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Abstract

This paper presents the MINETRANS English-
to-Chinese speech translation systems devel-
oped for two challenge tracks of IWSLT 2023:
Offline Speech Translation (S2T) and Speech-
to-Speech Translation (S2ST). For the offline
S2T track, MINETRANS employs a practi-
cal cascaded system consisting of automatic
speech recognition (ASR) and machine transla-
tion (MT) modules to explore translation per-
formance limits in both constrained and uncon-
strained settings. To this end, we investigate the
effectiveness of multiple ASR architectures and
two MT strategies, i.e., supervised in-domain
fine-tuning and prompt-driven translation using
ChatGPT. For the S2ST track, we propose a
novel speech-to-unit translation (S2UT) frame-
work to build an end-to-end system, which en-
codes the target speech as discrete units via
our trained HuBERT and leverages the stan-
dard sequence-to-sequence model to learn the
mapping between source speech and discrete
units directly. We demonstrate that with a large-
scale dataset, such as 10,000 hours of training
data, this approach can well handle the map-
ping without any auxiliary recognition tasks
(i.e., ASR and MT tasks). To the best of our
knowledge, we are the first and only one to suc-
cessfully train and submit the end-to-end S2ST
model on this challenging track.

1 Introduction

In this paper, we describe the MINETRANS
English-to-Chinese speech translation systems
which participate in two challenge tracks of the
IWSLT 2023 (Agarwal et al., 2023) evaluation
campaign: Offline Speech Translation (S2T) and
Speech-to-Speech Translation (S2ST).

The annual IWSLT evaluation campaign com-
pares the models produced by different institutions
on the task of automatically translating speech from
one language to another. Traditional S2T/S2ST sys-
tems typically use a cascade approach (Ney, 1999;
Sperber et al., 2017; Zhang et al., 2019; Wang et al.,
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2021b; Hrinchuk et al., 2022), which combines au-
tomatic speech recognition (ASR), machine trans-
lation (MT), and text-to-speech (TTS, for S2ST)
components. Recent advances in end-to-end mod-
els (Liu et al., 2019; Jia et al., 2019; Lee et al.,
2022; Du et al., 2021, 2022; Zhang et al., 2022b,a)
that directly translate one language speech to an-
other without intermediate symbolic representa-
tions, have shown great potential in overcoming
the problems inherent in cascaded systems, such
as error propagation and slow inference. Despite
this, there is still a gap between the two approaches,
as end-to-end models have much less supervised
training data than sub-tasks, i.e., ASR, MT, and
TTS. Last year’s IWNSLT offline S2T track (Anasta-
sopoulos et al., 2022) confirmed this, with the best
end-to-end model submission scoring 1.7 BLEU
points lower than the top-ranked cascade system.
This year’s competition aims to answer the ques-
tion of whether cascade solutions remain domi-
nant, particularly in the S2ST track, where there
has large-scale data for training.

In the offline S2T track, MINETRANS employs
a practical cascaded system to explore the limits
of translation performance in both constrained and
unconstrained settings, in which the entire system
consists of automatic speech recognition (ASR),
and machine translation (MT) modules. We also
investigate the effectiveness of multiple ASR ar-
chitectures and explore two MT strategies: super-
vised in-domain fine-tuning (Wang et al., 2022) and
prompt-driven translation using ChatGPT' (Jiao
et al., 2023; He et al., 2023).

In the S2ST track, MINETRANS utilizes a
speech-to-unit translation (S2UT) framework to
construct an end-to-end system, which is simi-
lar to Lee et al. (2021a) but removes all auxil-
iary recognition tasks (i.e., ASR and MT tasks).
This framework converts target speech into dis-
crete units via our pre-trained HuBERT and then
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leverages the standard sequence-to-sequence model
to learn the mapping between source speech and
discrete units directly. We found that with a large-
scale dataset, such as 10,000 hours of training data,
the previous multi-task learning technique (Jia;
Lee et al., 2021a,b; Popuri et al., 2022; Dong
et al., 2022) is not necessary for model conver-
gence, and this approach can successfully han-
dle the mapping between source speech and dis-
crete units. We also explore various initializa-
tion strategies and several techniques to improve
model performance, including (1) different self-
supervised pre-trained speech encoders and pre-
trained text-to-unit models, (2) data filtering and
augmentation, consistency training, and model en-
sembles. To the best of our knowledge, we are
the first and only one to successfully train and sub-
mit the end-to-end S2ST model on this challeng-
ing track. Our code is open-sourced at: https:
//github.com/duyichao/MINETrans-IWSLT23.

