JHU IWSLT 2023 Dialect Speech Translation System Description

Amir Hussein  Cihan Xiaof
Matthew Wiesner*

Neha Verma'
Sanjeev Khudanpur'

Thomas Thebaud'

Center for Language and Speech Processing, and
' Human Language Technology Center of Excellence,
Johns Hopkins University
{ahussei6, cxiao7, nverma7, tthebaul, wiesner, khudanpur}@jhu.edu

Abstract

This paper presents JHU’s submissions to the
IWSLT 2023 dialectal and low-resource track
of Tunisian Arabic to English speech transla-
tion. The Tunisian dialect lacks formal orthog-
raphy and abundant training data, making it
challenging to develop effective speech trans-
lation (ST) systems. To address these chal-
lenges, we explore the integration of large pre-
trained machine translation (MT) models, such
as mBART and NLLB-200 in both end-to-end
(E2E) and cascaded speech translation (ST) sys-
tems. We also improve the performance of au-
tomatic speech recognition (ASR) through the
use of pseudo-labeling data augmentation and
channel matching on telephone data. Finally,
we combine our E2E and cascaded ST systems
with Minimum Bayes-Risk decoding. Our com-
bined system achieves a BLEU score of 21.6
and 19.1 on test2 and test3, respectively.

1 Introduction

The performance of machine translation systems is
closely tied to the amount of available training data.
Regional dialects, which are less prevalent and pri-
marily spoken languages, pose a challenge for these
systems due to the scarcity of digital data, the ab-
sence of standard orthography, and prevalence of
non-standard grammar. The IWSLT 2023 dialect
and low-resource track focuses these challenges.
In this paper we present the JHU Tunisian Arabic
to English speech translation systems submitted to
the IWSLT 2023 dialectal and low-resource track
(Agarwal et al., 2023). Arabic and its dialects form
a dialect continuum anchored by Modern Standard
Arabic (MSA) (Badawi et al., 2013). While MSA
is the language of formal and written communi-
cation, most native Arabic speakers colloquially
use local dialects, which often lack a standardized
written form. In many North African Arabic di-
alects, including Tunisian, there is a significant
code-switching with and borrowing from several

contact languages: Berber and Romance languages
like French, Spanish and Italian.

Recent successes in machine translation (MT)
of text for low-resource languages or non-standard
dialects have entailed the use of large pretrained
models such as mBART (Liu et al., 2020a) and
NLLB (NLLB Team et al., 2022). These models
have demonstrated state-of-the-art performance via
transfer learning from higher-resource languages,
particularly through related languages. However,
there is a lack of understanding regarding how to ef-
fectively integrate these models with speech recog-
nition systems to develop speech translation sys-
tems. To fill this gap we investigate dialect transfer
by integrating large pretrained models with speech
recognition models in end-to-end (E2E) and cas-
caded speech translation (ST) systems. The key
components of our system are:

* Dialectal transfer from large pre-trained mod-
els to improve translation in both E2E and
Cascaded ST settings (§3.1,8§3.2).

* Improved ASR of dialectal speech by reduc-
ing orthographic variation in training tran-
scripts, and by channel matching (§3.1.1).

* System combination with Minimum Bayes-
Risk decoding based on the COMET similar-
ity metric (§3.3).

Our system outperforms the best previous ap-
proaches (Yang et al., 2022; Yan et al., 2022) for
both ASR (WER) and ST (BLEU). We also found
that integrating pre-trained MT models into end-to-
end ST systems did not improve performance.

2 Dialect Speech Translation Task

The dialect speech translation task permitted sub-
missions using models trained under two data con-
ditions, (A) constrained and (B) unconstrained. For
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Condition ASR

MT

(A) Basic telephone speech

166 hours of manually transcribed Tunisian

212K lines of manual English translation
of the Tunisian transcripts

(B) Unconstrained

1200 hours of Modern Standard Arabic
broadcast speech (MGB-2) (Ali et al., 2016).
250 hours of Levantine Arabic telephone
conversations (LDC2006529', LDC2006T07%)

Any other English, Arabic dialects,
or multilingual models
beyond English and Arabic

Table 1: Data used for constrained and unconstrained conditions.

brevity, we will refer to these conditions as (A) and
(B) respectively.

