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Abstract
Interactive Task Learning (ITL) concerns learn-
ing about unforeseen domain concepts via nat-
ural interactions with human users. The learner
faces a number of significant constraints: learn-
ing should be online, incremental and few-shot,
as it is expected to perform tangible belief up-
dates right after novel words denoting unfore-
seen concepts are introduced. In this work, we
explore a challenging symbol grounding task—
discriminating among object classes that look
very similar—within the constraints imposed
by ITL. We demonstrate empirically that more
data-efficient grounding results from exploit-
ing the truth-conditions of the teacher’s generic
statements (e.g., “Xs have attribute Z.”) and
their implicatures in context (e.g., as an answer
to “How are Xs and Ys different?”, one infers
Y lacks attribute Z).

1 Introduction

Consider a general-purpose robot assistant pur-
chased by a restaurant, which must acquire novel
domain knowledge to operate in this particular
venue. For example, the agent must learn to dis-
tinguish brandy glasses from burgundy glasses
(Fig. 1a), but these subcategories of glasses are
entirely absent from the agent’s domain model in
its factory setting. Learning to distinguish among
fine-grained visual subcategories is a nontrivial feat
(Wei et al., 2021); most current approaches require
careful engineering by ML practitioners, making
them unsuitable for lay users to readily inspect and
update the robot’s domain knowledge.

There are also challenges regarding data ef-
ficiency, which using natural language can po-
tentially address (Laird et al., 2017). A single
generic statement—e.g., “Brandy glasses have
short stems”—expresses content that would take
many visual examples to infer. Such statements,
given their dialogue context, may also carry addi-
tional meaning that is linguistically implicit. For

(a) 3D models of fine-grained types of glasses.

How are brandy glasses different 
from burgundy glasses?

Brandy glasses have short stems.

… and they are similar 
in other regards

Burgundy glasses do not 
have short stems…

(Defeasible) Inference of implicatures from context

(b) Example interaction between a teacher and a learner dis-
cussing generic knowledge about types of glasses.

Figure 1: Learning via embodied dialogue in a simu-
lated tabletop domain.

instance, if the statement “Brandy glasses have
short stems” is given as an answer to the contrastive
question “How are brandy glasses and burgundy
glasses different?”, then it implies that burgundy
glasses don’t have short stems, and also, defeasibly,
that these two types of glasses are similar in other
conceivable respects (Grice, 1975; Asher, 2013).
Vision processing models that exploit natural lan-
guage data exist (He and Peng, 2017; Xu et al.,
2018; Chen et al., 2018; Song et al., 2020), but
they generally treat language as supplementary sig-
nals for augmenting training examples, rather than
leveraging a range of symbolic inferences licensed
by purposeful utterances in dialogue.

In this work, we develop an interactive sym-
bol grounding framework, in which the teacher
presents to the learner evidence for grounding dur-
ing embodied dialogues like those illustrated in
Fig. 1b. The framework is based on a highly modu-
lar neurosymbolic architecture, in which subsym-
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bolic perceptual inputs and symbolic conceptual
knowledge obtained during dialogues gracefully
combine. We run proof-of-concept experiments to
show that agents that exploit semantic and prag-
matic inferences from generic statements in dis-
course outperform baselines that don’t exploit se-
mantics and pragmatics, or don’t exploit symbolic
inference at all.

2 Related Work

In fine-grained image analysis (FGIA), a model
learns to distinguish (patches of) images of sub-
categories that belong to the same basic category.
FGIA is challenging because images exhibit small
inter-class variance and large intra-class variance,
and labeling often requires specific domain exper-
tise, hence high annotation costs (Wei et al., 2021).

A natural approach to FGIA is to utilize informa-
tion of different modalities, including unstructured
text descriptions (He and Peng, 2017; Song et al.,
2020), structured knowledge bases (Xu et al., 2018;
Chen et al., 2018) and human-edited attention maps
(Duan et al., 2012; Mitsuhara et al., 2021). How-
ever, to our knowledge, no existing FGIA models
exploit NL generic statements provided in vivo dur-
ing natural dialogues. Existing interactive FGIA
methods (Branson et al., 2010; Wah et al., 2011,
2014; Cui et al., 2016) query humans to refine pre-
dictions from off-the-shelf vision models at infer-
ence time but do not update the grounding mod-
els. In contrast, our framework supports continu-
ous learning, updating the grounding model as and
when the teacher says something noteworthy.