The remainder of this paper is organized as fol-
lows: Section 2 describes data preparation, includ-
ing data statistics, data preprocessing, and data
filtering. Section 3 describes our solution for the
offline speech translation track. Section 4 describes
our solution to the speech-to-speech track. In Sec-
tion 5, we conclude this paper.

2 Data Preparation

2.1 Data Statistics

Table 1 lists statistics of the speech corpus we used
for MINETRANS training, which can be divided
into four categories: unlabeled speech, ASR, TTS
and S2ST Corpus.

Unlabeled Speech. As shown in Table 1, we in-
tegrate source side speech from VoxPopuli (Wang
etal., 2021a) and GigaSS? to build a large-scale un-
labeled English speech corpus for self-supervised
training of speech encoders Wav2vec2.0 (Baevski
et al., 2020) and HuBert (Hsu et al., 2021), which
are used for initializing the S2UT model in the
S2ST track. Similarly, we also integrate target
speech from GigaSS and AISHELL-3 (Shi et al.,
2020) to train the Chinese HuBert, which is used
for discretizing Chinese speech.

ASR Corpus. To train data-constrained English
ASR models, we merge MuST-C (Gangi et al.,
2019), Common Voice v11 (Ardila et al., 2019),

2https://github.com/SpeechTranslation/Gigaszs
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Librispeech (Panayotov et al., 2015), and Europarl-
ST (Iranzo-Séanchez et al., 2019), resulting in ap-
proximately 4500 hours of labeled ASR corpus, as
shown in Table 1. For MuST-C and Europarl-ST,
we collect source speech for all translation direc-
tions and de-duplicated them based on audio identi-
fiers. In addition, GigaSpeech (Chen et al., 2021) is
used to construct data-unconstrained ASR model,
which includes 10k hours data covering various
sources (audiobooks, podcasts, and stream media),
speaking styles (reading and spontaneous), and top-
ics (arts, science, sports, etc.). Of these corpus, we
use MuST-C as the in-domain for the Offline track
and the rest as the out-of-domain.

MT Corpus. To train data-constrained English-
to-Chinese MT models, MuST-C v1&v2 are
considered in-domain corpora, while OpenSubti-
tles2018 (Lison et al., 2018) and NewsCommen-
tary> corpora are considered out-of-domain. Addi-
tionally, we utilize in-house corpora to train data-
unconstrained MT models, although we cannot pro-
vide further details about it.

TTS Corpus. To ensure target speech timbre
matching with the S2ST track, we consider the
single-speaker GigaSS-S, a small subset of GigaSS,
as in-domain and the multi-speaker AISHELL-
3 (Shiet al., 2020) as out-of-domain. These corpora
are used to train the TTS model and its correspond-
ing vocoder.

S2ST Corpus. The full version of GigaSS is
used to train our end-to-end S2UT model, which
is an large-scale S2ST corpora derived from Gi-
gaSpeech (Chen et al., 2021) via MT and TTS.
We also construct S2ST pseudo-data, the details of
which will be presented in Section 4.1.2.

2.2 Data Pre-processing and Filtering

In general, a simple way to improve model perfor-
mance is to provide them with better data. How-
ever, through a careful review of the data, we iden-
tified issues with the quality of the original data.
To address this, we performed the following pre-
processing and filtering:

* We convert all audio data to mono-channel
16kHz wav format. Since the sentences of spo-
ken translation are generally short, we discarded
sentences with text longer than 100 and speech
frames longer than 3000. Then 80-dimensional

3https://opus.nlpl.eu/News—Commentary.php
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Corpus Utterances (k) Duration (h) S2T CST. S2ST CST.
Unlabeled VoxPopuli 22,905 28,708 v v
MuST-C ASR v1&v2 342 617 v -
Common Voice v11.0 1680 3,098 v -
ASR  Librispeech 281 960 v -
Europarl-ST 34 81 v -
GigaSpeech 8,030 10,000 X —
NewsCommentary 32 - v -
MT OpenSubtitles 9,969 - v -
MuST-C vi&v2 543 - v -
In-house - - X -
TTS AISHELL 3 88 85 - v
GigaSS-S 210 244 - v
GigaSS 7,635 9,000 - v
S2ST  CoVoST synthetic 288 288 - v
MuST-C synthetic 358 587 - v