2.1 Data description

The data we used for the conditions (A) and (B)
are listed in Table 1, and sizes of the training,
development-testing and test partitions are listed in
Table 2. The development and test sets for Tunisian
data are provided by the organizers of IWLST 2023.
The data is 3-way parallel: Tunisian Arabic tran-
scripts and English translations are available for
each Tunisian Arabic audio utterance. We use the
development set for model comparison and hyper-
parameter tuning, and the test1 set for evaluating
our ST systems. Finally, the task organizers pro-
vided blind evaluation (test2, test3) sets for final
comparison of submissions.

ASR (hours) | MT (lines)
train (condition A) | 160 ~202k
train (condition B) | 1200+160+250 | -
dev 3.0 3833
testl 33 4204
test2 3.6 4288
test3 35 4284

Table 2: Details for train, dev and testl sets for con-
strained condition (A) and unconstrained condition (B).

3 Methods

In this section we describe our cascaded (§3.1),
and end-to-end (E2E) (§3.2) speech translation sys-
tems as well as our strategy for combining both
approaches (§3.3).

3.1 Cascaded ASR-MT

3.1.1 Automatic Speech Recognition

To train ASR models for E2E and cascaded sys-
tems, we use the ESPnet (Watanabe et al., 2018)
toolkit. Our ASR architecture uses a Branchformer
encoder (Peng et al., 2022), a Transformer de-
coder (Vaswani et al., 2017) and follows the hy-

"https://catalog.1dc.upenn.edu/LDC2006529
Zhttps://catalog.ldc.upenn.edu/LDC2006T07

brid CTC/attention (Watanabe et al., 2017) ap-
proach. Each Branchformer encoder block consists
of two branches that work in parallel. One branch
uses self-attention to capture long-range dependen-
cies while the other branch uses a multi-layer per-
ceptron with convolutional gating (Sakuma et al.,
2021) to capture local dependencies. To mitigate
orthographic variations (or inconsistencies) in the
ASR transcripts, we augment the training data
during the fine-tuning stage by reusing the audio
training samples paired with their ASR transcripts,
which tend to be orthographically more consistent.
We refer to this approach as pseudo-labeling.

Condition (A). We train the ASR model de-
scribed previously using the constrained Tunisian
Arabic audio and transcripts.

Condition (B). The ASR Branchformer in this
condition is pretrained on our MGB-2 standard Ara-
bic data (Ali et al., 2016) and then fine-tuned on the
provided Tunisian Arabic data. The MGB-2 MSA
data differ from the Tunisian data in channel, and
dialect. Since the Tunisian data are telephone con-
versations sampled at 8kHz, we downsample the
MGB-2 speech from 16kHz to 8kHz, which we pre-
viously found was more effective than upsampling
the telephone conversations to 16kHz (Yang et al.,
2022). We also added additional telephone speech
from the Levantine Arabic dialect (Maamouri et al.,
2006). Note that Levantine Arabic is very different
from Tunisian, and the hope here is to benefit from
matched genre and channel conditions, not dialect.

We did not explicitly attempt to reduce the di-
alect mismatch. However, we mitigated some of
the spurious orthographic variations in transcripts
of dialectal speech by using pseudo-labels for train-
ing instead of of the manual transcripts, as noted
above, in the final fine-tuning step.

3.1.2 Machine Translation

Condition (A). We train an MT model on
Tunisian Arabic transcripts paired with their En-
glish translations. The MT architecture is similar to
§3.1.1 model architecture, and uses a Branchformer
encoder and Transformer decoder.
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Condition (B). We experiment with two main
pre-trained models: mBART and NLLB-200. In
the first setting, we use the mBART25 model,
which was shown to be slightly better for MSA ver-
sus the newer mBART50 model (Liu et al., 2020a;
Tang et al., 2020). mBART?2S5 also contains French,
Turkish, Italian, and Spanish, all of which con-
tribute loanwords to Tunisian (Zribi et al., 2014).
Although these loanwords are transcribed in the
Arabic script in our data, there is prior evidence
that multilingual language models can benefit from
cross-lingual transfer even between different scripts
of the same language (Pires et al., 2019).

