 0.653 99.4 99.7

In
fo

rm
al

Official Baseline 4.85 0.170 97.6 99.5 25.28 0.345 96.0 98.2
ChatGPT 5.60 0.564 100.0 100.0 25.83 0.482 100.0 100.0
Ours 27.10 0.715 98.0 95.0 45.60 0.637 98.8 100.0
Ours + Augmentation 20.35 0.621 98.5 98.8 40.46 0.484 98.7 100.0

Table 4: Results on the test set of Formality Dataset for formal and informal supervised settings, obtained via our
language specialized data-centric approach.

EN-PT EN-RU

METHOD BLEU COMET %M-ACC %C-F BLEU COMET %M-ACC %C-F

Fo
rm

al Official Baseline 27.29 0.448 96.3 97.7 21.96 0.349 96.2 92.0

ChatGPT 31.25 0.655 92.0 96.0 31.25 0.655 92.0 96.0

Ours 31.00 0.525 100.0 100.0 25.80 0.445 100.0 100.0

In
fo

rm
al Official Baseline 30.93 0.416 93.2 90.8 21.63 0.348 84.1 85.2

ChatGPT 27.38 0.512 48.4 46.0 31.25 0.655 92.0 100.0

Ours 19.90 0.249 68.0 90.0 26.30 0.418 100.0 100.0

Table 5: Results on the test set of Formality Dataset for formal and informal zero-shot settings, achieved through
our approach of synthetic data generation via prompt engineering.

tomatic evaluation metrics. We use 13A tokenizer
to report SACREBLEU (Post, 2018) scores for all
languages.

For formality control, we utilized Matched-
Accuracy (M-Acc), a reference-based corpus-
level metric that leverages phrase-level formality
markers from the references to classify system-
generated hypotheses as formal or informal. The
corpus-level score is the percentage of system out-
puts that match the desired formality level.

Additionally, we used a reference-free variant
of M-Acc (C-F) 4, which relies on a multilingual
formality classifier to label system-generated hy-
potheses as formal or informal, with the corpus-
level score representing the percentage of system
outputs matching the desired formality level.

3.4 Prompt Design

We conducted experiments using ChatGPT with
GPT-4 engine with langchain5. For EN-KO and
EN-VI language pairs, we used a supervised set-

4https://github.com/amazon-science/
contrastive-controlled-mt/tree/main/
IWSLT2023

5https://python.langchain.com/

ting, while for EN-PT and EN-RU pairs, we em-
ployed a zero-shot setting. In the supervised set-
ting, we extracted arbitrary n-shot samples using
the TASK TRAIN. We designed prompts by leverag-
ing langchain’s prompt guide and prompt examples
from Hendy et al. (2023). Detailed examples and
explanations of the prompts can be found in Ap-
pendix A.

4 Result & Findings

4.1 Results for Supervised Setting

Table 4 presents our experimental results in the su-
pervised setting. As demonstrated by our results,
our model, trained with the high-quality human-
annotated Formality Dataset, exhibited outstand-
ing performance. In particular, with respect to the
C-F metric, our model shows almost perfect for-
mality control performance (100% accuracy) for
most of the tasks, except for the EN-KO informal
task. Additionally, our model shows superior per-
formance for the conventional NMT metrics (i.e.
BLEU, COMET), outperforming ChatGPT with a
21.50 BLEU score for the EN-KO informal task.
The EN-VI pair also exhibits high NMT metric
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Figure 1: BLEU and M-Acc scores for ChatGPT based on superviesed setting, evaluated on TASK DEV.

scores, M-Acc, and C-F scores compared to the
baseline. These results suggest that our language-
specific data-centric approach is effective.

Through our experiments, we observed a sig-
nificant degradation in the quality for supervised
settings EN-{KO, VI}. This phenomenon can be
attributed to the limitations of synthetic data pro-
duced by ChatGPT. While the data generated
through ChatGPT exhibits considerable quality,
it was not up to par with the sentences derived
from our data-centric approach. We found that the
integration of ChatGPT-augmented data inadver-
tently introduced noise into the system, leading to
a decrease in overall performance. Despite the ex-
ceptional capabilities of ChatGPT, it appears that
in this context, the quality of data augmented by
conventional NMT methods is still superior. This
observation further emphasizes the critical role of
data quality over quantity in supervised learning en-
vironments, and highlights the potential benefits of
more sophisticated prompting techniques that con-
sider formality control, such as stylistic or sentence
endings, for improving overall performance.