Table 1: Statistics of the training data. The "CST." indicates that a corpus is in the task constrained corpus list of
corresponding S2T or S2ST. The "-" indicates this corpus is not available in that column.

log-mel filter banks acoustic features are ex-
tracted with a stepsize of 10ms and a window
size of 25ms. The acoustic features are normal-
ized by global channel mean and variance.

* We use a pre-trained ASR model on Librispeech
to filter the audio with very poor quality, i.e.,
word error rate (WER) more than 75.

Since the annotation format is not uniform across
multiple datasets, we remove non-printing char-
acters, speaker names, laughter, applause and
other events. In addition, we also regularize punc-
tuation marks.

For the English-to-Chinese direction of MuST-C,
we first merge the v1 and v2 versions and then
remove duplicates based on audio identifiers.

3 Offline Speech Translation

3.1 Cascaded MINETRANS S2T System

3.1.1 Speech Recognition

A standard RNN-Transducer (Graves, 2012) model
is used for speech recognition. It consists of an
acoustic encoder, a prediction network and a joint
network. The acoustic encoder contains 18 Con-
former (Gulati et al., 2020) layers with the follow-
ing dimensions: attention size is 512, feed-forward
size is 2048, number of attention heads is 4, and
convolutional kernels is 31. The prediction network
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is a standard 1-layer LSTM with a hidden size of
1024. The joint network is linear with a size of
512. The input acoustic features are 80-dim Fbank
plus 3-dim pitch, which are down-sampled by a
2-layer CNN with a factor of 6 in the time-axis
before being fed into the acoustic encoder. The
overall parameter budget is 126M. During training,
SpecAugment (Park et al., 2019) is consistently
adopted for data augmentation. The training on
both GigaSpeech and MuST-C datasets lasts for
50 epochs each, which consumes 32 Nvidia V100
GPUs. The Adam optimizer is adopted, with peak
learning rate of 5e-3, warmup steps of 25k and in-
verse square root decay schedule(Vaswani et al.,
2017a). Model weights from the last 10 epochs are
averaged before decoding. The default decoding
method described in Graves (2012) is adopted with
a beam size of 10. External language models in
any form are not adopted.

ASR Output Adaptation. In the realm of au-
tomatic speech recognition (ASR) and machine
translation (MT), it is common for ASR output to
lack punctuation, whereas MT models are sensitive
to punctuation. To address this issue, we propose
an ASR output adaptation method by incorporating
a punctuation model between ASR and MT. Specif-
ically, we adopt a BERT-based punctuation model
that can automatically recover the original punctu-



ation. The objective of this approach is to bridge
the disparity between ASR and MT, leading to im-
proved overall performance in speech translation
tasks.

Speech Segmentation. Speech translation is a
multi-faceted task that requires overcoming the
challenges of bridging the gap between automatic
speech recognition (ASR) and machine translation
(MT) systems. To address these challenges, we
employ several text augmentation techniques to
improve the quality and accuracy of our training
data. Specifically, we have utilized speech-based
audio segmentation (SHAS (Tsiamas et al., 2022))
to identify and segment meaningful units of speech
that can be accurately translated by the MT system.

3.1.2 Machine Translation

In our systems, we adopt four different types of
translation strategies:

TRANSFORMER is a system trained on the
constrained data. We train the Transformer-
base (Vaswani et al., 2017b) model on the con-
strained general data and finetune the model on
the in-domain MuST-C data.

M2M-100* (Fan et al., 2021)is a multilingual
model trained for many-to-many multilingual
translation. We employ the supervised in-domain
fine-tuning strategy to finetune the M2M-100
1.2B-parameter model on the downstream MuST-
C data.

CHATGPT is a large language model product de-
veloped by OpenAl. Previous studies (Jiao et al.,
2023; Wang et al., 2023) have demonstrated that
ChatGPT is a good translator on high-resource
languages. Therefore we utilize the proper trans-
lation prompts with ChatGPT to carry out the
translation task.

