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Abstract

This work experiments with various con-
figurations of transformer-based sequence-to-
sequence neural networks in training a Dis-
course Representation Structure (DRS) parser,
and presents the results along with the code to
reproduce our experiments for use by the com-
munity working on DRS parsing. These are
configurations that have not been tested in prior
work on this task. The Parallel Meaning Bank
(PMB) English data sets are used to train the
models. The results are evaluated on the PMB
test sets using Counter, the standard evaluation
tool for DRSs. We show that the performance
improves upon the previous state of the art by
0.5 (F1%) for PMB 2.2.0 and 1.02 (F1%) for
PMB 3.0.0 test sets. We also present results on
PMB 4.0.0, which has not been evaluated using
Counter in previous research.

1 Introduction

Discourse representation structures (DRSs) are a
way of representing meaning based on Discourse
Representation Theory (Kamp and Reyle, 1993;
Kamp et al., 2011). In addition to predicate-
argument structures, DRSs express temporal re-
lations, anaphora, modals, negation, and presuppo-
sitions, and can be further employed by other auto-
matic processes to understand natural language.

The task of mapping sentences to their DRS
meaning representations is called DRS parsing.
There now exists a large dataset with DRSs for
corpus examples, the Groningen Parallel Meaning
Bank (PMB, Abzianidze et al. 2017), which makes
it possible to train deep neural networks of the
kinds that provide state-of-the-art performance on
a variety of NLP tasks these days.

Recent work has explored a variety of neural net-
work architectures for this task, but curiously, little
work has been done using the otherwise widely
utilized transformer-based encoder-decoder archi-

tecture. In this paper, we report on such experi-
ments using Wordpiece (Wu et al., 2016) to tok-
enize the input and output, and train a sequence-to-
sequence model where the encoder is a pre-trained
BERT model (Devlin et al., 2018) and the decoder
consists of randomly initialized transformer layers
with cross attention. We experiment with different
hyperparameter settings and achieve higher perfor-
mance than in previous work.

In the remainder of this paper, we briefly intro-
duce DRSs and the PMB dataset in Section 2. We
then survey previous work on DRS parsing in Sec-
tion 3. Section 4 provides the machine learning
configurations we used. Section 5 presents the re-
sults and a comparison with prior work. Section 6
remarks on our overall takeaways from this work.

2 Data

Historically, DRSs are represented in a box nota-
tion designed for human readability. The left-hand
side of Figure 1 shows the representation of Dvořák
was not aware of it. The negated content was not
aware of it is represented as a separate embedded
box labeled b6. Moreover, the sentence contains
three presuppositions that must be resolved: these
are the boxes b2, b4, b7 (shown inside a presuppo-
sition operator ∂), corresponding to the referents t1
(time at which the sentence holds), x5 (the referent
of the proper name Dvořák), and x6 (the entity to
which it refers). The latter two referents appear
inside the negated box, because they are syntac-
tically in the scope of negation, but they must in
fact be interpreted in a wider context (i.e. the text
entails that there exists a reference for it and a time
at which the state of Dvořák not being aware of it
held). For more details about DRSs, we refer to
(Kamp and Reyle, 1993; Kamp et al., 2011).

The release of the PMB offered for the first time
relatively large amounts of text annotated with deep
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b5 :

b4 : ∂


x5

male(x5)
name(x5, dvořák)



¬b6 :

s4

aware(s4)
T ime(s4, t1)
Stimulus(s4, x6)
Experiencer(s4, x5)

b2 : ∂


t1

time(t1)
t1 ≺ now

 , b7 : ∂

 x6

entity(x6)



b4 REF x5
b4 Name x5 ”dvořák”
b4 PRESUPPOSITION b5
b4 male ”n.02” x5
b2 PRESUPPOSITION b6
b6 Time s4 t1
b2 REF t1
b2 TPR t1 ”now”
b2 time ”n.08” t1
b5 NEGATION b6
b6 REF s4
b6 Experiencer s4 x5
b6 aware ”a.01” s4
b6 Stimulus s4 x6
b7 REF x6
b7 PRESUPPOSITION b6
b7 entity ”n.01” x6

Figure 1: Box and clause notation of the DRS for Dvořák was not aware of it

semantic representations in the form of DRSs. In
PMB, DRSs are given in a more machine-friendly
clause format shown on the right-hand side of Fig-
ure 1. We refer to Liu et al. (2021) for more details
on the conversion. Notice that the clause format
also contains references to WordNet synsets (”n.02”
etc.). Parsing to PMB representations therefore also
involves word sense disambiguation.