For NLLB-200, we use the distilled 1.3 billion
parameter version of the model, due to space con-
straints. This model is a dense Transformer dis-
tilled from the original NLLB-200 model, which is
a 54 billion parameter Mixture-of-Experts model
that can translate into and out-of 200 different
languages. We note that this model supports
Tunisian Arabic, the aforementioned contact lan-
guages, MSA, as well as other closely related
Maghrebi dialects (Moroccan, Egyptian, Maltese).
The breadth of language coverage seen during the
training of NLLB-200 makes this model an attrac-
tive choice for a dialect speech translation task.

We fine-tune these models on the provided ~
200K lines of Tunisian Arabic-English data. The
source side is normalized as described in Section
4. We preprocess all data with the provided pre-
trained sentencepiece vocabularies released with
the models with no pre-tokenization. Results on
MT systems are included in Table 8.

3.2 End-to-End Speech Translation

For the constrained condition we adopt the hierar-
chical multi-decoder architecture proposed by (Yan
et al., 2022).

Condition (A). The system consists of a multi-
task learning approach, which combines ASR and
MT sub-nets into one differentiable E2E system
where the hidden representation of the speech de-
coder is fed as input to the MT encoder. Addition-
ally, the authors proposed using a hierarchical MT
encoder with an auxiliary connectionist temporal
classification (CTC) loss on top of the speech en-
coder. The MT decoder performs cross-attention
over both the speech encoder and MT encoder rep-
resentations. The ASR module is initialized with
a Branchformer trained on the Tunisian data. In
this part, we explore the effect of text normaliza-

tion on the E2E-ST system and pre-trained MT
initialization.

Condition (B). For the unconstrained condition,
we propose a novel E2E-ST system that incorpo-
rates the combination of a pretrained ASR mod-
ule and a pretrained MT module. Specifically, we
combine the Branchformer ASR module described
in Section 3.1, with mBART (Liu et al., 2020b),
which was fine-tuned on Tunisian data. We modify
the ESPnet ST recipe to incorporate the mBART
model trained by the fairseq (Ott et al., 2019) frame-
work. The architecture of the model is shown in
Figure 1. In contrast to the modified Hierarchical
Multi-Decoder architecture for Condition (A), to
fully exploit the effect of MT pretraining, we re-
moved the speech attention from the MT decoder
that attends to the hierarchical encoder’s hidden
representations.

Specifically, the ASR encoder module in the pro-
posed architecture takes in a sequence of audio
features x1, 2, - - - , 7 and generates a sequence
of hidden representations with length N, optimized
with respect to the ASR CTC objective. The ASR
decoder takes in the ASR encoder’s hidden rep-
resentations and autoregressively produces a se-
quence of logits with length L trained by the label-
smoothing loss. The hierarchical speech encoder
module is trained directly by the ST CTC loss for
generating auxiliary frame-level labels in the tar-
get language to aid the ST decoding process. The
primary innovation of the proposed system lies
in the fully-connected layer that maps the ASR
decoder’s output hidden representations to some
representations that resemble mBART’s encoder’s
embedding layer’s outputs, making the full sys-
tem differentiable. The ST encoder subsequently
encodes the input representations and feeds them
into its decoder. The ST decoder, slightly differ-
ent from the vanilla mBART decoder, optionally
runs hybrid/joint CTC decoding at inference time,
with the ST-CTC auxiliary labels and the autore-
gressively generated ST outputs with target length
M,ie. yfT, ygT, S ,y}?}.

3.3 System Combination

We perform a system combination across 5 of our
systems: best constrained end-to-end system, best
unconstrained end-to-end system, best cascaded
system, and 2 additional cascaded systems (Fer-
nandes et al., 2022). The two additional systems
use the ASR produced by our end-to-end systems,
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Figure 1: E2E model architecture with mBART MT module. The fully-connected (FC) layer applies a linear
transformation to the ASR decoder’s final hidden representation, which is then used to replace mBART’s encoder’s

embedding layer’s output.

and the same NLLB-200 MT component as in our
best cascaded system. In Table 6, the 5 combined
systems are referred to as A3, B1, B3, B4, and BS,
in order.

