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Abstract

This paper describes CMU’s submission to
the IWSLT 2023 simultaneous speech transla-
tion shared task for translating English speech
to both German text and speech in a stream-
ing fashion. We first build offline speech-to-
text (ST) models using the joint CTC/attention
framework. These models also use WavLM
front-end features and mBART decoder initial-
ization. We adapt our offline ST models for
simultaneous speech-to-text translation (SST)
by 1) incrementally encoding chunks of input
speech, re-computing encoder states for each
new chunk and 2) incrementally decoding out-
put text, pruning beam search hypotheses to 1-
best after processing each chunk. We then build
text-to-speech (TTS) models using the VITS
framework and achieve simultaneous speech-
to-speech translation (SS2ST) by cascading our
SST and TTS models.

1 Introduction

In this paper, we present CMU’s English to Ger-
man simultaneous speech translation systems. Our
IWSLT 2023 (Agarwal et al., 2023) shared task
submission consists of both simultaneous speech-
to-text (SST) and simultaneous speech-to-speech
(SS2ST) systems. Our general strategy is to first
build large-scale offline speech translation (ST)
models which leverage unpaired speech data, ASR
data, and ST data. We then adapt these offline
models for simultaneous inference. Finally, we
use a text-to-speech model to achieve SS2ST in a
cascaded manner.

In particular, our system consists of:

1. Offline ST using joint CTC/attention with self-
supervised speech/text representations (§3.1)

2. Offline-to-online adaptation via chunk-based en-
coding and incremental beam search (§3.2)

3. Simultaneous S2ST by feeding incremental text
outputs to a text-to-speech model (§3.3)

2 Task Description

The IWSLT 2023 simultaneous speech translation
track1 is a shared task for streaming speech-to-
text and speech-to-speech translation of TED talks.
This track mandates that systems do not perform
re-translation, meaning that the streaming outputs
cannot be edited after the system receives more
input audio. Systems are required to meet a par-
ticular latency regime: SST systems must have <2
seconds average lagging (AL) and SS2ST systems
must have <2.5 seconds start offset (SO) (Ma et al.,
2020).

Of the allowed training data, we selected a sub-
set of in-domain data to train our ASR and ST
models: for ASR we use TEDLIUM v1 and v2
(Zhou et al., 2020) and for ST we used MuST-
C v2 (Di Gangi et al., 2019). We also use a set
of cross-domain data to train our MT and TTS
models due to the lack of in-domain data: for
MT we use Europarl, NewsCommentary, Open-
Subtitles, TED2020, Tatoeba, and ELRC-CORDIS
News (Tiedemann et al., 2020). For TTS we use
CommonVoice (Ardila et al., 2020). The following
section describes how each of the ASR, ST, MT,
and TTS components fit together in our ultimate
systems.

3 System Description

3.1 Offline Speech Translation (ST)
As shown in Figure 1, our offline ST models
are based on the joint CTC/attention framework
(Watanabe et al., 2017; Yan et al., 2023a). Com-
pared to a purely attention-based approach, joint
CTC/attention has been shown to reduce the soft-
alignment burden, provide a positive ensembling
effect, and improve the robustness of end-detection
during inference (Yan et al., 2023a).

To leverage unpaired speech data, we use first
use WavLM representations (Chen et al., 2022) as

1https://iwslt.org/2023/simultaneous
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Figure 1: Offline ST model architecture based on the
joint CTC/attention framework with a WavLM front-
end and mBART decoder.

front-end features to train ASR models. In these
models, a pre-encoder module (Chang et al., 2021)
applies feature dimension down-sampling and a
learned weighted combination of WavLM layers be-
fore feeding to a Conformer encoder (Gulati et al.,
2020). The pre-encoder and encoder modules from
ASR are then used to initialize our ST models.

To leverage unpaired text data, we use the
mBART decoder (Tang et al., 2020) as an initial-
ization for our ST models. Following (Li et al.,
2020), we freeze all feed-forward layers during
fine-tuning and use a post-encoder down-sampling
layer to reduce the computational load.

We fine-tune our ST models using the follow-
ing interpolated loss function: L = λ1LASR_CE +
λ2LASR_CTC + λ3LST_CE + λ4LST_CTC. Here, the
cross-entropy (CE) losses are used to train atten-
tional decoders. Note that in Figure 1, we omit
the ASR attentional decoder and CTC components
as these function as training regularizations and
do not factor into the inference proceedure. We
perform fine-tuning on in-domain data consisting
primarily of MuST-C (Di Gangi et al., 2019).