There are several releases of the PMB, differing
in size and also in some choices of representation.
Previous work has focused on version 2.2.0, which
contains 5929 DRSs for English sentences, and ver-
sion 3.0.0, which has 8403 English DRSs. The lat-
est release, version 4.0.0, has 10715 English DRSs.
All versions also have data in Dutch, German, and
Italian, which we ignore here. Each release has
various data files available at the website (Parallel
Meaning Bank, 2020), but also provides a separate
download that contains only the data relevant for
experiments in semantic parsing (“exp data”).

The annotations are done automatically and then
manually corrected. The representations are la-
beled with bronze, silver, or gold status. Bronze
sentences have no manual correction, silver sen-
tences have a partial manual correction and gold
sentences have a full manual correction. The dev,
test, and eval datasets consist of gold sentences
only.

3 Related work

Before the advancement of machine learning sys-
tems, rule-based approaches were proposed as

System Model Input
Liu et al. (2019) transformer characters
van Noord et al. (2018) seq2seq characters
van Noord (2019) seq2seq characters
Evang (2019) stack LSTMs word embeddings
Fancellu et al.1 bi-LSTM word embeddings

Table 1: Systems in the shared task on DRS parsing

a solution for the DRS parsing task. Work
within this research track mainly tried to resolve
anaphora (Johnson and Klein, 1986; Wada and
Asher, 1986), scope ambiguities, and presuppo-
sitions (Bos, 2001) on short English text. Later, the
Boxer Software (Bos, 2008) used syntactic parses
from a Combinatory Categorial Grammar (Clark
and Curran, 2004) to produce DRSs. In another
line of work, DRSs were represented as graphs ob-
tained from dependency structures of sentences (Le
and Zuidema, 2012) and ranked according to their
probabilities of representing the sentence where the
probabilities are obtained from a corpus by com-
puting word-to-word alignments using an external
tool (Och and Ney, 2003).

With the advent of language models and a data
set like the PMB which is large enough for fine-
tuning such models, it became possible to employ
neural nets for DRS parsing. All systems in the
recent shared task on DRS parsing (Abzianidze
et al., 2019b) used neural architectures, as shown
in Table 1 adapted from Abzianidze et al. (2019a).

Most systems used a variety of a sequence-to-
1No system description was submitted to the proceedings

but the system is described in Abzianidze et al. (2019a).
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sequence LSTM (Hochreiter and Schmidhuber,
1997), though Liu et al. (2019) used a transformer
model (Vaswani et al., 2017). The system input
was either character-level representations or word
embeddings obtained from one of the widely uti-
lized BERT language models. Later, van Noord
et al. (2020) combined these two inputs to their
LSTM sequence-to-sequence system, which also
used an attention mechanism (Vaswani et al., 2017),
arguing that this improved results even when added
to the rich BERT embeddings. They also report re-
sults using a transformer model but were unable to
beat the LSTM sequence-to-sequence model in this
way. Their work reported state-of-the-art results
for PMB 2.2.0 and PMB 3.0.0 English datasets.
Later, Liu et al. (2021) used BERT word embed-
dings and position embeddings as input and ex-
pression of DRSs as trees as output to train a
transformer sequence-to-sequence model. They
reported a slight improvement (0.4%) upon the
state of the art for PMB 2.2.0 dataset. As far as we
know these are the only attempts at using the trans-
formers architecture which is the default approach
across many NLP tasks today.

4 Machine learning configurations

We use sequence-to-sequence modeling with two
main components: an encoder and a decoder.
HuggingFace transformers library (Wolf et al.,
2020) provides the class EncoderDecoderModel
to configure such models. The models are trained
with various configurations of this class to test
the performance.2 For the encoder side, 7 con-
figurations are tested. The first two options
test different sizes of random initialization (No-
PT). One configuration is 6 layers of 768 hid-
den layer size (No-PT, 6x768), and the other is
8 layers of 512 hidden layer size (No-PT, 8x512).
The rest of the encoders are pre-trained models:
bert base cased, bert base uncased, bert large
cased, and bert large uncased. For the decoder
side, we use the size of 6x768 with the 6x768 sized
No-PT encoder, and 8x512 with both a No-PT en-
coder setup and the pre-trained encoders. All de-
coder side weights are randomly initialized. The
12x768 networks have 12 and 8x512 networks have
8 attention heads per layer. For the 6-layer se-
tups, two configurations are used: 6 and 12 atten-
tion heads per layer. All decoders include cross-

2The replication code is published under GitHub: https:
//github.com/textlab/seq2seqDRSparser

attention layers as it is effective in sequence-to-
sequence training (Gheini et al., 2021).