3.3.1 Minimum Bayes Risk

We applied Minimum Bayes Risk decoding (Ku-
mar and Byrne, 2004) to combine the hypotheses
produced by five systems. For a given speech ut-
terance x;, and for a given system séj (j € Sand

f; the set of parameters used by the 4% trained
system), we can define the translation hypothesis
asy] = fgj (z;) and p] be the probability that the

hypothesis yi would be outputted. We use this
probability as a self-confidence score. Let £ be
similarity metric used to compare two hypothesis,
outputting a scalar that rises if the two hypothesis
are more similar. Then, for a given speech utter-
ance x;, and for a given set of systems S, we define
the best output as the one minimizing the distance
with others while having the highest confidence:

g =max Y pl Y Ll yk)

Yi jeF keF

()

3.3.2 Variations of MBR

Baseline MBR For our first combination, we
compute the outputs according to the MBR using
the BLEU score of sacrebleu (Post, 2018a) as the
L similarity metric and the posterior probabilities
p! used are the log-likelihood ratios given by the
end-to-end systems and the MT systems.

Unscored MBR  For our second combination, we
use the same technique but with a constant p] = 1

for every system, as a simplified version of the
Generalized MBR (Duh et al., 2011).

COMET-MBR For our third combination, we
utilized the comet-mbr framework, which employs
the COMET score between the source and hypothe-
sis as the similarity metric (L), using same equation
(1), without the use of posterior probabilities (Fer-
nandes et al., 2022). We used wmt20-comet-da
for MBR scoring (Rei et al., 2020). Despite
Tunisian Arabic not being a COMET-supported
language, we observed an improvement compared
to our single best system, suggesting that this ap-
proach may extend to dialects of languages covered
by COMET.

4 Experiments

In this section, we describe our experiments on the
ASR, MT, and ST tasks. In order to reduce the
orthographic variation in the Tunisian speech tran-
scription we performed additional text normaliza-
tion similar to (Yang et al., 2022) which showed sig-
nificant improvements on ASR, MT and ST tasks.
The normalization is performed on both Tunisian
and MSA transcripts and includes removing dia-
critics and single character words, and Alif/Ya/Ta-
Marbuta normalization (see (Yang et al., 2022) for
more details).

4.1 ASR

First we augment the raw audio segments by ap-
plying speed perturbation with three speed factors
of 0.9, 1.0 and 1.1 (Ko et al., 2015). Then we
transform the augmented audio to a sequence of
83-dimensional feature frames for the E2E model;
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80-dimensional log-mel filterbank coefficients with
3 pitch features (Ghahremani et al., 2014). We nor-
malize the features by the mean and the standard
deviation calculated on the entire training set. In ad-
dition, we augment the features with specaugment
approach (Park et al., 2019), with mask parameters
(mT,mF,T,F) = (5,2,27,0.05) and bi-cubic
time-warping. The E2E Branchformer-based ASR
model was trained using Adam optimizer for 50
epochs with dropout-rate 0.001, warmup-steps of
25000 for condition (A) and 40000 for condition
(B). The BPE vocabulary size is 500 for condition
(A) and 2000 for condition (B). Table 3 summa-
rizes the best set of parameters that were found for
the Branchformer architecture. We note here that
the Branchformer has 28.28 M parameters, which
is approximately one-fourth the number of parame-
ters in the Conformer (Yang et al., 2022), which is
116.15 M.

Attheads | CNN | Enc layers | Dec layers | d* FF
4 31 12 6 256 | 2048

Table 3: Values of condition (A) and (B) hyperparame-
ters CNN: refers to CNN module kernel, Att: attention,
Enc: encoder, Dec: decoder, and FF: fully connected
layer

MGB2-tune: the pretrained model on MGB-2
is fine-tuned on Tunisian data from condition (A)
by updating all model parameters with 1/10 of
the learning rate that was used during the training
similar to (Hussein et al., 2021). In addition, we
examine the effect of adding ASR outputs to the
ground truth source during finetuning (pseudo la-
beling ) and adding additional telephone data (Tel).
The ASR results are summarized in Table 4 and
compared to the state-of-the-art conformer results
from (Yang et al., 2022). The MD refers to the
hierarchical multi-decoder ST architecture adopted
from (Yan et al., 2022), and MD-ASR refers to the
ASR sub-module of the ST. It can be observed that
the Branchformer provides slightly better results
compared to the previous best conformer with simi-
lar size on both conditions (A) and (B). In addition,
it can be also seen that pseudo labeling provides
2% relative improvement. We found that there is a
high inconsistency between different transcribers
since there is no standard orthography in Tunisian
dialect. By incorporating the ASR predictions in
this way, we aim to provide the model with more
examples of the Tunisian dialect and help it better
generalize to variations in the spoken language. To

| dev  testl test2 test3

ASR-ID  Model ‘ WER ()

