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Abstract

This system description paper introduces the
systems submitted by Xiaomi AI Lab to the
three tracks of the IWSLT 2023 Evaluation
Campaign, namely the offline speech transla-
tion (Offline-ST) track, the offline speech-to-
speech translation (Offline-S2ST) track, and
the simultaneous speech translation (Simul-ST)
track. All our submissions for these three tracks
only involve the English-Chinese language di-
rection. Our English-Chinese speech transla-
tion systems are constructed using large-scale
pre-trained models as the foundation. Specifi-
cally, we fine-tune these models’ correspond-
ing components for various downstream speech
translation tasks. Moreover, we implement sev-
eral popular techniques, such as data filtering,
data augmentation, speech segmentation, and
model ensemble, to improve the system’s over-
all performance. Extensive experiments show
that our systems achieve a significant improve-
ment over the strong baseline systems in terms
of the automatic evaluation metric.

1 Introduction

We submit an end-to-end offline speech transla-
tion system, a cascaded offline speech-to-speech
translation system, and an end-to-end simultane-
ous interpretation system to the Offline-ST track,
Offline-S2ST track, and Simul-ST track, respec-
tively. This paper provides a detailed description
of the three systems we submit.

There are two commonly used solutions for
speech translation models: the end-to-end approach
and the cascaded approach. The cascaded system
uses a pipeline where an automatic speech recogni-
tion (ASR) system is followed by a machine transla-
tion (MT) system. The ASR system first transcribes
the speech utterances in the source language into

∗Equal contribution.
†Crossponding Author.
‡ The work was done during the author’s internship at

Xiaomi.

text in the same language, and then the MT model
translates the ASR output into text in the target
language. In contrast, the end-to-end ST system
directly translates speech utterances in the source
language into text in the target language.

The scarcity of training data makes end-to-end
systems still slightly inferior in translation qual-
ity to cascaded systems, which suffer from er-
ror propagation and information loss (Sperber and
Paulik, 2020). Cascaded systems continue to domi-
nate the systems submitted at IWSLT in previous
years (Anastasopoulos et al., 2022, 2021; Ansari
et al., 2020). However, with the rapid develop-
ment of pre-training technology, a large number of
large-scale pre-training models suitable for various
modalities, such as speech (Baevski et al., 2020;
Hsu et al., 2021; Tang et al., 2022) and text (Liu
et al., 2020), have emerged. Therefore, end-to-end
ST systems have gradually attracted attention from
both the academic and industrial communities in
recent years. In our submission, we have opted for
an end-to-end approach to establish the ST system.

We briefly introduce the submitted systems:
Offline Speech Translation System. Our submit-
ted end-to-end offline speech-to-text translation
system is based on two pre-trained models: Hu-
BERT (Hsu et al., 2021) and mBART (Liu et al.,
2020). It has been proven that these two mod-
els have strong capabilities on ST and MT tasks,
respectively. Our offline ST model consists of a
speech encoder, a text encoder, and a text decoder,
with all parameters initialized using the pre-trained
HuBERT and mBART models.
Offline Speech-to-Speech Translation System.
Speech-to-speech translation has great application
value in various scenarios, such as international
online lectures and multinational meetings. Lee
et al. (2022) trained a sequence-to-sequence speech-
to-unit translation (S2UT) model to directly predict
the discrete representations of the target speech.
Drawing on the method of Lee et al. (2022), we
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implement a cascaded speech-to-speech translation
system. Specifically, an end-to-end speech-to-text
translation model is trained, followed by a text-to-
speech (TTS) synthesis model.

To implement a cascaded speech-to-speech trans-
lation system, we first train an end-to-end speech-
to-text translation model, followed by a text-to-
speech (TTS) synthesis model that we train.
Simultaneous Speech Translation System. Apart
from the above two offline systems, we also sub-
mit an end-to-end system for the English-Chinese
language direction in the Simul-ST track. Simul-
taneous speech translation involves the challenge
of striking a balance between translation quality
and latency, as the system starts to translate the
input audio even before the entire speech input
is received. The Information-Transport-based Si-
multaneous Translation (ITST) (Zhang and Feng,
2022) architecture is adopted to build our end-to-
end Simul-ST system, and we initialize its cor-
responding components using the HuBERT and
mBART pre-trained models. When the AL value is
less than 2000, our submitted end-to-end simultane-
ous ST system achieves a significant improvement
of +3.2 BLEU scores over last year’s best end-to-
end simultaneous ST system. We also explore a
streaming simultaneous interpretation approach by
training an offline model and applying a wait-k
decoding strategy, which even yields better perfor-
mance.