4.2 Results for Zero-shot Setting

The experimental results for the zero-shot setting
are shown in Table 5. As can be seen from the
experimental results, our model significantly out-

performs the official baseline on all tasks except the
EN-PT informal task. Notably, our model demon-
strates consistently higher performance in terms of
C-F metric compared to ChatGPT, achieving 100%
M-ACC and C-F in the majority of tasks.

Exceptionally for EN-PT informal task, the per-
formance of our model is markedly subpar, and
ChatGPT even fails to exceed the official base-
line. We find this result is highly noteworthy, as
it suggest that ChatGPT may generate semantically
accurate and plausible data, while the formality
can hardly be controlled, especially for the EN-PT
language pair. In our experiments, we utilized the
same prompt for both EN-PT and EN-RU language
pairs, differing only in language specification. The
disparity in results between these two language pair
suggests that specialized techniques for controlling
formality are required for each language pair. This
issue can be partially attributed to a data bias in
ChatGPT, indicating a potential training data bias
concerning formality.

4.3 Case Study

Impact of In-context Shots In this section, we
examine the changes in performance based on the
number of few-shot samples used for in-context
learning, particularly when employing prompt en-
gineering for translation. Previous research sug-
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Figure 2: BLEU and M-Acc scores for ChatGPT based on zero-shot setting, evaluated on test set of Formality
Dataset.

gests that increasing the number of shots beyond
10 does not significantly impact translation perfor-
mance when using large language models (Zhang
et al., 2023). However, we argue that applying the
same perspective to formality control tasks proves
challenging. This complexity arises as formality in-
troduces a unique element required for these tasks.
Additionally, previous research did not consider
unintended consequences arising from this factor.

In pursuit of this, we conducted experiments
where the number of shots was incrementally in-
creased from 1 to 32, in powers of 2, using TASK

DEV. The aim was to verify the differences in per-
formance resulting from these changes. This pro-
cess involved translating data via ChatGPT with
an increasing number of shots and then evaluating
the resulting translation data for its appropriateness.
The experimental results are depicted in Figure 1.
For this particular experiment, we selected one tem-
perature (from the options of 0.2, 0.5, 0.7, 0.9) that
demonstrated the highest performance and eval-
uated the changes in performance based on the
number of shots.

As observed in our experimental results, increas-
ing the number of shots for in-context learning led

to an improvement in the general translation perfor-
mance metric, BLEU. However, the scores of M-
Acc and C-F, we found that the best performance
was achieved with a smaller number of shots. This
suggests that the nature of formality as a feature
makes the “formality control” task distinct from
conventional NMT, and it may be challenging to di-
rectly apply perspectives from conventional NMT
to this task. We propose two hypotheses based on
these results: (i) there exists a trade-off between
translation performance and formality control as
the number of shots increases, and (ii) increasing
the number of shots while applying random sample
selection may have caused confusion in perform-
ing formality control. We leave the analysis and
validation of these hypotheses for future work.

Impact of Temperature Temperature is an im-
portant parameter to make ChatGPT generates var-
ied responses to human queries (Peng et al., 2023).
Basically, higher temperatures leads to the higher
linguistic variety, while the lower one generates
grammatically correct and deterministic text (Ip-
polito et al., 2019). Previous work suggested that
for machine translation, a diverse generation may
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impede its translation quality with a high degree of
certainty(i.e. high temperature) (Peng et al., 2023).
In this sense, we experiment with different tem-
perature setting and find the optimal temperature
for the formality control data augmentation. In our
experiments, we select the most appropriate one
among seven shot-candidates (1, 2, 4, 8, 16, 32) for
each language pair.

Experimental results reveal that varying temper-
ature can lead to significant performance fluctu-
ations. It is particularly noteworthy that the per-
formance disparity due to temperature changes is
exceptionally high for the informal tasks. For for-
mal tasks, the impact of temperature is relatively
minor, with the variation in BLEU score is at most
0.95 (EN-RU). However, for informal tasks, the
performance shift can reach up to 4.82 points (EN-
RU) as temperature changes. Additionally, we find
that in informal task, the performance variation de-
pending on the temperature shows distinct trend
for each language pair. This is evident from the
fact that a moderate temperature(0.7) yielded the
highest BLEU performance in the EN-PT informal
task, while a similarly moderate temperature(0.5)
resulted in the lowest performance. Our findings
suggest that handling ChatGPT in informal task
necessitates more elaborate control compared to
dealing with formal data.