To leverage additional in-domain data, we apply
MT pseudolabeling to TEDLIUM ASR data (Zhou
et al., 2020). We also use the same MT model
to apple sequence-level knowledge distillation to
the MuST-C data. The MT model is a pre-trained
DeltaLM-large (Ma et al., 2021) fine-tuned on the
corpora listed in Section 2. The pseudo-labels and
distilled sequences were then translated from En-
glish to German using a beam size of 10.

3.2 Simultaneous Speech Translation (SST)

We adapt our offline ST model for streaming infer-
ence by using a chunk-based processing of input

Figure 2: Incremental encoding strategy which pro-
cesses chunks of input speech by re-computing repre-
sentations corresponding to earlier chunks.

Algorithm 1 Beam search step with rewinding of
unreliable hypotheses on non-final chunks and in-
cremental pruning upon end-detection.
1: procedure BEAMSTEP(hyps,prevHyps, isFinal)
2: newHyps = {}; endDetected = False
3: for y1:l−1 ∈ prtHs do
4: attnCnds = top-k(PAttn(yl|X, y1:l−1), k = p)
5: for c ∈ attnCnds do
6: y1:l = y1:l−1 ⊕ c
7: αCTC = CTCScore(y1:l, X1:T )
8: αAttn = AttnScore(y1:l, X1:T )
9: β = LengthPen(y1:l)

10: PBeam(y1:l|X) = αCTC + αAttn + β
11: newHyps[y1:l] = PBeam(·)
12: if (!isFinal) and (c is <eos> or repeat) then
13: endDetected = True
14: newHyps = prevHyps ▷ rewind
15: else if l is maxL then
16: endDetected = True
17: end if
18: end for
19: end for
20: if endDetected then ▷ incremental pruning
21: newHyps = top-k(PBeam(·), k = 1)
22: else ▷ standard pruning
23: newHyps = top-k(PBeam(·), k = b)
24: end if
25: return newHyps, endDetected
26: end procedure

speech. As shown in Figure 2, our scheme uses a
fixed duration (e.g. 2 seconds) to compute front-
end and encoder representations on chunks of in-
put speech. With each new chunk, we re-compute
front-end and encoder representations using the
incrementally longer input speech.

To produce incremental translation outputs, we
apply several modifications to the offline joint
CTC/attention beam search. As shown in Algo-
rithm 1, we run beam search for each chunk of
input. Unless we know that the current chunk is the
final chunk, we perform end-detection using the
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MODEL QUALITY LATENCY

OFFLINE SPEECH TRANSLATION (ST) BLEU ↑ -

Multi-Decoder CTC/Attn (Yan et al., 2023b) 30.1 - -
WavLM-mBART CTC/Attn (Ours) 32.5 - -

SIMUL SPEECH TRANSLATION (SST) BLEU ↑ AL ↓ LAAL ↓
Time-Sync Blockwise CTC/Attn (Yan et al., 2023b) 26.6 1.93 1.98
WavLM-mBART CTC/Attn (Ours) 30.4 1.92 1.99

SIMUL SPEECH-TO-SPEECH TRANSLATION (SS2T) ASR-BLEU ↑ SO ↓ EO ↓
WavLM-mBART CTC/Attn + VITS (Ours) 26.7 2.33 5.67

Table 1: Results of our English to German ST/SST/SS2ST models on MuST-C-v2 tst-COMMON.

heuristics introduced by (Tsunoo et al., 2021). If
any of the hypotheses in our beam propose a next
candidate which is the special end-of-sequence to-
ken or a token which already appeared in the hy-
pothesis, then this strategy determines that the out-
puts have likely covered all of the available input.
At this point, the current hypotheses should be con-
sidered unreliable and thus the algorithm rewinds
hypotheses to the previous step.

After the end has been detected within the cur-
rent chunk, we prune the beam to the 1-best hypoth-
esis and select this as our incremental output – this
pruning step is necessary to avoid re-translation.
When the next input chunk is received, beam search
continues from this 1-best hypothesis.