The rest of this paper is organized as follows:
Section 2 describes the data preparation, including
data filtering, data augmentation, speech segmen-
tation, etc. Section 3 elaborates on the models and
strategies used in our systems. We present our ex-
periment settings, results, and analyses in Section 4.
Finally, Section 5 provides the conclusion.

2 Data Preparation

2.1 Statistics

Our English-Chinese (abbreviated as En⇒Zh) ST
systems are developed under constrained condi-
tions using two allowed ST corpora: MuST-C v2.01

and CoVoST2. The only text translation dataset
available is OpenSubtitles20183. To construct the
English ASR corpus, we gather data from vari-

1https://ict.fbk.eu/must-c/
2https://github.com/facebookresearch/covost
3https://opus.nlpl.eu/OpenSubtitles2018.php

Corpora Duration #Spl.

ST
MuST-C v2.0 596h 359K

CoVoST 1119h 870K
GigaST 10000h 7.6M

MT OpenSubtitles - 11.2M

ASR

LibriSpeech 960h 273K
Common Voice 2320h 1.62M
TED LIUM (v3) 452h 268K

Vox Populi 543h 181K
ST-TED* 273h 171K

Europal-ST* ~80h 30K
MuST-C* ~100h 78K

TTS AISHELL-3 85h 88K
GigaS2S 10000h 7.6M

Unlabeled
Audio Vox Populi 24100h -

Table 1: The statistical results of all available train-
ing corpora in the En⇒Zh translation direction for the
offline speech translation track, the offline speech-to-
speech translation track, and the simultaneous speech
translation track. The tilde symbol (~) indicates a rough
estimation. #Spl. indicates the number of samples.

ous sources, such as LibriSpeech4, CommonVoice5,
TED LIUM6, and Vox Populi7. In addition to this,
we also utilize the audio-transcription pairs from
English-German (En⇒De) ST data, including ST-
TED, Europarl-ST, and MuST-C (indicated with a
star in Table 1). Furthermore, AISHELL-38 and
GigaS2S9 datasets are used to train the TTS model.
We filter out those samples in the MuST-C En⇒De
training set whose source sentences are included in
the MuST-C En⇒Zh training set. Table 1 presents
the statistical results of the training samples for
different tasks.

2.2 Offline-ST and Simul-ST Corpus

For both the En⇒Zh offline speech translation and
En⇒Zh simultaneous speech translation tracks, we
use the same training corpus, the same data filtering
and data augmentation methods.

2.2.1 Data Filtering
All text data involved in MT, ST, and TTS tasks
are tokenized using SentencePiece10. For the MT
data, we adopt heuristic rules to filter out noisy data

4http://www.openslr.org/12/
5https://commonvoice.mozilla.org/en/datasets
6https://lium.univ-lemans.fr/en/ted-lium3/
7https://github.com/facebookresearch/voxpopuli
8https://www.aishelltech.com/aishell_3
9https://github.com/SpeechTranslation/GigaS2S

10https://github.com/google/sentencepiece
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in the training set similar to the rules used in (Guo
et al., 2022), following these steps:

• A series of hand-crafted rules are adopted to
filter out noisy sentences from the training set.
In particular, we discard sentences that con-
tain less than 50% linguistic words. For Chi-
nese sentences, Chinese characters are consid-
ered linguistic words; for English sentences,
words containing only alphabet characters are
considered linguistic words;

• We utilize fast_align11 open source tool to
exclude sentence pairs with a score lower than
−8. We also apply the language identifica-
tion (LangID) tool12 to filter out sentence pairs
that are neither in Chinese nor English;

• Duplicate sentence pairs are discarded, and
any pairs with a length ratio greater than 3.0
or sentences with a length exceeding 200 are
also filtered out.

To filter out noise data in the ST training set, we
apply the following steps:

• Pairs that have an audio duration exceeding 60
seconds or a text length exceeding 200 tokens
are excluded;

• We calculate the ratio of the number of speech
frames to tokens in each sample, and remove
samples whose ratio exceeds three times the
average ratio.