Al Conformer (Yang et al., 2022) 40.8 44.8 43.8

A2 Branchformer 40.1 445 -

Bl MGB2-tune (Yang et al., 2022) | 38.8 43.8 42.8

B2 MGB2-tune Branchformer 38.3 431 -

B3 + Pseudo 375 426 - -
B4 + Tel 36,5 417 40.6 41.6
B5 E2E-MD-ASR 40.6 45.1 43.7 449
B6 E2E-mBART-ASR 377 432 415 42.6

Table 4: WER (%) of ASR models on deyv, testl, test2
and test3 sets. A* and B* IDs are the ASR models devel-
oped under condition (A) and condition (B) respectively.
BS5 refers to the ASR submodule of the MD-ASR sys-
tem under the constrained condition and B6 refers to
the ASR sub-module of the E2E-mBART system both
described in Section 3.2.

BW (REF/HYP) Arabic English Translation
69: Ayh / Ay VR yes
61: Ay / Ayh /<l yes
18: Akhw /khw | 5g7 451 it's
17: khw / Akhw | o451/ o485 it’s
8: gdwA / gdwh BJ._&-/ 0gAs tomorrow
7: gdwh/ gdwA | ogus/ \j.)& tomorrow

Table 5: Top 6 substitutions with inconsistencies for
ASR system transliterated using Buckwalter (BW). The
number of times each error occurs is followed by the
word in the reference and the corresponding hypothesis.

confirm this hypothesis we take a closer look at
the most frequent top four substitutions shown in
Table 5. The words are transliterated using Buck-
walter transliteration (BW)? to make it readable for
non-Arabic speakers. It can be seen that the ASR
substitutions are present in both hypothesis and as
correct reference which indicates that the assump-
tion of reference inconsistency holds true. Finally,
channel matching using more telephone data pro-
vides an additional 2.5% relative improvement.

42 MT

We train the MT models as described in Section
3.1.2. For condition (A) the MT system parameters
are shown in Table 7. In this condition, our MT
system is finetuned on the training Tunisian data
where the source data is mixed with ASR outputs,
in order to be more robust to noisy source data. We
use 5000 Byte-pair encoding (BPE) units shared
between Tunisian Arabic and English. We train

3https: //en.wikipedia.org/wiki/Buckwalter_
transliteration
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Pretrained ‘

dev testl test2 test3

ST-ID Type ASR MT | BLEU (1) BLEU () BLEU (1) BLEU (1)
Al Cascade A2 A3 18.9 15.6 - -
A2 E2E-MD (Yan et al., 2022) A2 - 20.6 17.1 - -
A3 E2E-MD-+norm A2 - 20.7 17.5 19.1 17.6
Bl E2E-mBART B4 B2 20.7 17.5 17.5 17.1
B2 Cascade-mBART B4 B2 20.9 17.9 - -
B3 Cascade-Base-NLLB200 B4 B3 22.2 19.2 21.2 18.7
B4 Cascade-B5-ASR-NLLB200 B5 B3 21.1 18.3 19.9 18.2
B5 Cascade-B6-ASR-NLLB200 B6 B3 22.2 18.8 20.7 18.3
B6 MBR with scores - - 21.7 18.8 18.7 17.1
B7 MBR no scores - - 22.7 19.6 20.6 18.8
B8 comet-mbr - - 22.7 19.6 21.6 19.1

Table 6: Results of cascaded, E2E, and combined systems measured by BLEU score on the dev, testl, test2 and
test3. E2E-MD is the hierarchical multi-decoder described in (§3.2). Norm indicates the use of text normalization
(84) which is used with all systems except A2. The pretrained indicates the use of pretrained ASR and MT systems
from Tables(8,4). A* and B* IDs are the models developed under condition (A) and condition (B) respectively

layers | embed-dim | FF-embed | att-heads
Encoder 6 256 1024 4
Decoder 6 256 2048 4

