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Abstract

This paper describes the submission of the UPC
Machine Translation group to the IWSLT 2023
Offline Speech Translation task. Our Speech
Translation systems utilize foundation models
for speech (wav2vec 2.0) and text (mBART50).
We incorporate a Siamese pretraining step of
the speech and text encoders with CTC and
Optimal Transport, to adapt the speech rep-
resentations to the space of the text model,
thus maximizing transfer learning from MT.
After this pretraining, we fine-tune our sys-
tem end-to-end on ST, with Cross Entropy
and Knowledge Distillation. Apart from the
available ST corpora, we create synthetic data
with SegAugment to better adapt our models
to the custom segmentations of the IWSLT test
sets. Our best single model obtains 31.2 BLEU
points on MuST-C tst-COMMON, 29.8 points
on IWLST.tst2020 and 33.4 points on the newly
released IWSLT.ACLdev2023.

1 Introduction

In the past decade, the field of Speech Translation
(ST) has seen significant advancements, mainly
due to end-to-end models that directly translate
speech, offering a more efficient method compared
to traditional cascade systems (Sperber and Paulik,
2020). Despite data availability challenges, recent
progress has diminished the performance disparity
between these approaches (Bentivogli et al., 2021;
Potapczyk and Przybysz, 2020; Inaguma et al.,
2021; Ansari et al., 2020). Critical to the advance-
ments in end-to-end models is the exploitation of
ASR and MT data through pretraining strategies
(Berard et al., 2018; Pino et al., 2019; Di Gangi
et al., 2019; Gangi et al., 2019; Wang et al., 2020a;
Zhang et al., 2020; Bansal et al., 2019).

Recently, Le et al. (2023) proposed a method to
effectively utilize both ASR and MT pretraining
to enhance ST. This approach involves pretraining
an encoder-decoder MT system with available text
data, followed by pretraining a speech encoder to
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generate representations similar to the MT system’s
encoder (Siamese pretraining) using Connectionist
Temporal Classification (CTC) supervision (Graves
et al., 2006) and Optimal Transport (Peyré and
Cuturi, 2019). The resulting speech encoder and
text decoder can be fine-tuned with ST data.

Another way of incorporating ASR and MT is to
leverage large pretrained speech and text models as
a foundation for end-to-end ST systems (Li et al.,
2021; Gallego et al., 2021; Han et al., 2021; Zhang
and Ao, 2022; Pham et al., 2022; Tsiamas et al.,
2022b). However, these systems encounter repre-
sentation discrepancy issues, which can hinder the
full exploitation of pretrained foundation models.
Gdllego et al. (2021); Zhao et al. (2022) aimed to
address this by adding coupling modules after the
pretrained encoder, while other focus on solving
the length discrepancies (Zhang et al., 2020; Xu
et al., 2021a; Gaido et al., 2021). Han et al. (2021)
tackled the issue by projecting speech and text fea-
tures to a common semantic space using attention
mechanisms and semantic memories.

In our work, we tackle the issue of misaligned
speech and text encoder representations by adopt-
ing the approach proposed by Le et al. (2023).
Our system uses a speech foundation model fine-
tuned on English ASR, wav2vec 2.0 (Baevski et al.,
2020), and an MT foundation model fine-tuned
on multilingual MT (En-Xx), mBARTS50 (Tang
et al., 2020), as described in Section 2.1. Build-
ing on prior research (Xu et al., 2021a; Han et al.,
2021), we employ two encoders: an acoustic en-
coder from wav2vec 2.0 and a semantic encoder
from mBARTS50. Coupling modules link these en-
coders to address length discrepancy. We extend
Le et al. (2023) by applying CTC and OT losses to
the outputs of the acoustic and semantic encoders,
respectively, add a second auxiliary OT loss for
the inputs of the semantic encoder, and keep the
text encoder frozen to keep the MT space intact.
This method aligns the speech encoder’s represen-
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tations with the MT foundation model, effectively
improving the final ST system’s performance by
mitigating representation mismatch.

In summary, we participate in the IWSLT 2023
Offline Speech Translation task, focusing on trans-
lating spoken English to written German, by em-
ploying an end-to-end system. We leverage ASR
and MT foundation models with the Siamese pre-
training approach, to effectively bring their en-
coder’s representations closer. We furthermore
decouple acoustic and semantic modeling in our
speech encoder, adjust for the length miss-match
between speech and text with several coupling
modules, and apply knowledge distillation (Hin-
ton et al., 2015) from MT (Liu et al., 2019; Gaido
et al., 2020), using mBARTS50.