Our use case, described in §1, can be subsumed
under the framework of Interactive Task Learning
(ITL; Laird et al., 2017). Motivated by scenarios
where unforeseen changes may happen to the do-
main after deployment, the core goal of ITL is to ac-
quire novel concepts that the learner is unaware of
but are critical to task success. ITL systems gather
evidence from natural embodied interactions with
a teacher that take place while the learner tries to
solve its task. Thus a key desideratum in ITL is
that learning should be online and incremental: the
learner should change its beliefs and behaviours
whenever the teacher provides guidance.

Natural language is a common mode of teacher-
learner interaction in ITL (Kirk et al., 2016; She
and Chai, 2017). Accordingly, several ITL works
draw inspiration from linguistic theories to make
learning more effective and efficient. While the for-

This is a bordeaux glass.
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Figure 2: Overview of the architecture in inference
mode, in which the component modules interact to gen-
erate an answer to a user question.

mal semantics of quantifiers and negation (Rubavi-
cius and Lascarides, 2022) and of discourse coher-
ence (Appelgren and Lascarides, 2020) has been
explored in ITL settings, none of the works in the
ITL literature have investigated the utility of ex-
ploiting the logical inferences licenced by the se-
mantics and pragmatics of contrastive questions
and their generic statement answers.

3 Agent architecture

Fig. 2 illustrates our neurosymbolic architecture
for situated ITL agents that can engage in ex-
tended dialogues with a teacher. Its design enables
both subsymbolic-level learning of visual concepts
from perceptual inputs (“This looks like a X”) and
symbolic-level learning and exploitation of rela-
tional knowledge between concepts (“Xs gener-
ally have attribute Z”) during task execution. Here
we stress that our proposed approach is not in di-
rect competition with wide-coverage neural vision-
language models, but actually complements them.
As an ITL framework, we offer a coping mecha-
nism, to be employed when an existing pre-trained
model is deployed in a domain where concepts are
frequently introduced and changed, requiring the
model to quickly adapt with only a few exemplars
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Figure 3: Abridged illustration of the few-shot scene
graph generation process (Full version in Appendix A)

of unforeseen concepts.

3.1 Vision processing module

Given a visual scene perceived by the vision sensor,
the agent first summarizes the raw input into a
graph-like data structure (scene graph hereafter).
A scene graph SG encodes a set of salient objects
in the scene with their distinguishing features and
their pairwise relationships, serving as the agent’s
internal, abstracted representation of the scene.

Our architecture makes exemplar-based few-
shot predictions to generate scene graphs, so as
to quickly learn novel visual concepts after a few
training instances in an online, incremental fashion.
Specifically, our vision processing module employs
a neural model extended from Deformable DETR
(Zhu et al., 2021), trained to learn distinct low-
dimensional metric spaces for each concept type
(object class/attribute/relation). The module makes
binary concept predictions based on similarity dis-
tances between embedded vectors. As illustrated in
Fig. 3, the role of the vision module is to process an
RGB image input I into a preliminary scene graph
template

∼
SG. The template is further processed

along with the agent’s store of concept exemplars
in its long-term memory (§3.3) to yield SG. For
further details about the inner working of the neural
vision module and the translation process from

∼
SG

to SG, refer to Appendix A.

3.2 Language processing module

The language processing module parses natural
language utterances into formal semantic represen-
tations, maintains dialogue records, and generates
natural language utterances as needed. For con-
trolled experiments, we constrain our attention to a
class of simple sentences that discuss primarily two
types of information: 1) instance-level descriptions
about conceptual identities of scene objects (e.g.,

“This is a brandy glass”, “This has a wide bowl”);
and 2) relational knowledge about generic proper-
ties shared across instances of the same concepts
(e.g., “Brandy glasses have short stems”).