Table 7: Values of constrained MT system parameters
Enc: encoder, Dec: decoder, and FF: feed-forward

dev testl
MT-ID Model Type Model Size BLEU (1) BLEU (1)
Al Transformer (Yang et al., 2022) 24.5 21.5
A2 Transformer Espnet 13.63M 235 19.9
A3 Branchformer Espnet 16.81 M 25.0 21.4
B1 Transformer (Yang et al., 2022) 29.0 25.0
B2 mBART 610M 29.2 24.6
B3 NLLB-200 1.3B 30.5 26.4

Table 8: BLEU scores of various MT models using the
gold reference transcripts. A* and B* IDs are the MT
models developed under condition (A) and condition
(B) respectively.

with the Adam optimizer; the maximum learning
rate is 3e-03, attained after 20000 warm-up steps,
and then decayed according to an inverse square
root scheduler; we use dropout probability of 0.3;
the model is trained for 200 epochs. For condition
(B), for both NLLB-200 and mBART?25, we fine-
tune our model for up to 80000 updates and use
loss to select our best model checkpoint. We use
sacrebleu to compute the case-insensitive BLEU
scores for all evaluation sets (Papineni et al., 2002;
Post, 2018b) as shown in Table 8. The comparative
analysis of our Espnet MT transformer with the
best MT models reported in previous works based
on Fairseq transformer (Yang et al., 2022) reveals
a noticeable performance lag of up to -1.6 in ab-
solute BLEU. However, incorporating the Branch-

former module yields similar performance to the
best Fairseq model. Finally finetuning NLLB-200
MT achieves the best results in the unconstrained
category with 30.5 and 26.4 BLEU scores.

43 ST

Table 6 presents the results of our submitted cas-
caded and E2E ST systems. The pretrained column
refers to the pretrained ASR and MT systems from
Tables (4, 8). B1 denotes the end-to-end ST with
B4 ASR and B2 mBART under the unconstrained
condition, as described in Section 3.2. The E2E-
MD is a hierarchical multi-decoder architecture
described in Section 3.2, where the MT compo-
nent is trained from scratch. The cascaded ST
systems, Cascade-Base-NLLB200, Cascade-B5-
ASR-NLLB200 and Cascade-B6-ASR-NLLB200,
utilize the best MT model (NLLB200 B3) and
ASR submodules including branchformer (B4),
branchformer finetuned in E2E-MD setup (B5) and
branchformer finetuned in with mBART setup (B6)
respectively from Table 4.

It can be seen that the E2E-multidecoder archi-
tecture outperforms the cascaded system in the con-
strained condition, with a significant improvement
of up to +1.7 in absolute BLEU. Text normalization
provides additional boost of +0.4 in absolute BLEU.
On the other hand for the unconstrained system, we
observe that the cascaded system B2 outperforms
the E2E B1 by up to 0.4 in absolute BLEU that
utilizes identical submodules. The reason for this
performance difference may be attributed to the
inability of the input linear layer that was added
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to the MT encoder in the E2E setup (B1) to adjust
the length of the ASR output to match the length
of the mBART encoder’s tokenization. This length
discrepancy may lead to a loss of crucial infor-
mation during the integration of the two modules,
ultimately resulting in a degradation of overall per-
formance. Further analysis is required to confirm
this hypothesis and to identify potential solutions
to address this issue. The highest performance
of single ST system is obtained using Cascade-
NLLB200-1.3B with BLEU of 21.2 and 18.7 on
test2 and test3 respectively. Finally, we combine
A3, B1, B3, B4 and B5 with comet-mbr which
achieves the highest BLEU scores of 21.6 and 19.1
on test2 and test3 respectively.

5 Conclusion

In this paper, we have presented our submission
for the IWSLT 2023 dialect speech translation
task. We compared end-to-end to cascaded sys-
tems under constrained and unconstrained condi-
tions. We found that an E2E-ST system outper-
formed the cascaded system under the constrained
condition, while the cascaded models significantly
outperformed the E2E-ST systems under the un-
constrained condition. We provided a new E2E-
ST baseline combining large pretrained MT with
ASR under the unconstrained condition. Finally,
we demonstrated that pseudo-labeling and channel
matching provided significant improvements for
the ASR and hence improved cascaded ST systems.
In future work we plan to explore more effective
ways of integrating the large pretrained MT models
into E2E ST systems.
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