2.2.2 Data Augmentation
To effectively train an end-to-end speech transla-
tion model, it is impractical to rely solely on hand-
annotated training data, due to the scarcity of hand-
annotated data. To mitigate this issue, we utilize
a well-trained MT model to translate the transcrip-
tions from ASR data and synthesize a large amount
of pseudo-data, which has been widely used in the
previous years’ competitions (Ding and Tao, 2021;
Zhang and Ao, 2022; Zhang et al., 2022b; Li et al.,
2022; Zhu et al., 2022).

We initially gather all available English-Chinese
bilingual parallel sentence pairs from ST and MT
tasks, as listed in Table 1. We then filter the data
using the method mentioned in Section 2.2.1, gen-
erating 9M sentence pairs. These 9M sentence
pairs are used to fine-tune the pre-trained one-to-
many mBART50 model for 30 epochs. We further
fine-tune mBART50 for another 30 epochs using

11https://github.com/clab/fast_align
12https://github.com/saffsd/langid.py

Models BLEU
mBART50 (one-to-many) 25.81

+ domain fine-tuning on 9M corpus 28.41

+ domain fine-tuning on MuST-C 29.50

Table 2: The BLEU scores of MT models obtained by
fine-tuning one-to-many mBART50 model using vari-
ous bilingual datasets on the tst-COMMON test set.

MuST-C datasets to improve the domain adaptabil-
ity of the model. The results are shown in Table 2.

In the Librispeech and TED-LIUM datasets, En-
glish sentences do not have punctuation or case
information. We fine-tune the mBART50 model
to add punctuation and restore case information to
English sentences. Furthermore, samples already
included in the CoVoST corpus are removed from
the CommonVoice dataset. The transcriptions of
the ASR data are then translated using the best fine-
tuned mBART50 model and filtered using the same
rules as the ST data in Section 2.2.1, resulting in
a total of 1.6 million synthesized speech-to-text
translation pairs.

Finally, for constrained data, we combine the
hand-annotated ST corpus with the synthesized ST
corpus to produce the final training corpus for the
Offline-ST and Simul-ST models, yielding a total
of 2.9 million speech-to-text translation pairs. In
the case of unconstrained training on the offline
track, we augment our training corpus with the
GigaST corpus, resulting in 9 million speech-to-
text translation pairs.

2.3 Cascaded S2ST Corpus
In the En⇒Zh speech-to-speech translation track,
we leverage all available constrained data from the
offline speech translation track as well as the Gi-
gaST corpus13 to train our offline speech transla-
tion model. This model is then followed by a TTS
model that is trained on the AISHELL-3 and Gi-
gaS2S datasets.

2.4 Speech Segmentation
Since the speech in the evaluation set is not pre-
segmented, we apply SHAS (Tsiamas et al., 2022)
to segment the full speech into shorter segments.
However, we observe two issues. Firstly, some
segments have incomplete final words, which could
negatively impact the performance of the ST model.
To alleviate this problem, we add a few extra frames

13https://st-benchmark.github.io/resources/
GigaST.html
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Text Encoder Text Decoder

Transformer Encoder

CNN Feature Extractor

Initialized from 

HuBERT

Initialized from 

mBART

 Speech Encoder

Welcome to Xiaomi

欢迎来到小米

Figure 1: The architecture of our end-to-end offline speech translation model consists of three components: speech
encoder, text encoder, and text decoder. The speech encoder is composed of a CNN feature extractor and a 24-layer
Transformer encoder with a CNN positional encoder. Both the text encoder and the text decoder are 12-layer
standard Transformer structures. Note that the speech encoder is initialized with the pre-trained HuBERT model,
and both the text encoder and text decoder are initialized with the pre-trained mBART model.

at the end of each segment to ensure that the final
word is fully pronounced. Secondly, the speaking
rate varies among different speakers or types of
speeches, resulting in different amounts of words
being spoken within a given time period. Excessive
words in a speech segment may result in missing
translations. We choose different hyperparameters
for different speakers or different types of speeches.

3 Methods

We build our Offline-ST system in an end-to-end
manner (End-to-End Offline-ST) based on the Hu-
BERT and mBART pre-trained models. Our si-
multaneous speech translation system (End-to-End
Simul-ST) utilizes the same model architecture as
the Offline-ST system and adopts wait-k and ITST
strategies. The cascaded S2ST system involves
an end-to-end speech-to-text translation model fol-
lowed by a TTS model.