2 Methodology

Our system, an encoder-decoder transformer, lever-
ages ASR and MT foundation models (§2.1). We
initially train the speech encoder with an Extended
Siamese pretraining (§2.2), and then fine-tune it
with the MT decoder for end-to-end ST (§2.3).

2.1 System architecture

As depicted in Figures 1 and 2, the encoder of our
system is composed of several interconnected mod-
ules, while the decoder is adopted directly from
the MT foundation model. The speech encoder is
designed to generate representations closely resem-
bling those of the MT foundation model, ensuring
better compatibility between them. The following
paragraphs provide a detailed overview of its key
components and their functions.

Acoustic Modeling The speech waveform z €
R™ is first processed by a feature extractor, which
consists of several strided convolutional layers,
downsampling the input to a length of n’. Fol-
lowing, a Transformer encoder with dimensionality
d is responsible for the acoustic modeling. Both
these modules are initialized from an ASR founda-
tion model.

CTC Compression The obtained acoustic rep-
resentation i € R™ >4 is passed through a linear
layer (initialized from the ASR model) and a soft-
max to generate the ASR vocabulary predictions
plet) e R >Vl where V is the size of the vocab-
ulary. We apply CTC compression (Gaido et al.,
2021) to the acoustic representation, averaging the
representations corresponding to repeating predic-
tions on p(“®) and removing those associated with
the blank token. This process results in a new com-
pressed representation h(¢omP") ¢ R™"*d_ where
n’ denotes the compressed length of the sequence.
This compression helps to reduce the length dis-
crepancy between speech and text representations,
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which, in turn, facilitates the alignment process
during Siamese pretraining (§2.2).

Coupling Modules Next, we apply an adapter
(Houlsby et al., 2019), consisting of a linear projec-
tion to 8d, a non-linear activation, a linear projec-
tion back to d. This module serves to (1) process
the collapsed representations resulting from the
compression and (2) provide sufficient parameters
between the CTC and first OT loss to decouple
their influence (§2.2). After the adapter we apply
a strided 1D Convolution that subsamples the se-
quence by a factor of 2, which can help transform
it closer to a sub-word level representation, rather
than a character-level one, and subsequently aid in
the Optimal Transport training with the sub-word
level representation from the text encoder (§2.2).

Semantic Modeling At this point, we modify the
representation to better match the input expected
by the MT encoder. This is achieved by prepend-
ing and appending special tokens that correspond
to the BOS and EOS tokens used in MT. We also
re-introduce positional information to the represen-
tation with learned positional embeddings. Both
the special tokens %, t°° ¢ R? and the positional
embeddings EP°s € R(M+2)Xd (with M represent-
ing the maximum sequence length) are learnable pa-
rameters initialized from the MT foundation model.
The motivation is to bring the representation closer
to the text embedding from the MT model, facil-
itating OT loss convergence (§2.2). Finally, the
representation is processed by several more trans-
former encoder layers, which are initialized from
the MT model and are responsible for semantic
modeling.

2.2 Siamese pretraining

Our approach builds upon the Siamese pretrain-
ing proposed by Le et al. (2023), which exploits
both ASR and MT pretraining to improve ST per-
formance. This approach involves pretraining the
encoder of an ST system jointly with Connection-
ist Temporal Classification (CTC) and Optimal
Transport (OT), bringing its representations close
to those of an MT encoder. This pretraining strat-
egy has demonstrated superior results compared to
traditional ASR pretraining with encoder-decoder
and Cross-Entropy (Le et al., 2023). In this work,
we build upon the method of Le et al. (2023) in
several ways. First, we decouple the CTC and OT
losses to correspond to the acoustic and semantic
representations. Second, we add an extra auxiliary

OT loss to better adapt the input to the semantic en-
coder. Next, we also employ CTC-based compres-
sion and coupling modules to better align the length
of speech features with corresponding sub-word
text representations. Finally, we opt to freeze the
text encoder to not modify the MT decoder’s repre-
sentation space. The extended Siamese pretraining
scheme is illustrated in Figure 1. For brevity, we
refer to it simply as "Siamese" throughout the rest
of the paper.

The Siamese pretraining is supervised by a com-
bination of loss functions, each serving a distinct
purpose. The CTC loss ensures the performance
of the acoustic modeling by applying to the predic-
tions of the CTC module. Meanwhile, the two OT
losses target the input and output of the semantic
encoder, and aim to align them with the text en-
coder representations. We calculate the OT loss
as the Wasserstein distance (Frogner et al., 2015)
between the text and speech representations, using
an upper bound approximation, which is efficiently
evaluated by the Sinkhorn algorithm (Knopp and
Sinkhorn, 1967). Since the Wasserstein distance is
position invariant, we follow (Le et al., 2023), and
apply positional encodings, to make it applicable
to sequences. The combined loss function for the
Siamese pretraining stage is given by:

Esiamese = ECTC + BEOTl + ,.)/L:OTQ (1)

Where a, 3, and ~y are hyperparameters that con-
trol the relative importance of each loss component
in the combined pretraining loss.

