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Abstract

In this paper, we describe our submission to the
Simultaneous Track at IWSLT 2023. This year,
we continue with the successful setup from the
last year, however, we adopt the latest meth-
ods that further improve the translation quality.
Additionally, we propose a novel online policy
for attentional encoder-decoder models. The
policy prevents the model to generate transla-
tion beyond the current speech input by using
an auxiliary CTC output layer. We show that
the proposed simultaneous policy can be ap-
plied to both streaming blockwise models and
offline encoder-decoder models. We observe
significant improvements in quality (up to 1.1
BLEU) and the computational footprint (up to
45 % relative RTF).

1 Introduction

Simultaneous speech translation (SST) is the task
of translating speech into text in a different lan-
guage before the utterance is finished. The goal
of SST is to produce a high-quality translation in
real-time while maintaining low latency. However,
these two objectives are conflicting. If we decrease
the latency, the translation quality also drops. Last
year’s IWSLT evaluation campaign (Anastasopou-
los et al., 2022) showed that current methods for
simultaneous speech translation can approach the
translation quality of human interpreters (Poldk
et al., 2022). The disadvantage is a higher com-
putation footprint that might make a widespread
application prohibitive.

This paper describes the CUNI-KIT submission
to the Simultaneous translation track at IWSLT
2023 (Agarwal et al., 2023). Following our last
year’s submission (Polék et al., 2022), we continue
in our effort to onlinize the robust offline speech
translation models. However, the main goal of this
submission is to improve the computational foot-
print. To this end, we propose a novel online policy
based on CTC. As we experimentally document,

the online CTC policy can be used to onlinize the
offline models achieving a 45 % improvement in
real time factor (RTF) as well as to improve the
quality of the streaming blockwise models (Tsunoo
et al.,, 2021). Aside from improving the online
policy, we also adopt the novel improved stream-
ing beam search (Poldk et al., 2023) that further
improves the translation quality.
Our contributions are as follows:

* We adopt the latest online decoding algorithm
that improves the translation quality of robust
offline models in the simultaneous regime,

* We propose a novel online policy that signifi-
cantly

— lowers the computational complexity of
the online decoding with robust offline
models while maintaining the same or
only slightly worse translation quality,

— improves the translation quality of the
streaming blockwise models while main-
taining the same latency,

* We demonstrate that our systems can run on
hardware accessible to a wide audience.

2 Methods

In our submission, we use two different model
architectures — a traditional offline ST architec-
ture and a blockwise simultaneous ST architecture
(Tsunoo et al., 2021). In this section, we describe
the methods applied to achieve simultaneous ST
using these architectures.

2.1 Incremental Blockwise Beam Search with
Controllable Quality-Latency Tradeoff

To use the traditional offline ST model in a simulta-
neous regime, Liu et al. (2020) proposed chunking,
i.e., splitting the audio source utterance into small
constant-length chunks that are then incrementally
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fed into the model. As translation quality tends to
diminish toward the end of the unfinished source,
an online policy is employed to control the latency-
quality tradeoff in the generated output. Popular
online policies include wait-k (Ma et al., 2019),
shared prefix (Nguyen et al., 2020), hold-n and
local agreement (Liu et al., 2020). In Poldk et al.
(2022), we showed that the tradeoff could be con-
trolled by varying the chunk length.

To generate the translation, a standard beam
search is typically applied (Sutskever et al., 2014).
While this decoding algorithm enables the model
to generate a complete translation for the current
input, it also suffers from overgeneration (i.e., hallu-
cinating tokens beyond sounds present in the input
segment) and low-quality translations towards the
end of the source context (Dong et al., 2020; Poldk
et al., 2022).

To tackle this issue, we adopt an improved in-
cremental blockwise beam search (Poldk et al.,
2023). We outline the algorithm in Algorithm 1
and highlight the main differences from the origi-
nal approach used in Poldk et al. (2022) with red.

Algorithm 1: Incremental blockwise
streaming beam search algorithm for incre-

mental ST

Input :A list of blocks, an ST model
Output : A set of hypotheses and scores

1 Seen + (;

2 for each block do

3 Encode block using the ST model;

4 Stopped «+ 0,

5 minScore <— —o0;

6 while #active beams > 0 and not max. length do

7 Extend beams and compute scores;

8 for each active beam b do

9 if b ends with <eos> or (score < minScore

and b ¢ Seen) then
10 minScore < max(minScore, score);

11 Stopped < Stopped U b;

12 Remove b from the beam search;
13 end

14 end

15 end

16 Seen <— Seen U Stopped,

17 Sort Stopped by length-normalized score;

18 Set the best hypothesis from Stopped as active beam;
19 Apply the incremental policy;

20 Remove the last two tokens from the active beam;
21 end

In Algorithm 1, the overgeneration problem
is addressed by stopping unreliable beams (see
Line 9). The unreliable beam is defined as a beam
ending with <eos> token or having a score lower
or equal to any other unreliable beam detected so
far. This means, that we stop any beam that has a
score lower than any beam ending with <eos> to-
ken. Since there might be a hypothesis that would
always score lower than some hypothesis ending

with the <eos> token, the algorithm allows gen-
erating a hypothesis with a score lower than the
unreliable score if it was seen during the decoding
of previous blocks.