3.1 End-to-End Offline-ST System

The speech translation corpus typically consists of
triples (x, z, y) that contain speech, transcription,
and translation data, where x = (x1, · · · , x|x|) rep-
resents a sequence of acoustic features, while z
= (z1, · · · , z|z|) and y = (y1, · · · , y|y|) denote the
corresponding transcription in the source language
and translation in the target language, respectively.

Our end-to-end Offline-ST system is based on an
encoder-decoder architecture from the pre-trained

HuBERT and mBART models. Figure 1 illustrates
the architecture of our model, which consists of
a speech encoder, a text encoder, and a text de-
coder. More specifically, the speech encoder is
composed of a feature extractor based on con-
volutional neural networks (CNN), named CNN
feature extractor and a 24-layer Transformer en-
coder. The CNN feature extractor is used to ex-
tract speech features from waveform, with 7 layers
each containing 512 channels and kernel widths of
[10, 3, 3, 3, 3, 2, 2] and strides of [5, 2, 2, 2, 2, 2, 2].
The Transformer encoder is derived from the stan-
dard Transformer (Vaswani et al., 2017) encoder,
except for using CNN as the position encoder. The
text encoder is a 12-layer standard Transformer en-
coder, and the text decoder is a 12-layer standard
Transformer decoder. The training objective of our
speech translation model can be formulated as:

L (x,y;θe,θd) =

|y|∑

t=1

- log p
(
yt|y<t,x;θe,θd

)
(1)

where θe and θd represent the parameters of the
encoder and the decoder, respectively.

3.2 Cascaded S2ST System
In the cascaded S2ST system, we reuse the offline
speech translation model discussed in Section 3.1
as the ST model. For the TTS model, we first train a
base TTS model and vocoder using the AISHELL-
3 dataset with the Tacotron2 (Shen et al., 2018)
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open source framework. The final TTS model is
obtained by fine-tuning the base model on the Gi-
gaS2S dataset.

3.3 End-to-End Simul-ST System

In order to take full advantage of the powerful capa-
bilities of large pre-trained models, we develop an
end-to-end Simul-ST system based on the HuBERT
and mBART models. Furthermore, we employ two
strategies, namely wait-k and ITST.

3.3.1 Wait-k
Ma et al. (2020b) adapts methods originally pro-
posed for simultaneous machine translation to de-
velop an end-to-end Simul-ST system. To achieve
this, they employ the wait-k (Ma et al., 2019) strat-
egy and a fixed pre-decision module. Under this
approach, the system first reads k speech segments,
each of which contains a fixed number (q, a hyper-
parameter in the pre-decision module) of speech
frames. When k speech segments have been read,
the decoder generates one token in the target lan-
guage. Similarly, we also apply the wait-k strategy
in the decoding process of our end-to-end offline-
ST system, as it strikes a good balance between
translation quality and latency without requiring
any streaming strategy during training (Papi et al.,
2022; Polák et al., 2022). During inference, once a
speech segment is accepted, the decoder takes the
following action:

Action =

{
continue to read |x| − |y| < k
output yt |x| − |y| ≥ k

(2)

where yt denotes the t-th token of the target lan-
guage, while |x| and |y| refer to the number of
source speech segments and target tokens, respec-
tively.

3.3.2 ITST
The Information-Transport-based Simultaneous
Translation (ITST) architecture has achieved state-
of-the-art performance in end-to-end simultaneous
speech translation. To implement this strategy, we
initialize the corresponding parameters by using
the pre-trained HuBERT and mBART models, and
randomly initialize additional parameters for com-
puting the information transport matrix. We then
optimize the quality and latency objectives using
the ITST criterion, varying the δ value to control
the latency in streaming inference.

Our end-to-end speech translation system is built
based on the ITST architecture, equipped with a

wait-k streaming decoding strategy, and finally
evaluated using the SimulEval (Ma et al., 2020a)
toolkit. To ensure accurate translations, we en-
force a constraint that the model should not pro-
duce the final translation until it has fully processed
the speech in the source language.

3.4 Self-Training
Self-training is a simple semi-supervised learning
method that involves using unlabeled data to aug-
ment labeled data (Pino et al., 2020; Sun et al.,
2021; Wang et al., 2021; Popuri et al., 2022). To
leverage the large-scale unlabeled audio introduced
in Section 2.1, we employ self-training in our ap-
proach. In particular, we first train the end-to-end
speech translation model on both manually anno-
tated data and augmentation data, as described in
Section 2. Next, we use the model to generate
Chinese translation text, which we merge with the
original training data and unlabeled audio. We then
continue training the end-to-end speech translation
model on this merged dataset.