2.3 Speech Translation fine-tuning

Upon obtaining the encoder from §2.2, we utilize
it to initialize our ST system’s encoder, while us-
ing the MT foundation model to initialize the de-
coder (Fig. 2). In addition to the Cross Entropy
loss, we optionally provide guidance for the ST
training through Knowledge Distillation (KD) (Tan
et al., 2019), using the MT foundation model as a
teacher. Specifically, we only use the top-k predic-
tions rather than the entire distribution, and soften
them using a temperature 7' (Gaido et al., 2020).
Since CTC supervision is not employed at this
stage, we freeze the Feature Extractor, Acoustic
Encoder, and CTC module from our encoder. Dur-
ing training, we optimize the parameters of the ST
system’s encoder and decoder with respect to the
combined loss function, which is the sum of the
Cross Entropy loss and the optional KD loss:
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Where £LEF is the Cross Entropy loss, L5 is
the Kullback—Leibler divergence between the MT
and ST output distributions, and 0 < A < 11is a hy-
perparameter that controls the relative importance
of each loss component in the combined ST loss.

3 Data

3.1 Datasets

To train our ST models we used data from three
speech translation datasets, MuST-C v3 (Cattoni
et al., 2021), Europarl-ST (Iranzo-Sédnchez et al.,
2020) and CoVoST-2 (Wang et al., 2020b). MuST-
C is based on TED talks, Europarl-ST on the Eu-
ropean Parliament proceedings, and CoVoST is
derived from the Common Voice dataset (Ardila
etal., 2020). Their statistics are available in the first
part of Table 1. We use as development data the
IWSLT test sets of 2019 and 2020 (Niehues et al.,
2019; Ansari et al., 2020), which are based on TED
talks, and the ACL development set of 2023, which
contains 5 presentations from ACL 2022. All devel-
opment data are unsegmented, meaning that they
are long and continuous speeches. We apply SHAS
segmentation (§5) before translating them. For the
Siamese pretraining, we used the English ASR data
from MuST-C v3 and Europarl-ST, as well as Com-
monVoice v11 (Ardila et al., 2020) (Table 1).

3.2 Data Augmentation

We employ data augmentation, to create more ST
data for training our models (Table 1). We use
the MT foundation model, to translate the tran-
script of English CommonVoice v11 (Ardila et al.,
2020). Since CommonVoice data contains various
accents, we expect the synthetic data will be help-
ful for translating the ACL talks domain, which
has predominantly non-native English accents. We
additionally utilize SegAugment (Tsiamas et al.,
2022a), which creates alternative versions of the
training data by segmenting them differently with
SHAS (Tsiamas et al., 2022¢c). We apply SegAug-
ment to MuST-C v3, with three different length
parameterizations: medium (m) (3 to 10 seconds),
long (1) (10 to 20 seconds), and extra-long (xl) (20
to 30 seconds). We expect that SegAugment will
be beneficial for translating the SHAS-segmented
test sets, due to the similar segmentations of the

training data it provides, as shown in Tsiamas et al.
(2022a).

Original Siamese ST
ST datasets
MuST-C v3 427 417 421
< SegAugment 1, 364" - 1,007"
Europarl-ST 7 64 75
CoVoST 2 362 — 344
ASR datasets
CommonVoice v11 1,503 1,361  1,082f
Total — 1,842 2,929

Table 1: Filtered training data (in hours) for Siamese
and ST training stages. Synthetic data is denoted with .

3.3 Data Filtering

Siamese pretraining We remove speaker names,
as well as events like "Laughter” and "Applause",
we convert numbers to their spelled-out forms,'
convert all text to lowercase, and finally remove all
characters that are not included in the vocabulary
of the ASR foundation model. Furthermore, we
apply a step of ASR-based filtering, to filter out
noisy examples stemming from wrong audio-text
alignments, where we remove examples with high
word-error-rate (WER). We adjust the threshold for
each dataset dynamically, ensuring that the result-
ing data has a WER of 0.11. Thus, the thresholds
are 0.5 for MuST-C, 0.28 for Europarl-ST, and 0.4
for CommonVoice, which indicates that Europarl-
ST has a significant number of misalignments, a
conclusion supported by manual inspection. Re-
moving them allowed for faster convergence during
Siamese pretraining.