5 Background

In this work, we focus on data-centric approaches
to improve Neural Machine Translation (NMT)
performance. Several studies have investigated dif-
ferent strategies to address the challenges of low-
resource languages and enhance translation quality.
Kudo (2018) proposed subword regularization to
improve NMT models using multiple subword can-
didates, effectively increasing data diversity and
robustness. Gu et al. (2018) introduced a univer-
sal NMT model for extremely low-resource lan-
guages, leveraging multilingual knowledge from
high-resource languages to assist in translation.
Zoph et al. (2016) explored transfer learning for
low-resource NMT, utilizing pre-trained models
on related high-resource languages to improve the
performance on the target low-resource language.
Additionally, Sennrich et al. (2015a) proposed a
method of improving NMT models by generating
synthetic parallel data through back-translation,
which has proven successful in various transla-
tion tasks. These studies highlight the diverse data-

centric approaches in NMT, aiming to improve
translation quality and overcome the limitations
of low-resource languages.

6 Conclusion

In this paper, we presented the KU x UpStage
team’s submission for four languages, employ-
ing two main strategies: 1) a language-specific
data-driven approach, and 2) synthetic data gen-
eration using large-scale language models and em-
pirical prompt engineering. While our data-driven
approach excelled, particularly in EN-KO and EN-
VI, the quality of synthetic data generation was
called into question. In light of this feedback, we
propose to enhance the quality of synthetic data
by integrating Quality Estimation (QE) techniques
as an additional filter in the generation process.
This step aims to further refine our synthetic ex-
amples, potentially improving the overall system
performance. We also plan to explore the use of
translation models with larger parameters and con-
duct a thorough analysis through more shot exam-
ples and linguistically-grounded data augmentation
techniques. Finally, we aim to extend our under-
standing of factors influencing FSMT performance,
such as the impact of formal register versus gram-
matical formality in training data and a detailed
examination of zero-shot transfer.
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A Prompt Template

A.1 Superviesd Setting

You are a helpful assistant that translates English to:
1. Informal [target language] or 2. Formal [target language]

####

[shot 1 source]

[shot 2 source]

[shot n source]

1. Informal [target language]: [shot 1 reference]

2. Formal [target language]: [shot 1 reference]

1. Informal [target language]: [shot 2 reference]

2. Formal [target language]: [shot 2 reference]

1. Informal [target language]: [shot n reference]

2. Formal [target language]: [shot n reference]

####

Translate this into only [1. Informal | 2. Formal] [target language]: [input]

Figure 3: Prompt template for supervised setting based on Hendy et al. (2023). We utilize n randomly selected
shots from the English training set of other language pairs in the IWSLT 23 Formality Track as input for our
model, with few-shot examples derived from the target language’s training set.

A.2 Zero-shot Setting

You are a helpful assistant that translates English to:
1. Informal [target language] or 2. Formal [target language]

[shot n source]

Translate this into only [1. Informal | 2. Formal] [target language]: [input]

Figure 4: Prompt template for zero-shot setting, following the recommended instruction and format for the default
sentence-level translation task in OpenAI playground6. This consistency enables us to maximize the benefits of the
instruction finetuning protocol. We use n random shots from the training set.
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B Experimental Setup

B.1 EN-KO
In the experimental setup for the EN-KO language pair, we employed a Transformer architecture with
shared decoder input-output embeddings. The model’s parameters included 1024-dimensional embeddings
for both encoder and decoder, 16 attention heads for each, and 12 layers for both encoder and decoder.
We used the Adam optimizer with beta values (0.9, 0.98) and a learning rate of 5e-4 scheduled by an
inverse square root scheduler with a 4000-step warm-up. To prevent overfitting, we applied a dropout rate
of 0.3 and weight decay of 0.0001. Our translation task utilized a label-smoothed cross-entropy criterion
with a label smoothing factor of 0.1. The training process was performed with a maximum token limit
of 4096 per batch and an update frequency of 4. Model performance was evaluated using BLEU scores
with a beam size of 1 and detokenization using the Moses tokenizer. The training process was executed
for a maximum of 20 epochs with a log interval of 200 and without epoch checkpoints, while sharing all
embeddings.