IN-HOUSE MODEL We fine-tune our in-house
translation model (Huang et al., 2021) using
the MuST-C data. Our in-house model is a
Transformer-big (Vaswani et al., 2017b) model
with a deep encoder (Dou et al., 2018).

Data Re-Annotation. We have identified two is-
sues with the annotation of the English-to-Chinese
translation direction in the MuST-C v2.0 test set”.

4https ://github.com/facebookresearch/fairseq/
tree/main/exa\mples/m2m_100
Shttps://ict.fbk.eu/MuST-C/
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Firstly, we have observed samples of incorrect lit-
eral translations. For example, for the parallel sen-
tence pair, “I remember my first fire. lll 124 &,
% — 3% X, we usually translate the English word
“fire” into Chinese word “:X % (huo zhai)” not “ X
(huo)”. Secondly, we have noticed inconsisten-
cies in the punctuation annotation, as most Chinese
translations lack proper full stop marks. To address
these challenges, we have employed the services of
a professional translator to accurately translate the
English sentences. We will release the data, aiming
to facilitate future research in the field.

Domain Augmentation. The MuST-C v2.0 train-
ing data contains considerable bilingual sentence
pairs that are partially aligned. In the specific
pair “Thank you so much Chris. lll 3F % #f#f
2. 698 dEF R ¥, we are unable to lo-
cate the corresponding translation for the Chinese
phrase “89 7 4k % & %" in the English sentence.
As Koehn and Knowles (2017); Wang et al. (2018)
pointed out, data noise (partially aligned data) has
been demonstrated to impact the performance of
Neural Machine Translation (NMT). To address
this issue, we employ a data rejuvenation strat-
egy (Jiao et al., 2020). Specifically, we first fine-
tune the model using the raw parallel data and then
rejuvenate the low-quality bilingual samples to en-
hance the training data.

3.2 Experiment

The Cascaded MINETRANS S2T System we pro-
pose comprises an Automatic Speech Recogni-
tion (ASR) model and a machine translation (MT)
model. In our evaluation, we assess the perfor-
mance of each component separately. For the ASR
system evaluation, we employ the Word Error Rate
(WER) metric, while the BLEU score is utilized to
evaluate the performance of our machine transla-
tion model.

The evaluation results obtained on the MuST-C
dataset, with and without fine-tuning, are presented
in Table 2. When the GigaSpeech ASR system
is used without fine-tuning, we observe a WER
of 10.0 on the MuST-C test set. However, when
the system is fine-tuned using the MuST-C dataset,
a significant improvement in performance is ob-
served, resulting in a noticeable decrease in the
error rate from WER of 10.0 to 5.8. This highlights
the effectiveness of fine-tuning on the MuST-C
dataset in enhancing the overall performance of our
system.
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System Dev  Test
Gigaspeech 9.3 10.0
+ MuST-C Finetune 4.8 5.8

Table 2: ASR performance measured in terms of word
errTor rates.

We evaluate various translation strategies us-
ing the MuST-C test set. The experimental re-
sults are presented in Table 2. In the constrained
scenario, TRANSFORMER achieved a test BLEU
score of 25.04, whereas M2M-100 attained a
marginally higher score of 25.40. In the uncon-
strained setting, CHATGPT demonstrated superior
performance with a BLEU score of 28.25, while IN-
HOUSE MODEL obtained the highest BLEU score
of 30.91. These results emphasize the significance
of utilizing in-domain data for achieving optimal
performance in spoken language translation.

System Dev  tst-=COMMON
TRANSFORMER 13.93 25.04
M2M-100 16.53 25.40
CHATGPT — 28.25
IN-HOUSE MODEL 21.52 3091

Table 3: Offline speech translation performance mea-
sured in terms of the BLEU score.

4 Speech-to-Speech Translation
4.1 End-to-End MINETRANS S2ST System

As shown in Figure 1, we construct an end-to-
end S2UT (Lee et al., 2021a) model comprising a
speech encoder, length adapter, and unit decoder.
Following (Lee et al., 2021a), we encode target
speech as discrete units via our trained Chinese
HuBert and remove consecutive repetitive units
to generate a reduced unit sequence. Unlike (Lee
et al., 2021a), our S2UT model directly learns the
mapping between source speech and discrete units
without any auxiliary recognition tasks (i.e., ASR
and MT tasks), which hyper-parameters are diffi-
cult to tune. Then we leverage a unit-based HiFi-
GAN Vocoder to achieve unit-to-waveform con-
version (Polyak et al., 2021). Next, we detail the
efforts making in pre-training for model initializa-
tion, data augmentation, consistency training and
model ensemble, which are used to improve the
translation quality of our system.