ST fine-tuning We apply text normalization to
the original ST data, remove speaker names and
event-related tags from the MuST-C dataset, dis-
card examples with extreme source-to-target text
length ratios (Gaido et al., 2022), and finally
remove audio-transcription misaligned examples
with ASR-based filtering, using a fixed WER
threshold of 0.5. For the synthetic Common-
Voice data, we remove the ones already present
in CoVoST. We also filter the synthetic examples
of SegAugment, as the SHAS segmentation fre-
quently resembles the original segmentation, thus
resulting in highly similar examples. We retain
only the ones that are sufficiently dissimilar from

"https://github.com/savoirfairelinux/
num2words
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the original ones, based on text similarity measures,
using TF-IDF features from the translations. More
concretely, for each talk id, we compute the simi-
larity matrix of its original translations and the new
candidates from SegAugment, find the most similar
original example for each new candidate, and add
it to the filtered data only if its similarity score is
below 0.8. We apply this approach also between
the different SegAugment versions (m, [, xI).

4 Experiments

Here we describe the experiments we carried out in
this work. The implementation details are available
in §A.1.

IWSLT ’22 System For the IWSLT 2022 of-
fline task, our submission employed a HuBERT
encoder (Hsu et al., 2021a) and an mBART50 (En-
Xx) decoder, which were efficiently fine-tuned to
ST with the LNA strategy (Li et al., 2021) and par-
allel adapters (He et al., 2022), using datasets such
as MuST-C v2, Europarl-ST and CoVoST. The ar-
chitecture included three 1D convolutional layers
between the encoder and decoder, resulting in a
subsampling of the encoder representation by a fac-
tor of 8. The final ensemble also comprised models
utilizing Knowledge Distillation and a wav2vec 2.0
encoder (Tsiamas et al., 2022b).

Baseline Our baseline has four main differences
compared our last year’s best system. We did an ini-
tial exploratory analysis of various encoders (§A.3),
including different versions of wav2vec 2.0, and
HuBERT. Upon observing no significant differ-
ences, we opted to utilize wav2vec 2.0 fine-tuned
with pseudo-labels (Xu et al., 2021b), a more preva-
lent choice within the research community. Despite
the strong performance demonstrated by efficient
fine-tuning with LNA and parallel adapters, we
chose to switch to standard ST fine-tuning in order
to optimize performance. Moreover, we employ a
semantic encoder initialized from the MT model.
Lastly, we also pre-train the foundation models,
wav2vec 2.0 with CTC on the ASR data of MuST-
C, and mBARTS50 on the parallel text of MuST-C.
It is important to note that only MuST-C data was
utilized for the baseline.

Siamese Pre-training Instead of pre-training the
speech encoder with CTC only, we follow the
Siamese pre-training method (§2.2), with the en-
coder architecture described in §2.1, to align the
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encoder representations with the MT model’s repre-
sentation space. The system, instead of using three
layers of 1D convolutions, now incorporates also
CTC-based compression, a large adapter, and fi-
nally a single layer of 1D convolutions. Following
the Siamese pre-training on MuST-C’s ASR data,
we jointly fine-tune the model and the MT decoder
on the MuST-C ST data. Similar to the baseline,
the MT model is also fine-tuned on the parallel text
of MuST-C beforehand.

More Data We extend the previously described
process by incorporating additional data. Initially,
we fine-tune mBARTS50 using all the MT data (Ta-
ble 6). Subsequently, we perform the Siamese pre-
training and ST fine-tuning employing all the avail-
able speech data (Table 1). By incorporating a
larger dataset, we aim to enhance the system’s gen-
eralization capabilities and overall performance.

Data Augmentation We employ two data aug-
mentation techniques to increase the performance
of our system during ST fine-tuning (§3.2), while
no modifications are made to the Siamese pre-
training. First, we investigate the use of SegAug-
ment (Tsiamas et al., 2022a), which we apply to
MuST-C v3. Secondly, we generate synthetic data
from Common Voice (Ardila et al., 2020), by lever-
aging the fine-tuned mBARTS0 (§A.2).

KD We use knowledge distillation with the fine-
tuned mBARTS50 as the teacher (§A.2). The loss
for training the ST model is the average of the
standard cross entropy and the Kullback-Leibler
(KL) divergence between the MT and ST output
probability distributions. We utilize all available
ST data in this experiment, including both real and
synthetic data.