The work by van Noord et al. (2020) reports that
updating pre-trained encoder weights always re-
sulted in poor performance. Therefore, a similar ap-
proach is followed and the encoder side weights are
frozen whenever we use the pre-trained encoders.
When the 12x768 decoder is used with No-PT en-
coders, the number of parameters to be trained gets
too high and a model cannot be trained. Thus, the
12x768 decoder configuration is only used together
with the frozen pre-trained encoders.

Our configurations get inputs as sub-word to-
kens derived from the widely utilized Wordpiece
tokenizer (Wu et al., 2016). With the pre-trained en-
coders, the tokenizer used to train that pre-trained
model is used as the input tokenizer. For No-PT en-
coders and for the decoder side output, we train cus-
tom Wordpiece tokenizers for each dataset. Since
the output of DRS parsing is a DRS, the serial-
izations of DRSs are tokenized using the relative
clause notation introduced in van Noord (2021).
All custom tokenizers are trained with: a vocab-
ulary size of 25000, the minimum frequency for
consideration of a token is set to 3, and the max-
imum tokenization length (maximum number of
tokens for one sentence) is set to 512 tokens.

To test the effect of using different parameters in-
troduced in this section, the other hyperparameters
are fixed such as the optimizer, learning rate, and
loss function. We use the Adam optimizer (Kingma
and Ba, 2015) with a learning rate of 0.0001, and
use the negative log-likelihood loss (Yao et al.,
2020) to compute the loss in each batch between
the model output and the expected output. We set
the batch size to 16 sentences as this is the amount
the graphic cards could handle. For any other pa-
rameter, the default value defined by version 4.17.0
of the Transformers library is used for the objects
of types BertConfig, EncoderDecoderModel, En-
coderDecoderConfig, and BertModel.

We use four Nvidia V100 32GB GPUs to train
the models. The training time depends on the
number of parameters and the number of attention
heads. For one configuration, training for PMB
2.2.0 sets takes around one day, and training for
PMB 3.0.0 and PMB 4.0.0 sets takes around 2 days.
When four GPUs are used, it takes around one week
to train all models in all configurations. We train
for each configuration only once.

https://github.com/textlab/seq2seqDRSparser
https://github.com/textlab/seq2seqDRSparser
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number of PMB 2.2.0 PMB 3.0.0 PMB 4.0.0
parameters Encoder Decoder dev test dev test dev test eval
139,636,648 No-PT, 6x768-6 6x768-6 86.65 87.65 89.78 89.16 89.05 89.48 87.32
139,636,648 No-PT, 6x768-12 6x768-12 86.45 87.8 89.64 89.48 89.03 89.45 87.51
102,389,160 No-PT, 8x512-8 8x512-8 86.87 87.26 89.46 89.64 89.06 89.61 87.38

55,775,144 bert base uncased 8x512-8 87.17 88.45 89.69 89.78 89.1 89.79 87.2
55,775,144 bert base cased 8x512-8 87.51 88.23 89.96 89.89 89.19 89.9 88.18

133,633,960 bert base uncased 12x768-12 87.41 88.18 89.57 89.66 89.4 90.26 87.36
133,633,960 bert base cased 12x768-12 87.53 89.23 89.78 90.32 88.07 89.04 86.9
134,421,160 bert large uncased 12x768-12 86.93 88.56 89.08 88.65 88.71 89.6 87.29
134,421,160 bert large cased 12x768-12 86.9 88.27 89.39 90.03 88.81 90.12 87.42
≈106 million van Noord et al. (2020) 86.1 88.3 88.4 89.3
≈106 million Liu et al. (2021) 88.7

Table 2: F1% scores of various models. Prior works by van Noord et al. (2020) and Liu et al. (2021) use similar
hyperparameter settings. No-PT: No pre-training. AxB-C: A hidden layers of size B and C attention heads per layer.