3.3 Simultaneous Speech-to-Speech
Translation (S2ST)

Simultaneous S2ST model is created by feeding in-
cremental text outputs to a German text-to-speech
model. We use end-to-end TTS model VITS (Kim
et al., 2021) and train a single speaker German TTS
model using CommonVoice dataset(Ardila et al.,
2020). VITS consists of text-encoder, flow based
stochastic duration predictor from text, variational
auto-encoder for learning latent feature from au-
dio and generator-discriminator based decoder for
generating speech from latent feature. We use char-
acter as input to the TTS model.

We select a suitable speaker from CommonVoice
German dataset and train single speaker TTS. As
CommonVoice may contain many noisy utterances
which can hurt performance of TTS, we use data-
selection for high-quality subset. The data selec-
tion process involves identifying the speaker who
has the highest number of utterances with high
speech quality. To determine the speech quality, we

use speech enhancement metric DNSMOS (Reddy
et al., 2021) which provides an estimation of the
speech quality. We evaluate the speech quality for
the top five speakers with the largest number of
utterances. To establish the high-quality subset,
we set a threshold of 4.0 for selecting sentences
that meet the desired quality level. Based on this
criterion, we choose the second speaker, who has
approximately 12 hours of high-quality data.

Finally, we combine our trained German TTS
model with SST module during inference. We feed
incremental translation text outputs to TTS and
synthesize translated speech.

4 Experimental Setup

Our models were developed using the ESPnet-ST-
v2 toolkit (Yan et al., 2023b). Our ST/SST model
uses WavLM-large as a front-end (Chen et al.,
2022). A linear pre-encoder down-samples from
1024 to 80 feature dim. Our encoder is a 12 layer
Conformer with 1024 attention dim, 8 attention
heads, and 2048 linear dim (Gulati et al., 2020).
A convolutional post-encoder then down-samples
along the length dimension by a factor of 2. Our de-
coder follows the mBART architecture and we ini-
tialize using the mBART-large-50-many-to-many
model (Tang et al., 2020). Our ST CTC branch uses
the same 250k vocabulary as the mBART decoder
to enable joint decoding. Our TTS model consists
of 6 transformer encoder layers for text-encoder, 4
normalizing flow layers for duration predictor, 16
residual dilated convolutional blocks as posterior
encoder and multi-period HiFiGan (Kong et al.,
2020) style decoder. We train VITS model for
400 epochs with AdamW (Loshchilov and Hutter,
2019) optimizer.

During inference, we use a chunk size of 2 sec-
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onds for SST and 2.5 seconds for SS2ST. For both
SST and SS2ST we use beam size 5, CTC weight
0.2, and no length penalty/bonus. To account for
incremental outputs which end in a prefix of a word
rather than a whole word, we delay outputs for scor-
ing by 1 token. There are two exceptions to this
token delay: if the last token is a valid German
word or a punctuation, then we do not delay.

We evaluate translation quality using BLEU
score (Papineni et al., 2002) for ST/SST and ASR-
BLEU score for SS2ST. ST/SST references are
case-sensitive and punctuated while SS2ST refer-
ences are case-insensitive and un-punctuated. The
ASR model used for ASR-BLEU is Whisper-small
(Radford et al., 2022). We evaluate translation la-
tency for SST using average lagging (AL) (Ma
et al., 2020) and length-adaptive average lagging
(LAAL) (Papi et al., 2022). We evaluate translation
latency for SS2ST using start (SO) and end-offset
(EO) (Ma et al., 2020).

5 Results

Table 1 shows the quality and latency of our SST
and SS2ST models as measured on En-De tst-
COMMON. We also show the ST performance of
our model for reference. As a baseline, we compare
to the IWSLT-scale ST and SST systems developed
in Yan et al. (2023b) – our systems show improved
quality, primarily due to the use of WavLM and
mBART self-supervised representations.

From ST to SST, we observe a 6% quality degra-
dation. Note that the average duration of tst-
COMMON utterances is around 5 seconds, mean-
ing the corresponding latency gain is 60%. From
SST to SS2ST, we observe a 12% quality degrada-
tion. Note that both the TTS model and the Whis-
per ASR model powering the ASR-BLEU metric
contribute to this gap.

6 Conclusion

We describe our English to German simultane-
ous speech-to-text and speech-to-speech transla-
tion systems for the IWSLT 2023 shared task. We
start by building large-scale offline speech-to-text
systems which leverage self-supervised speech and
text representations. We then adapt these offline
models for online inference, enabling simultaneous
speech-to-text translation. Finally, we feed stream-
ing text outputs to a down-stream TTS model, en-
abling simultaneous speech-to-speech translation.
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