Parameters for pre-training:
fairseq-train \

--fp16 \
--fp16-init-scale 4096 \
--arch transformer --share-decoder-input-output-embed \
--encoder-embed-dim 1024 --decoder-embed-dim 1024 \
--encoder-attention-heads 16 --decoder-attention-heads 16 \
--encoder-ffn-embed-dim 4096 --decoder-ffn-embed-dim 4096 \
--encoder-normalize-before --decoder-normalize-before \
--encoder-layers 12 --decoder-layers 12 \
--optimizer adam --adam-betas '(0.9, 0.98)' --clip-norm 0.0 \
--lr 5e-4 --lr-scheduler inverse_sqrt --warmup-updates 4000 \
--dropout 0.3 --weight-decay 0.0001 \
--task translation \
--criterion label_smoothed_cross_entropy --label-smoothing 0.1 \
--max-tokens 4096 \
--update-freq 4 \
--eval-bleu \
--eval-bleu-args '{"beam": 1, "max_len_a": 1.2, "max_len_b": 10}' \
--eval-bleu-detok moses \
--eval-bleu-remove-bpe \
--best-checkpoint-metric bleu --maximize-best-checkpoint-metric \
--log-interval 200 \
--max-epoch 20 \
--skip-invalid-size-inputs-valid-test \
--no-epoch-checkpoints \
--share-all-embeddings

Parameters for fine-tuning:
fairseq-train \

--batch-size 32 \
--lr 4e-5 --warmup-updates 200 \
--max-epoch 200 \
--restore-file $MODELDIR/checkpoint_best.pt \
--reset-optimizer --reset-meters --reset-dataloader --reset-lr-scheduler

B.2 EN-VI
We fine-tuned our model using the Hugging Face library and the code available at their repository7. The
fine-tuning was performed with a learning rate of 4e-5, Adam optimizer with beta1 and beta2 values set to
0.9 and 0.98, respectively, and a weight decay of 0.0001. We also used mixed precision training (fp16) to
accelerate the process. The learning rate scheduler was set to inverse square root with a warm-up of 200
steps. The training was conducted for 200 epochs with a maximum gradient norm of 0.0, label smoothing
factor of 0.1, and a batch size of 64 for both training and evaluation. The model was saved and evaluated
at the end of each epoch, and the logging was performed after each training step.

7https://github.com/huggingface/transformers/tree/main/examples/pytorch/
translation
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Parameters for fine-tuning:
python train_mt_trainer.py \

--fp16 \
--model_name_or_path VietAI/envit5-translation \
--do_train \
--do_eval \
--do_predict \
--source_lang en \
--target_lang vi \
--source_prefix "translate English to Vietnamese: " \
--learning_rate 4e-5 \
--adam_beta1 0.9 \
--adam_beta2 0.98 \
--max_grad_norm 0.0 \
--num_train_epochs 200 \
--lr_scheduler_type inverse_sqrt \
--warmup_steps 200 \
--weight_decay 0.0001 \
--label_smoothing_factor 0.1 \
--save_strategy epoch \
--logging_steps 1 \
--evaluation_strategy epoch \
--per_device_train_batch_size=64 \
--per_device_eval_batch_size=64

B.3 EN-{PT, RU}
We utilized the same training code as for the EN-VI task and employed the
facebook/mbart-large-50 model.

Parameters for fine-tuning:
export langs=ar_AR,cs_CZ,de_DE,en_XX,es_XX,et_EE,fi_FI,fr_XX,gu_IN,hi_IN,
it_IT,ja_XX,kk_KZ,ko_KR,lt_LT,lv_LV,my_MM,ne_NP,nl_XX,ro_RO,ru_RU,si_LK,
tr_TR,vi_VN,zh_CN

python train_mt_trainer.py \
--fp16 \
--model_name_or_path facebook/mbart-large-50 \
--do_train \
--do_eval \
--do_predict \
--source_lang en_XX \
--target_lang pt_XX \
--learning_rate 3e-5 \
--adam_beta1 0.9 \
--adam_beta2 0.98 \
--max_grad_norm 0.0 \
--num_train_epochs 200 \
--lr_scheduler_type inverse_sqrt \
--warmup_steps 100 \
--weight_decay 0.0001 \
--label_smoothing_factor 0.1 \
--save_strategy epoch \
--logging_steps 1 \
--evaluation_strategy epoch \
--per_device_train_batch_size=16 \
--per_device_eval_batch_size=16
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