3.5 Contrastive Learning
The objective of contrastive learning (Chen et al.,
2020; Gao et al., 2021; Ye et al., 2022; Zhang et al.,
2023) is to learn an encoder that produces similar
representations for similar instances, while pro-
ducing dissimilar representations for dissimilar in-
stances, as measured by their cosine similarity. In
our approach, we assume that the same utterance,
regardless of whether it is in speech or text modal-
ity, will have similar hidden representations. There-
fore, we aim to minimize the cosine distance be-
tween the hidden representations of the two modal-
ities for the same utterance, while increasing the
cosine distance between the hidden representations
of different utterances. Specifically, we minimize
the cosine distance between the speech encoder
output and the corresponding word embedding for
the same utterance, while maximizing the distance
between the representations of different utterances.
The training objective is as follows:

LCTR =
N∑

t=1

- log p
exp(sim(u, v)/T )∑X exp(sim(u, v(xj))/T )

(3)

where u is the average state of the speech encoder
output along the sequence length, v is the average
word embedding, and T is the temperature hyper-
parameter. More specifically, LCTR quantifies the
negative logarithm of the probability that the simi-
larity between u and v is greater than the similarity
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between u and other candidate word embeddings
v(xj). The probabilities are normalized using a
softmax function over all candidate embeddings.
In addition to contrastive learning, we also con-
duct multitask learning using labeled ASR and MT
training data, which results in the final optimization
objective:

L = LST + LASR + LMT + LCTR (4)

where LST , LASR, LMT , and LCTR denote the
losses for speech-to-text translation, ASR, MT, and
contrastive learning, respectively.

4 Experiments

4.1 Experiment Settings

The fairseq toolkit14 is used to train our speech-
to-text models. During training, the models take
the original waveform sampled at 16kHz as the in-
put. The Adam optimizer (Kingma and Ba, 2015)
with a fixed learning rate of 5e-5 is used to train
the models. Each model is trained for 200k steps,
and we save the model every 2.5k steps using an
early stopping mechanism. In detail, if the BLEU
score on the development set does not improve for
10 consecutive checkpoints, the training will be ter-
minated. During the fine-tuning stage, we set the
maximum number of updates to 50k and the learn-
ing rate to 2e-5. Our TTS model is implemented
using the Tacotron2 toolkit15.

4.2 Evaluation

As the official automatic evaluation criterion, the
BLEU score (Papineni et al., 2002) is used to eval-
uate the translation quality of all our systems. For
the Simul-ST system, we employ the average lag
(AL) (Ma et al., 2019, 2020b) metric to measure
the translation latency, which is a standard metric
for simultaneous speech translation. The SimulE-
val open-source toolkit16 is utilized to calculate
both the BLEU and AL metrics for the Simul-ST
system. All BLEU scores are calculated with the
SacreBLEU17 (Post, 2018) toolkit at the character
level.

14https://github.com/pytorch/fairseq
15https://github.com/NVIDIA/tacotron2
16https://github.com/facebookresearch/SimulEval
17https://github.com/mjpost/sacrebleu

Models BLEU
0 wav2vec2.0 (small) 23.84

1 HuBERT + mBART50 (one-to-many) 27.74

2 + fine-tuning on MuST-C 27.90

3 + Self-Training 27.69

4 + Contrastive Learning 28.11

5 + fine-tuning on MuST-C 27.94

6 data2vec + mBART50 (one-to-many) 27.66

7 + fine-tuning on MuST-C 27.59

8 Ensemble (2, 5) 27.79

9 Ensemble (2, 7) 27.61

10 Ensemble (2, 5, 7) 27.94

Table 3: The BLEU scores of ST models on the tst-
COMMON test set.

4.3 Main Results

Offline En⇒Zh Speech Translation

We evaluate our offline-ST models on the tst-
COMMON test set by reporting the BLEU score
in accordance with the official evaluation criteria.
To establish a baseline for comparison, we use
the widely-used standard wav2vec2.0 model for
speech translation tasks. Table 3 shows the com-
parison results among all models. Our end-to-end
models exhibit a significant improvement of ap-
proximately 4 BLEU points over the wav2vec2.0
baseline, which demonstrates the effectiveness of
our methods. Additionally, we also conduct ex-
periments using data2vec (Baevski et al., 2022)
pre-trained model and obtain comparable results
on the tst-COMMON test set.