5 Results

The performance scores are computed for dev, test,
and eval3 sets for each dataset. To compute the
scores, we used the Counter tool provided by van
Noord (2022). To make the results comparable with
the previous work, the version of Counter with the
same version tag for each release of the datasets
is used. For the 4.0.0 release of the datasets, we
use the latest version of the code as 4.0.0 is the
newest release. The models are trained for at least
80 epochs for all datasets and stopped if there is
no increase in performance for the last five epochs.
Table 2 presents the results obtained for the config-
urations mentioned in the previous section.

Previous work used gold and silver data for fine-
tuning. Our work uses the train sets as is and
does not prioritize gold, silver, or bronze sentences.
Therefore, one training epoch consists of using
each sentence only once, and, the learning rate is
not changed throughout the training. Even with this
setup, we observe that two configurations with ran-
domly initialized encoders and decoders (No-PT)
outperform the previous state of the art for PMB
3.0.0. Moreover, using pre-trained encoders per-
formed even better. For the PMB 2.2.0 test set, our
setup slightly improved upon the previous state-of-
the-art. For PMB 4.0.0, to the best of our knowl-
edge, this is the first time model performances are
reported using Counter.4 For all configurations, us-
ing the larger BERT pre-trained models bert large

3PMB publishes the eval dataset only for the 4.0.0 release
4Poelman et al. (2022) reports using the SMATCH (Cai and

Knight, 2013) tool by comparing Discourse Representation
Graphs (DRG), a simpler form of DRSs, on PMB 4.0.0.

cased and uncased do not perform better than the
smaller bert base cased and uncased. We observe
that using cased pre-trained models generally per-
formed better.

Table 3 presents detailed performances for dif-
ferent kinds of DRS clauses in the clause nota-
tion. The results are in line with what van No-
ord et al. (2020, Table 10) report. DRS operators
have the highest performance which indicates that
structural features of a DRS is captured better than
the other features. One reason may be that the
test set of all releases of PMB represent relatively
short sentences that have structurally simple DRSs.
Roles (i.e. binary predicates like Agent, Theme,
MadeOf etc.) and concepts (which includes word
sense disambiguation because each concept is a
WordNet synset) are harder to capture, especially
verbal concepts. Performance for adjective and
adverbs increase with each release of the datasets,
probably reflecting improving standards of annota-
tion.

van Noord et al. (2020) observe that parsing per-
formance decreases with sentence length. In Haug
et al. (2023) we show that the same holds for our
system. Nevertheless, the PMB test set with its uni-
formly quite short sentences (the large majority is ¡
10 tokens) does not lend itself to study the effect of
sentence length, and in Haug et al. (2023) we test
the system on more realistic sentence lengths.

6 Conclusions

Our work presents the effect of using various sizes
of transformer-based encoders and decoders in
sequence-to-sequence neural networks with the
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PMB 2.2.0 PMB 3.0.0 PMB 4.0.0
Operators 95.58 96.55 95.78

Roles 88.2 89.88 89.01
Concepts 85.35 86.99 87.95

Nouns 90.68 91.35 92.28
Verbs 73.45 75.81 73.83

Adjectives 67.43 78.98 82.53
Adverbs 50.0 73.85 85.5

Events 72.37 76.46 75.96

Table 3: F1% scores in different PMB versions’ test
sets for different types of DRS clauses in the clause
notation. The configuration is bert base cased encoder
with 12x768-12 decoder that is trained for each PMB
version separately.

subword tokenizer Wordpiece on the task of DRS
parsing. The performances of the use of various
sizes and pre-trained encoder configurations are
reported. This work shows that the performance of
DRS parsing increases with some of these configu-
rations. We believe that applying our setup could
improve the performance of other related tasks.
For example, Liu et al. (2021) explores multilin-
gual DRS parsing based on transfer from English
translations which, as we have shown here, could
be better parsed with our approach.

Our results provide a new state-of-the-art of what
can be achieved in a vanilla setup of transformer
networks with raw text input and clause format
DRS output. While it is likely that the results can
be improved with better language models, or by
fine-tuning strategies similar to those of van Noord
et al. (2020) (prioritizing gold data over silver and
bronze), we think more substantial improvements
can come from working on the input and output
representations. On the output side, we plan to ex-
periment with other ways of expressing DRSs such
as the format introduced by Liu et al. (2021). On
the input side, we believe that syntactic dependency
parses contain much information that is useful to
DRS parsing, such as predicate argument structures.
We are currently experimenting with rule-based ex-
traction of relevant information from UD trees and
ways of adding this information to the input.
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