&3

Target waveform

Unit Hifigan
Vocoder
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Target unit
Unit
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Figure 1: The overall architecture of the end-to-end
S2ST system.

4.1.1 Pretrained Models

Previous experiences (Dong et al., 2022; Popuri
et al., 2022) shown that better initialization can
reduce learning difficulty, we explore pre-training
of both the speech encoder and unit decoder.

Speech Encoder Pre-training. We use Wav2vec
2.0 (Baevski et al., 2020) and HuBert (Hsu et al.,
2021), which are trained in a self-supervised man-
ner, as speech encoders. Due to the data limitation
of the S2ST track, we use the unlabeled speech
described in Table 1 for training speech encoder:

* Wav2vec 2.0 uses a multi layer convolution neu-
ral network to encode audio and then uses a
transformer-based context encoder to construct a
contextual representation. The model is trained
by having a masked span of contrast loss on the
input of the context encoder. In this paper, we
modify Transformer as Conformer to obtain bet-
ter performance.

HuBert has the same model architecture as
Wav2vec 2.0. However, its training process dif-
fers primarily in the use of cross-entropy and ad-
ditionally in the construction of targets through a
separate clustering process.

Unit Decoder Pre-training. We use the standard
sequence-to-sequence model to model the Text-to-
unit (T2U) task on GigaSS, and the decoder of



this model will be used for the initialization of the
unit decoder of S2UT. The T2U model contains
12 transformer layers for the encoder and coder,
respectively. More specifically, we set the size of
the self-attention layer, the feed-forward network,
and the head to 1024, 4096, and 8, respectively.

4.1.2 Model Finetuning

We combine the pre-trained speech encoder and
unit decoder, and adding a randomly initialized
length adapter between the pre-trained modules.
The length adapter consists of a one-dimensional
convolutional layer with a stride of 2, which miti-
gates the length difference between the source au-
dio and the reduced target unit, as well as the mis-
match between representations.

Consistency Training. To further improve the
consistency of our model, we employ the R-Drop
algorithm (Liang et al., 2021) with a weight « set to
5. The R-Drop algorithm reduces inconsistencies
predicted by the model between training and infer-
ence through dropout, thereby improving general-
ization. Specifically, it randomly drops out parts
of the model during training, forcing it to learn
more robust representations that are less sensitive
to small changes in the input. For a more detailed
description of the R-Drop algorithm and its imple-
mentation, please refer to the paper by (Liang et al.,
2021).

4.1.3 Unit-based Vocoder

We utilize the unit-based HiFi-GAN (Polyak et al.,
2021) vocoder to convert discrete units into wave-
form for the speech-to-unit model. Following
the (Lee et al., 2021a) setup, we augment the
vocoder with a duration prediction module for the
reduced unit output, which consists of two 1D con-
volutional layers, each with ReLLU activation, fol-
lowed by layer normalization and a linear layer.

4.1.4 Ensemble

Model ensemble can reduce the inconsistency of
the system to some extent, and we consider the
ensemble of four variants of S2UT models:

* W2V2-CONF-LARGE: The speech encoder is
initialized using Conformer-based Wav2vec 2.0
LARGE model. The unit decoder is initialized
randomly.

* W2V2-CONF-LARGE+T2U: The speech en-
coder is initialized using Conformer-based
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Wav2vec 2.0 LARGE model. The unit decoder is
initialized from the T2U model.

W2V2-TRANS-LARGE+T2U: The speech en-
coder is initialized using Transformer-based
Wav2vec 2.0 LARGE model. The unit decoder is
initialized from the T2U model.

HUBERT-TRANS-LARGE+T2U: The speech
encoder is initialized using Transformer-based
HuBert LARGE model. The unit decoder is ini-
tialized from the T2U model.

4.1.5 Data Augmentation

We utilize well trained Fastspeech2 (Ren et al.,
2020) TTS models (see Section 4.2 for details) to
generate speech for MuST-C and CoVoST Chinese
texts to construct pseudo-corpora. These pseudo-
corpora are used as training data together with the
original labeled S2ST corpus.