5 Audio Segmentation

To segment the audio of the IWSLT test sets, we
use SHAS (Tsiamas et al., 2022c). The tst2023
test set, unlike previous years, contains another
two domains apart from TED talks, which are ACL
presentations and Press conferences. We tune the
parameters of SHAS separately for each domain,
but since no development set is available for the
press conferences, we decided to treat it as the ACL
domain. For fine-tuning the segmentation parame-
ters, we used the ST model that was trained with
synthetic data from CommonVoice and SegAug-
ment and initialized from Siamese pre-training (Ta-
ble 2, 2d). We evaluate the performance of the
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Figure 3: BLEU scores on IWSLT.tst2020 for different
combinations of min and max segment length
parameters of SHAS.

ST model on many different combinations of the
min and max segment length parameters, between
0.2-30 seconds on IWSLT.tst2019 and 0.2-18 on
ACLdev2023. In Figure 3, we observe that the min-
imum segment length of 10 seconds is consistently
reaching the best BLEU of 29.7 points. We decided
to choose the combination of 10-26 seconds, since
the max of 26, seemed to be slightly better com-
pared to other neighboring values. As depicted in
Figure 4, smaller segments are better for the ACL
domain, with the best BLEU score obtained for
min of 0.2 and max of 12. We hypothesize that the
differences in the optimal segmentation between
the IWSLT and ACL sets is because the ACL data
are essentially out-of-domain for our ST models.
In turn, the ST models are not confident in their
predictions to handle long segments, and thus it is
better to translate short segments instead.

6 Results

In Table 2 we provide the BLEU scores on MuST-C
tst-COMMON and the IWLST test sets of tst2019
and tst2020 (TED domain), and acl2023 (ACL do-
main). We are using the original segmentation for
MuST-C and apply SHAS with the optimal param-
eters (§5) of 10-26 secs for the TED domain, and
0.2-12 secs for the ACL one. We also provide the
results from our submission to IWSLT ’22.

In the first part of Table 2, we observe that this
year’s baseline (1a) improves results from last year
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Figure 4: BLEU scores on IWSLT.ACLdev2023 for
different combinations of min and max segment length
parameters of SHAS.

best single model in both MuST-C and IWSLT
test sets, although it only uses data from MuST-
C. The reasons behind these improvements are the
proper fine-tuning of learning rate and regulariza-
tion parameters, as well as the choice of the speech
encoder (§A.3). For the next exepriment (1b), by
using the Siamese pretraining (§2.2), instead of
just using CTC for the pretraining, we obtain sub-
stantial improvements in MuST-C v2, tst2020, and
acl2023, indicating the efficacy of our pretraining
method when applied on top of foundation models.

Adding more data in all parts of the training (2a),
including the MT fine-tuning, Siamese pre-training
and ST fine-tuning, did not bring any meaningful
improvements to MuST-C and IWSLT.tst2019/20,
but it dramatically improved the results on the
acl2023 development set. We hypothesize that the
CommonVoice and CoVoST data play an important
role due to the large representation of foreign ac-
cents, similar to those in acl2023. Following, with
the inclusion of SegAugment in the ST fine-tuning
(2b) we observe an increase in all test sets, with
larger ones in the IWSLT test sets, since SegAug-
ment data have the same segmentation. Then, also
using synthetic data from CommonVoice (2¢) has
minor improvements in MuST-C and a slight de-
crease in IWSLT. Despite that, we included syn-
thetic data in subsequent experiments, since they
were running in parallel. Applying Knowledge Dis-
tillation with the fine-tuned mBARTS50 as a teacher
(2d), brings moderate gains of 0.1-0.4 BLEU in the
IWSLT sets, and finally an increase in the learning
rate (2e) from 5e-5 to 7.5e-5 provide a model that
scored the best in tst2020 and acl2023.
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Dataset MuST-C IWSLT
split v3  tst2019  tst2020 acl2023
UPC 22 (Tsiamas et al., 2022b)
a Best Single 294 - 24.9 26.8 -
b Best Ensemble 30.8 - 25.4 27.8 -
Only MuST-C
a Baseline 29.8 299 25.7 27.3 25.1
b 1la+ Siamese Pretraining 30.8  30.1 25.9 28.5 26.4
Extended Data Conditions
a 1b + More Data 30.8 30.7 26.0 28.0 31.6
b 2a+ SegAugment 31.3 309 26.6 294 324
2 ¢ 2b+synthCV 31.4 31.0 26.5 29.4 32.3
d 2c+ Knowledge Distillation  30.9  30.7 26.8 29.5 32.7
e 2c+ higher LR 31.2 30.8 26.4 29.8 33.4
Ensembles
a Ensemble (2d, 2e) 314 31.1 26.9 29.7 32.8
3 b Ensemble (2c, 2d, 2e) 31.4 31.1 27.0 29.9 32.7
¢ Ensemble (2b, 2c, 2d, 2e) 31.5 31.2 27.0 29.8 33.1

Table 2: BLEU scores for En-De MuST-C and IWSLT sets. In bold are the best scores by single models, and in
underlined bold are the best scores overall.