Finally, the algorithm removes two instead of
one token in the current beam (see Line 20). Re-
moving the last two tokens mitigates the issue of
low-quality translation toward the end of the con-
text.!

2.2 Rethinking Online Policies for
Attention-based ST Models

While the improved incremental blockwise beam
search improves the performance, it still requires a
strong online policy such as hold-n or local agree-
ment (Liu et al., 2020). A common property of
these online policies is that they require multiple
re-generations of the output translation. For ex-
ample, the local agreement policy must generate
each token at least twice to show it to the user, as
each token must be independently generated by
two consecutive contexts to be considered stable.
Depending on the model architecture, the genera-
tion might be the most expensive operation. Ad-
ditionally, the sequence-to-sequence models tend
to suffer from exposure bias (i.e., the model is not
exposed to its own errors during the training) (Ran-
zato et al., 2015; Wiseman and Rush, 2016). The
exposure bias then causes a lower translation qual-
ity, and sometimes leads to hallucinations (i.e., gen-
eration of coherent output not present in the source)
(Lee et al., 2018; Miiller et al., 2019; Dong et al.,
2020). Finally, attentional encoder-decoder models
are suspected to suffer from label bias (Hannun,
2020).

A good candidate to address these problems is
CTC (Graves et al., 2006). For each input frame,
CTC predicts either a blank token (i.e., no output)
or one output token independently from its previous
predictions, which better matches the streaming
translation and reduces the risk of hallucinations.
Because the CTC’s predictions for each frame are
conditionally independent, CTC does not suffer
from the label bias problem (Hannun, 2020). Al-
though, the direct use of CTC in either machine
or speech translation is possible, yet, its quality
lags behind autoregressive attentional modeling
(Libovicky and Helcl, 2018; Chuang et al., 2021).

'Tnitial experiments showed that removing more than two
tokens leads to higher latency without any quality improve-
ment.
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Another way, how to utilize the CTC is joint de-
coding (Watanabe et al., 2017; Deng et al., 2022).
In the joint decoding setup, the model has two
decoders: the non-autoregressive CTC (usually a
single linear layer after the encoder) and the atten-
tional autoregressive decoder. The joint decoding
is typically guided by the attentional decoder, while
the CTC output is used for re-scoring. Since the
CTC predicts hard alignment, the rescoring is not
straightforward. To this end, Watanabe et al. (2017)
proposed to use the CTC prefix probability (Graves,
2008) defined as a cumulative probability of all la-
bel sequences that have the current hypothesis h as
their prefix:

Pac(h, ) = > pec(h ®v[X), (1)

vey+

where V is output vocabulary (including the
<eos> symbol), @ is string concatenation, and
X is the input speech. To calculate this probability
effectively, Watanabe et al. (2017) introduce vari-
ables yt(b)(h) and ygn)(h) that represent forward
probabilities of A at time ¢, where the superscript
denotes whether the CTC paths end with a blank
or non-blank CTC symbol. If the hypothesis h is a
complete hypothesis (i.e., ends with the <eos> to-
ken), then the CTC probability of h = g & <eos>
is:

pec(WX) =P+ (), @

where T is the final time stamp.
If h = g & cis not final, i.e., ¢ # <eos>, then
the probability is:

T
pac(h|X) =) ®i(g) - p(z = ¢|X), ()
t=1
where
(b) 0 last(g) = ¢
o,(g) = +
19) =%-1(9) {’Yt(n)l(g) otherwise.

2.3 CTC Online Policy

Based on the the definition of p.(h|X) in Equa-
tions (2) and (3), we can define the odds of g being
at the end of context 7"

Pete(g B <eo0s>|X)

Oddsep, =
¢ d(g) ZCEV/{<eoS>} pctc(g @ C‘X)

G

The disadvantage of this definition is that
Pete(- - - | X) must be computed for every vocab-
ulary entry separately and one evaluation costs
O(T), i.e., O(|V| - T) in total. Contemporary ST
systems use vocabularies in orders of thousands
items making this definition prohibitively expen-
sive. Since the CTC is used together with the
label-synchronous decoder, we can approximate
the denominator with a single vocabulary entry cu
predicted by the attentional decoder pay:

pctc(g ) <eos>\X)
Oddse, ~ ) )
d(g) pctc(g S Catt’X)

where ¢y = argmax ey /{<eos>} Pau(g & ¢/ X).
Now the evaluation of Oddseng(g) is O(T). If we
consider that the baseline model already uses CTC
rescoring, then evaluating Oddsenq(g) amounts to
a constant number of extra operations to evaluate
pctc(g S <eos>\X).