4.2 Experiments
4.2.1 Implementation Details

All end-to-end S2UT models are implemented
based on the FAIRSEQ® (Ott et al., 2019) toolkit.
We use pre-trained Chinese HuBERT model and
k-means model to encode Chinese target speech
into a vocabulary of 250 units. The Chinese Hu-
BERT and k-means models are learned from the
TTS data in Table 1. The architectural details of the
S2UT models are detailed in section 4.1.4. During
training, we use the adam optimizer with a learning
rate set to Se-5 to update model parameters with 8K
warm-up updates. The label smoothing and dropout
ratios are set to 0.15 and 0.2, respectively. In prac-
tice, we train S2UT with 8 Nvidia Tesla A100
GPUs with 150K update steps. The batch size in
each GPU is set to 1200K, and we accumulate the
gradient for every 9 batches. For the first 5K steps
of S2UT model training, we freeze the update of the
speech encoder. The Unit HiFi-GAN Vocoder is
trained using SPEECH-RESYNTHESISRES’ toolkit
for 500k steps. For FastSpeech2 and HiFi-GAN,
we followed the paddlespeech AISHELL recipe®
for training. During inference, we average the
model parameters on the 30 best checkpoints based
on the performance of the GigaSS dev set, and
adopt beam search strategy with beam size of 10.

6https://github.com/facebookresearch/fairseq

"https://github.com/facebookresearch/
speech-resynthesis

8https://github.com/PaddlePaddle/PaddleSpeech/
tree/develop/examples/aishell3/tts3
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ID Model BLEU chrF
1 W2V2-CONF-LARGE 277 234
2 W2V2-CONF-LARGE+T2U 27.8 23.7
3 W2V2-TRANS-LARGE+T2U 252 223
4 HUBERT-TRANS-LARGE+T2U 26.2 232
5 HUBERT-TRANS-LARGE+T2U* 257 22.6
6 Ensemble(1, 2, 4) 28.0 239
7 Ensemble(2, 4, 5) 272  23.0

Table 4: ASR-BLEU and ASR-chrF on GigaSS valida-
tion set. “*’ indicates adding the GigaST test set to the
training data and fine-tuning it for one round.

4.2.2 Results

To evaluate the speech-to-speech translation sys-
tem, we use a Chinese ASR system’ trained on
WenetSpeech (Zhang et al., 2021) to transcribe
the speech output with the ctc_greedy_serach
mode. Based on this, we report case-sensitive
BLEU and chrF scores between the produced tran-
script and a textual human reference using sacre-
BLEU. The results on the GigaSS validation set
is shown in Table 4. Comparing W2V2-CONF-
LARGE+T2U and W2V2-TRANS-LARGE+T2U,
using Conformer-based architecture pre-trained
speech encoder for initialization has better perfor-
mance. In addition, we find that adding the GigaST
test set to training leads to a weak performance
degradation on the validation set, possibly because
the annotations of the test set are calibrated by hu-
mans and their style differs from that of the training
data.

5 Conclusion

This paper presents the MINETRANS system for
two challenge tracks of the IWSLT 2023: Offline
Speech Translation (S2T) and Speech-to-Speech
Translation (S2ST). For the S2T track, MINE-
TRANS employs a cascaded system to investigate
the limits of translation performance in both con-
strained and unconstrained settings. We explore
two machine translation strategies: supervised in-
domain fine-tuning and prompt-guided translation
using a large language model. For the S2ST track,
MINETRANS builds an end-to-end model based on
the speech-to-unit (S2U) framework. To the best
of our knowledge, we are the first and only team to
successfully train and submit the end-to-end S2ST

https://github.com/wenet-e2e/wenet/blob/main/
docs/pretrained_models.en.md
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on this track. This model uses our trained Hu-
BERT to encode the target speech as discrete units
and leverages the standard sequence-to-sequence
model to directly learn the mapping between source
speech and discrete units without the need for auxil-
iary recognition tasks such as ASR and MT. We use
several techniques to improve MINETRANS’s per-
formance, including speech encoder pre-training
on large-scale data, data filtering, data augmen-
tation, speech segmentation, consistency training,
and model ensemble.
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