Ensembling multiple models provided small in-
creases in all sets. We believe that there is very little
variation in our best models (2b-2e), since they are
initialized from the same Siamese pre-training (2b),
thus resulting in ineffective ensembles. In general,
and in terms of single models, we improve our re-
sults from last year by 1.6 BLEU in tst2019 and 2.1
BLEU in tst2020, while the difference is larger in
terms of single models.

7 Conclusions

We described the submission of the UPC Machine
Translation group for the IWSLT 2023 Offline ST
task. Our system leverages ASR and MT foun-
dation models and a Siamese pretraining step to
maximize the transfer learning from MT. We show
that Siamese pretraining can bring significant im-
provements to our ST models, while fine-tuning
with KD can also be helpful. We furthermore show
that synthetic data are crucial at improving perfor-
mance in the IWSLT test sets. In future work, we
plan to investigate the zero-shot capabilities of opti-
mal transport in the context of foundation models.

8 Submission Results

In Tables 3, 4 and 5, we present the official submis-
sion results for IWSLT 2023 with our best system,
which is the Ensemble 3c of Table 2. Systems

are evaluated on the three test sets (TED, ACL,
Sub) with three metrics; BLEU (Papineni et al.,
2002), chrF (Popovié, 2017), and COMET (Rei
et al., 2020). The TED test set also has two avail-
able references.

Metric BLEU chrF COMET
Reference 1 2 both 1 2 1 2
System 3¢ 255 298 36.6 0.56 0.58 0.7985 0.8098

Table 3: Official Results for the TED test set 2023.

Metric BLEU chrF COMET
System 3¢ 32.1 0.6 0.7473

Table 4: Official Results for the ACL test set 2023.

Metric BLEU chrF COMET
System 3¢ 15.6 047 0.3746

Table 5: Official Results for the Sub test set 2023.
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A Appendix

A.1 Implementation Details

This section presents the implementation details of
our proposed model architecture.

As an ASR model, we are using wav2vec 2.0>
which is composed of a 7-layer convolutional fea-
ture extractor and 24-layer Transformer encoder.
It is pretrained with 60k hours of non-transcribed
speech from Libri-Light (Kahn et al., 2020), and
fine-tuned for ASR with 960 hours of labeled data
from Librispeech (Panayotov et al., 2015). The
wav2vec 2.0 version we use was also fine-tuned
with pseudo-labels (Xu et al., 2021b).

As an MT model, we are using mBARTS50 (Tang
et al., 2020), which is already fine-tuned on En-
Xx multilingual machine translation®. We further
pretrain it for two reasons. Firstly, we are only in-
terested in the En-De direction, and thus we would
like a more specialized model on that direction.
Secondly, due to the 2nd step of encoder matching,
we would like the text encoder to have a very good
representation of our data. For MT fine-tuning, we
use the original parameters of mBARTS50 (Tang
et al., 2020), and the datasets listed in Table 6.

The acoustic encoder has 24 Transformer lay-
ers, while the semantic encoder and the decoder

https://dl.fbaipublicfiles.com/
fairseq/wav2vec/wav2vec2_vox_960h_new.pt

*https://dl.fbaipublicfiles.com/

fairseg/models/mbart50/mbart50.ft.1n.
tar.gz

have 12 layers each. All layers have an embedding
dimensionality of 1024, a feed-forward dimension-
ality of 4098, GELU activations (Hendrycks and
Gimpel, 2020), 16 attention heads, and pre-layer
normalization (Xiong et al., 2020). The vocabulary
for the CTC has a size of 32 characters, while the
one for the ST model has a size of 250,000.

The model takes waveforms with a 16kHz sam-
pling rate as input, which are normalized to zero
mean and unit variance. The models are trained
using the data presented in Table 1, with maximum
source length of 400,000 and target length of 1024
tokens. Gradient accumulation and data parallelism
are employed to achieve an effective batch size of
approximately 32 million tokens.

For the Siamese pre-training we use Adam
(Kingma and Ba, 2014) with a base learning rate
of 2- 1074, a warm-up of 1,000 steps and an in-
verse square root scheduler. We follow a reduced
regularization approach, as compared to the origi-
nal configuration of wav2vec 2.0 and mBART50,
which we found to work the best in our preliminary
experiments. Thus, we use 0.1 activation dropout
in the acoustic encoder, as well as time masking
with probability of 0.2 and channel masking with
probability of 0.1. For the context encoder, we use
0.1 dropout and 0.1 attention dropout. All other
dropouts are inactive. All the weights in the loss
function were set to 1.0 (Eq. 1). We train until the
LOT2 term of the loss does not improve for 5,000
steps, and then average the 10 best checkpoints
according to the same loss term.