Finally, to control the latency of the online decod-
ing, we compare the logarithm of Oddsend(g) with
a tunable constant Cepg. If log Oddseng(g) > Cends
we stop the beam search and discard the last token
from g. We found values of C.pg between -2 and 2
to work well across all models and language pairs.

3 Experiments and Results

3.1 Models

Our offline multilingual ST models are based on
attentional encoder-decoder architecture. Specifi-
cally, the encoder is based on WavLM (Chen et al.,
2022), and the decoder is based on multilingual
BART (Lewis et al., 2019) or mBART for short.
The model is implemented in the NMTGMinor li-
brary.? For details on the offline model see KIT
submission to IWSLT 2023 Multilingual track (Liu
et al., 2023).

The small simultaneous speech translation mod-
els for English-to-German and English-to-Chinese
language pairs follow the blockwise streaming
Transformer architecture (Tsunoo et al., 2021) im-
plemented in ESPnet-ST-v2 (Yan et al., 2023).
Specifically, the encoder is a blockwise Conformer
(Gulati et al., 2020) with a block size of 40 and
look-ahead of 16, with 18 layers, and a hidden
dimension of 256. The decoder is a 6-layer Trans-
former decoder (Vaswani et al., 2017). To improve
the training speed, we initialize the encoder with

https://github.com/quanpn90/NMIGMinor
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weights pretrained on the ASR task. Further, we
employ ST CTC (Deng et al., 2022; Yan et al.,
2022) after the encoder with weight 0.3 during the
training. During the decoding, we use 0.3 for En-
glish to German, and 0.4 for English to Chinese.
We preprocess the audio with 80-dimensional fil-
ter banks. As output vocabulary, we use unigram
models (Kudo, 2018) of size 4000 for English to
German, and 8000 for English to Chinese.

3.2 Evaluation

In all our experiments with the offline models, we
use beam search of size 8 except for the CTC pol-
icy experiments where we use greedy search. For
experiments with the blockwise models, we use
the beam search of 6. For experiments with the
improved blockwise beam search, we follow Polak
et al. (2023) and remove the repetition detection in
the underlying offline models, while we keep the
repetition detection on for all experiments with the
blockwise models.

For evaluation, we use Simuleval (Ma et al.,
2020) toolkit and t st —COMMON test set of MuST-
C (Cattoni et al., 2021). To estimate transla-
tion quality, we report detokenized case-sensitive
BLEU (Post, 2018), and for latency, we report av-
erage lagging (Ma et al., 2019). To realistically
assess the inference speed, we run all our experi-
ments on a computer with Intel i7-10700 CPU and
NVIDIA GeForce GTX 1080 with 8 GB graphic
memory.

3.3 Incremental Blockwise Beam Search with
Controllable Quality-Latency Tradeoff

In Table 1, we compare the performance of the
onlinized version of the baseline blockwise beam
search (BWBS) with the improved blockwise beam
search (IBWBS; Polak et al., 2023). As we can see
in the table, the improved beam search achieves
higher or equal BLEU scores than the baseline
beam search across all language pairs. We can
observe the highest improvement in English-to-
German (1.1 BLEU), while we see an advantage
of 0.1 BLEU for English-to-Japanese. and no im-
provement in English-to-Chinese.

In Table 1, we also report the real-time factor
(RTF), and the computation-aware average lagging
(ALca). Interestingly, we observe a higher com-
putational footprint of the IBWBS compared to
the baseline beam search by 13, 28, and 17 %
on En—{De, Ja, Zh}, resp., when measured with
RTF. This might be due to the fact that we recom-

Lang Decoding AL| ALcal RTF| BLEUtT
Enpe BWBS 1922 3121 046 30.6
IBWBS 1977 3277 052 317
Eng BWBS 1992 3076  0.50 155
<3 IBWBS 1935 3264  0.64 15.6
Enzn BWBS 1948 2855 0.41 26.5
- IBWBS 1945 3031  0.48 26.5

Table 1: Incremental SST with the original BWBS and
IBWBS. Better scores in bold.

pute the decoder states after each source increment.
Since the IBWBS sometimes waits for more source
chunks to output more tokens, the unnecessary de-
coder state recomputations might increase the com-
putational complexity.