By analyzing our experimental results, we ob-
serve that domain fine-tuning does not significantly
improve the performance of the model. Neverthe-
less, we believe domain fine-tuning will be benefi-
cial for final human evaluation on the TED18 test
set. Our final submission is an ensemble of the
models listed in rows 2, 5, and 7 of Table 3.

It is worth mentioning that we encounter some
challenges when training our model. When the
HuBERT model is used to initialize our model,
instabilities are observed during training, with sud-
den gradient explosions leading to training collapse.
After careful analysis, we determine that the prob-
lem is that the gradients of the CNN layers are
relatively large during the entire training process.
We address this issue by scaling down the gradients
of the CNN layers.

18https://www.ted.com/
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Models BLEU
1 Offline-ST 30.10

2 Offline-ST + GigaST 31.56

3 Ensemble (1, 2) 31.81

Table 4: BLEU scores of our ST models on the develop-
ment set of the S2ST track in IWSLT 2023. Offline-ST
is trained on all manually annotated data and the aug-
mented data described in Section 2.2.2. In addition to
the data used by the offline-ST model, the Offline-ST +
GigaST model incorporates additional GigaST data.

Models ASR-BLEU
1 Offline-ST 28.88

2 Offline-ST + GigaST 30.10

3 Ensemble (1, 2) 30.18

Table 5: ASR-BLEU scores of our ST models on the
development set of the S2ST track in IWSLT 2023. The
models are identical to those presented in Table 4.

Offline En⇒Zh Speech-to-Speech Translation

We evaluate the performance of our end-to-end
speech-to-text translation system and cascaded
speech-to-speech system on the development set of
the S2ST track in IWSLT 2023, comprising 5, 000
utterances. The results of the speech-to-text transla-
tion models and speech-to-speech translation mod-
els are demonstrated in Table 4 and 5, respectively.
For the speech-to-text translation model, we adopt
the ensemble of models corresponding to rows 1
and 2 in Table 4. To build the speech-to-speech
translation system, we then leverage our trained
Chinese TTS model to synthesize Chinese speech
and generate the corresponding Chinese transcript
with the Conformer model 19 trained on the Wenet-
Speech dataset (Zhang et al., 2022a). Finally, the
generated Chinese transcript and reference are used
to calculate the ASR-BLEU score.

Simultaneous En⇒Zh Speech Translation

We use the SimulEval toolkit to evaluate the quality
and latency of our simultaneous speech translation
model on the tst-COMMON set. In order to achieve
a better balance between quality and latency, when
the prediction probability is lower than 20%, the
READ action is performed; when the delay exceeds

19https://wenet-1256283475.cos.ap-shanghai.
myqcloud.com/models/wenetspeech/wenetspeech_
u2pp_conformer_exp.tar.gz

Strategies Models BLEU AL
1 Wait-k HuBERT+mBART 25.99 1980

2 Wait-k + ST & CL 26.59 1966

3 ITST HuBERT+mBART 26.25 1906

Table 6: The evaluation results of Simul-ST models
on tst-COMMON. ST and CL denote self-training and
contrastive learning for the Offline-ST model.

6000ms, the model performs a WRITE action to
predict the next target token.

We evaluate the wait-k strategy using models 1
and 4 in Table 3, and train the ITST model with
the same configuration as model 1 in Table 3. The
results of the Simul-ST models are presented in
Table 6. Although ITST shows better performance
than wait-k in the same setting, the wait-k strategy
combined with self-training and contrastive learn-
ing can achieve better results. Therefore, we finally
submit the system corresponding to the second row
in Table 6.

5 Conclusion

In this paper, we present our submissions for the
IWSLT 2023 shared tasks. We participate in three
tracks, namely the offline speech translation track,
the offline speech-to-speech translation track, and
the simultaneous speech translation track. All of
our submissions use large-scale pre-trained mod-
els, and we further improve these models using
various effective techniques, such as data augmen-
tation, contrastive learning, and model ensembles.
Extensive experiments validate the effectiveness of
our proposed method and demonstrate that our sub-
mitted systems are comparable to state-of-the-art
baseline systems in terms of performance.
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