For ST fine-tuning, we use Adam with a base
learning rate of 5 - 10>, fixed for the 20% of the
training before decaying to 5 - 10~ for the rest.
In the semantic encoder, we apply a dropout of
0.1 and an attention dropout of 0.1, while for the
decoder we use a dropout of 0.3 and an attention
dropout of 0.1. Neither dropout nor masking is
applied in the frozen acoustic encoder. The loss is
the cross-entropy with label smoothing of 0.2.

For the experiments incorporating Knowledge
Distillation (KD) during ST fine-tuning, the loss
is calculated as a weighted sum of the standard
cross-entropy (no label smoothing) and the KL di-
vergence between the teacher and student distribu-
tions, controlled by a hyperparameter A, set to 0.5.
The teacher distribution for each step is obtained
offline using the fine-tuned mBARTS50, where we
keep the top-8 indices, and both the teacher and
student distributions are additionally modified with
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temperature 7' = 1.3 (Gaido et al., 2020).

After ST fine-tuning, we pick the 10 best check-
points according to the BLEU (Papineni et al.,
2002) computed with sacreBLEU (Post, 2018) on
the development set of MuST-C and average them.
For generation, we use a beam search of 5. All
models are implemented in FAIRSEQ (Ott et al.,
2019), and experiments were run on a cluster of 8
NVIDIA GeForce RTX 3090. Our code is available
at a public repository®.

A.2 MT fine-tuning

For the MT fine-tuning, we use the parallel text
of the ST datasets, as well as Europarl v10 En-De
(Koehn, 2005) (Table 6). We perform text nor-
malization and remove pairs with extremely short
text segments (fewer than 4 characters) or extreme
source-to-target length ratio (less than 0.5 or larger
than 2).

Original Filtered
ST datasets
MuST-C v3 270 235
Europarl-ST 33 26
CoVoST 2 231 203
MT datasets
Europarl v10 1,829 1,566
Total 2,363 2,030

Table 6: Filtered training data (thousands of sentences)
for MT fine-tuning stage.

MuST-C Europarl-ST CoVoST2
v2 v3
Off-the-shelf
mBARTS50 314 309 35.0 33.6
Fine-tuned
MuST-C v2 35.3 344 34.6 35.3
All (§3.1) 34.9 34.2 40.3 39.9

Table 7: BLEU scores on MT test sets.

A.3 Preliminary experiments

Before starting the primary experiments for the
IWSLT evaluation campaign, we conducted an ar-
ray of preliminary tests, building on top of previous
years’ submissions (Géllego et al., 2021; Tsiamas
et al., 2022b). These explorations were intended to
examine the impact of system configuration varia-
tions on the performance metrics on the MuST-C

*nttps://github.com/mt-upc/iwslt-2023

v2 dev set, such as BLEU (Papineni et al., 2002),
chrF2 (Popovié, 2017), and COMET (Rei et al.,
2020). To ensure the robustness of our findings,
we estimated statistical significance using the boot-
strap resampling method (Koehn, 2004).

In our initial experiment, we examined the im-
pact of various fine-tuning strategies used in our
last years’ participations, specifically LNA (Li et al.,
2021) and LNA-Adapters (Tsiamas et al., 2022b),
in comparison to full fine-tuning. The goal was
to verify whether these approaches inadvertently
hurt the system’s performance. As demonstrated in
Table 8, these strategies indeed had a detrimental
effect, leading to reductions of 1.9 BLEU points
when applied to both the encoder and the decoder.
Consequently, we opted to adopt a conventional full
fine-tuning strategy for subsequent experiments.

Following this, we conducted a comparative anal-
ysis of various speech encoders, including different
variations of wav2vec 2.0 (Baevski et al., 2020;
Xu et al., 2021b; Hsu et al., 2021b; Conneau et al.,
2021), HuBERT (Hsu et al., 2021a), and SpeechL.M
(Zhang et al., 2022) (Table 9). Our baseline was
the wav2vec 2.0 fine-tuned with pseudo-labels (Xu
et al., 2021b), and intriguingly, most encoders ex-
hibited a comparable level of performance. A
marginal decrease was observed with the wav2vec
2.0 pretrained on a large pool of datasets (LV-60 +
CV + SWBD + FSH) (Hsu et al., 2021b), and the
multilingual version of wav2vec 2.0, XLSR (Con-
neau et al., 2021). The SpeechLM results were
noticeably below expectations, leading us to sus-
pect a bug in our implementation.