3.4 CTC Online Policy

In Figure 1, we compare the improved blockwise
beam search (IBWBS) with the proposed CTC pol-
icy using the blockwise streaming models. The
tradeoff curves for English-to-German (see Fig-
ure la) and English-to-Chinese (see Figure 1b)
show that the proposed CTC policy improves the
quality (up to 1.1 BLEU for En—De, and 0.8
BLEU for En—Zh), while it is able to achieve the
same latencies.

3.5 CTC Online Policy for Large Offline
Models

We were also interested in whether the CTC policy
can be applied to large offline models. Unfortu-
nately, due to limited resources, we were not able
to train a large offline model with the CTC output.
Hence, we decided to utilize the CTC outputs of the
online blockwise models and used them to guide
the large offline model. Since the models have very
different vocabularies,® we decided to execute the
CTC policy after a whole word is generated by the
offline model (rather than after every sub-word to-
ken). For the very same reason, we do not use CTC
for rescoring.

We report the results in Table 2. Unlike in the
blockwise models (see Section 3.4), the CTC policy
does not improve the quality in En—De, and has a
slightly worse quality (by 0.7 BLEU) in En—Zh.
This is most probably due to the delayed CTC-
attention synchronization that is not present for the
blockwise models (as both decoders there share the

3The blockwise models have a vocabulary size of 4000
for En—De and 8000 for En—Zh, and the offline model has
250k.
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Figure 1: Comparison of the improved blockwise beam search IBWBS) and the proposed CTC policy using

blockwise streaming models.

same vocabulary and the models compute the CTC
policy after each token rather than word). However,
we still observe a significant reduction in computa-
tional latency, namely by 45 and 34 % relative RTF
for En—De and En—Zh, respectively.

Lang Decoding AL] ALcal RTEF| BLEU?T
BWBS 1922 3121 0.46 30.6
En-De IBWBS 1977 3277 0.52 31.7
CTC 1946 2518 0.21 30.6
BWBS 1948 2855 0.41 26.5
En-Zh  IBWBS 1945 3031 0.48 26.5
CTC 1981 2515 0.28 25.8

Table 2: Comparison of onlinization of the large offline
model using chunking with the local agreement policy
(LA-2) and with the proposed CTC policy.

4 Submission

In this section, we summarize our submission to
the Simultaneous track at IWSLT 2023. In total,
we submit 10 systems for all three language pairs.

4.1 Onlinized Offline Models

Following our last year’s submission, we onlinize
two large offline models (our models for IWSLT
2022 Offline ST track and IWSLT 2023 Multilin-
gual track). This year, however, we utilize the
improved blockwise beam search to yield higher
BLEU scores. We submit systems for all language
pairs based on the last year’s model, and our new
model. We summarize the submitted models and
their performance in Table 3. As we can observe
in Table 3, the 2023 model appears to perform
worse. However, we learned during the writing of
this paper that there was some overlap between the
training and test data for the 2022 model*, making

*(Zhang and Ao, 2022) found an overlap between ST-TED
training corpus and tst-COMMON set of MuST-C dataset.

the BLEU scores for the 2022 model unreliable.

Lang Model AL] ALcal BLEU?T
En-De 2022 1991 3138 31.8
2023 1955 3072 314
En-Ja 2022 1906 3000 15.5
2023 1982 3489 153
2022 1984 3289 26.8
En-Zh 2023 1987 3508 26.6

Table 3: Submitted onlinized large offline models.

We also submit the system based on the large
model onlinized using the CTC policy. The sys-
tems are summarized in Table 4. Unfortunately, we
were not aware of the training and test data overlap
during the evaluation period, so we decided to use
our 2022 model also this year.

Lang Model AL| ALca) BLEUT
En-De 2022 1959 2721 314
En-Zh 2022 1990 2466 26.3

Table 4: Submitted large offline models onlinized using
the proposed CTC policy.

4.2 Blockwise Online Models

Finally, we submit small blockwise models. Their
advantage is that they are able to run on a CPU
faster than real time (more than 5x faster). We
report their performance in Table 5.

Lang ALl ALcal RTF, BLEU?t
En-De 1986 2425 0.9 254
EnZh 1999 238  0.19 2338

Table 5: Submitted small blockwise models using the
proposed CTC online policy.
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5 Conclusion and Future Work

In this paper, we present the CUNI-KIT submis-
sion to the Simultaneous track at IWSLT 2023. We
experimented with the latest decoding methods and
proposed a novel CTC online policy. We experi-
mentally showed that the proposed CTC online pol-
icy significantly improves the translation quality of
the blockwise streaming models. Additionally, the
proposed CTC policy significantly lowers the com-
putational footprint of the onlinized large offline
models. Unaware of a data overlap issue in 2022,
we eventually chose to use our last years’ models
in the official evaluation also this year.
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