Upon noting that the hyperparameters were op-
timized for a specific speech encoder, we hy-
pothesized that a reduction in the learning rate
might boost HuBERT’s performance. However,
as demonstrated in Table 11, the performance was
adversely affected, prompting us to retain the origi-
nal wav2vec 2.0 as the primary speech encoder due
to the lack of substantial improvements offered by
other alternatives.

Our focus then shifted towards examining the
influence of varying regularization and data aug-
mentation strategies on system performance (Table
10). We explored a range, from our traditionally
used setup (base), to the one employed in the orig-
inal foundation model fine-tuning, and a reduced
version. Implementing the original regularization
within the speech encoder, as opposed to the base
variant, significantly boosted performance, leading
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Encoder Decoder BLEU chrF2 COMET
29.0 54.7 0.8001

LNA - 28.0*  54.1*  0.7949*
LNA 27.9*  54.0*  0.7882*

LNA LNA 27.1*  53.2*  0.7800*
LNA-Adapt - 28.2*  54.3*  0.7960*

LNA-Adapt  27.6* 53.6*  0.7889*
LNA-Adapt LNA-Adapt 27.1* 53.5%  0.7847*

Table 8: Performance comparison of fine-tuning
strategies w.r.t. to full fine-tuning, evaluated on the
MuST-C v2 dev set (en-de). LNA and LNA-Adapters
represent the strategies proposed by (Li et al., 2021)
and (Tsiamas et al., 2022b) respectively. * indicates
significance w.r.t. baseline (full fine-tuning).

us to select this configuration. We also explored the
effectiveness of WavAugment (Kharitonov et al.,
2021), ultimately finding that, despite its training
speed slowdown, it did not enhance the results.
Consequently, we opted to stop using it.

Lastly, we evaluated the potential benefits of
employing the new MuST-C v3 training data on
system performance (Table 12). Unexpectedly, no
significant improvements were observed upon tran-
sitioning from MuST-C v2 to v3. Despite this, we
decided to utilize v3, since it’s specifically prepared
for the IWSLT evaluation campaign.

These preliminary investigations have not only
provided a more profound understanding of the role
of each system’s component and setting, but also
have yielded us with a better starting point for the
subsequent experiments of our work.
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Learning Rate BLEU chrF2 COMET

5-1074 30.3 56.1 0.8099
2.107% 30.3 56.0 0.8069
1-10% 30.2 55.9 0.8085
5.107° 20.5*%  55.3*  0.8047

Table 11: Learning rate search for HuBERT encoder,
with MuST-C v2 dev set (en-de). * indicates
significance w.r.t. baseline (1st row).

Training Data BLEU chrF2 COMET
MuST-C v2 30.7 56.4 0.8127
MuST-C v3 30.5 56.6 0.8118

Table 12: Performance of the systems trained with
different versions of MuST-C, evaluated with MuST-C
v2 dev set (en-de). No significant improvements found.

System ASRFT BLEU chrF2 COMET
Wav2Vec 2.0 Large (LV-60) + Self Training v 30.2 56.1 0.8087
Wav2Vec 2.0 Large (LV-60) v 30.1 55.9 0.8098
Wav2Vec 2.0 Large (LV-60) X 30.3 55.9 —
Wav2Vec 2.0 Large (LV-60 + CV + SWBD + FSH) v 29.7% 55.7% 0.8083
Wav2Vec 2.0 Large (LV-60 + CV + SWBD + FSH) X 30.0 55.9 —
Wav2Vec 2.0 Large conformer - rope (LV-60) T v 29.8 55.4* —
XLSR-53 X 28.9* 55.0* —
HuBERT Large v 30.3 56.1 0.8099
HuBERT Large X 30.3 56.2 0.8110
SpeechLM-P Large * X 23.6* 50.2* —

Table 9: Speech encoders exploration with MuST-C v2 dev set (en-de). * indicates significance w.r.t. baseline (1st
row). t uses LNA-Adapters (Tsiamas et al., 2022b). 1 indicates a possible bug in our implementation.

Encoder Reg. Decoder Reg. WavAugm. BLEU chrF2 COMET
base base v 30.2 56.1 0.8087

base original v 30.5 56.4*  0.8149*

base original X 30.7 56.4*  0.8127*

base reduced v 30.1 55.9 0.8078
original base v 29.8 55.8 0.8100
reduced base v 30.1 55.9 0.8108
original original v 30.4 56.2 0.8138*
reduced reduced v 30.1 56.0 0.8122*

Table 10: Variations of the regularization and data augmentation strategies, with MuST-C v2 dev set (en-de). *
indicates significance w.r.t. baseline (1st row).
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