More formally, we represent the propositions ex-
pressed by NL sentences via a simple antecedent-
consequent pair (PROP hereafter). PROPs draw on
a first-order language L which includes constants
referring to objects in the visual scene and predi-
cate symbols for their classes, attributes and pair-
wise relations (i.e., visual concepts from §3.1). In-
dicative NL sentences are generally represented
with a PROP ψ = Ante ⇒ Cons, where Ante
and Cons are each a L-formula (for ψ, we refer
to these as Ante(ψ) and Cons(ψ)). Ante(ψ) is
empty (and thus omitted) if ψ represents a non-
conditional, factual statement. Further, we no-
tate a PROP that stands for a generic character-
ization with a ‘generic quantifier’ G. For ex-
ample, the sentences “o is a brandy glass” and
“Brandy glasses have short stems” are translated
into PROPs respectively as brandyGlass(o) and
GO.brandyGlass(O)⇒ haveShortStem(O).1

We represent questions (QUES hereafter) follow-
ing notation similar to Groenendijk and Stokhof
(1982). The answer to a polar question, repre-
sented as ?ψ, is ψ (if true) or ¬ψ (if false). An-
swers to a wh-question ?λX.ψ(X) provide val-
ues a of X that make ψ[X/a] true (i.e., all oc-
currences of X in ψ are substituted with a). For
the question “How are p1 and p2 different?”, we
avoid the complexity of higher-order formal lan-
guages and simply introduce a reserved formal-
ism ?conceptDiff(p1, p2), which our imple-
mented dialogue participants can handle by in-
voking a dedicated proecdure. The answer to
?conceptDiff(p1, p2) is the set of attributes
that all objects of class p1 have and p2 lack, and
vice versa.

The language processing module is implemented
as a pipeline with two components: an off-the-
shelf large-coverage parser of the English Resource
Grammar (Copestake and Flickinger, 2000) fol-
lowed by manual heuristics that map the parser’s
outputs to the above forms, as required by the sym-
bolic reasoner (see §3.4). The module also keeps

1In the interest of brevity and simplicity, we have trans-
lated “have short stems” into an ‘agglomerate’ predicate
haveShortStem in this text. This is contrary to the actual im-
plementation, where we introduced the concepts stem, short
(unary predicates) and have (binary predicate) as elementary
units. See Appendix B for a more accurate exposition.
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track of the current dialogue history as a sequence
of utterances: each one logged as a PROP or QUES,
its NL surface form and its speaker.

3.3 Long-term memory module
Our agent stores new knowledge acquired over the
course of its operation in its long-term memory.
We implement four types of knowledge storage:
visual exemplar base (XB), symbolic knowledge
base (KB), episodic memory and lexicon.

Visual XB For each visual concept γ, the visual
XB stores χ+

γ and χ−
γ , a set of positive/negative ex-

emplars worth remembering. The exemplars serve
as the basis of the agent’s few-shot prediction ca-
pability as mentioned in §3.1. The visual XB is
expanded each time the agent makes an incorrect
prediction. Specifically, when the learner incor-
rectly states “This is γ̃”, the teacher provides a cor-
rective response, saying “This is not γ̃, this is γ”,
thereby augmenting χ+

γ and χ−
γ̃ . New sets χ+/−

γ

are created whenever the teacher introduces a novel
concept γ via a neologism.

Symbolic KB The symbolic KB is a collection
of generic PROPs describing relations between sym-
bolic concepts, such as GO.brandyGlass(O) ⇒
haveShortStem(O). Each KB entry is annotated
with the source of the knowledge: a generic rule
may be explicitly uttered by the teacher or inferred
as an implicature, given the dialogue context. We’ll
discuss how the learner can extract unstated knowl-
edge in §4.2.2 in further detail.

Episodic memory The episodic memory stores
the summary of each episode of situated interac-
tions between the agent and the teacher.

Lexicon The lexicon stores a set of content words
the teacher introduces into the discourse, along
with linguistic metadata like part-of-speech.

3.4 Symbolic reasoning
For symbolic reasoning, we employ a probabilistic
variant of a logic programming2 technique known
as answer set programming (ASP; Lifschitz, 2008).
The formalism of ASP represents a reasoning prob-
lem as a normal logic program that consists of rules
of the following form:

a← b1, . . . , bm,not c1, . . . ,not cn. (1)
2In contrast to first-order logic, logic programming is based

on the notion of minimal models, where any true atom must
be justified (founded) by a clause in the logic program.

where the rule head atom a and the rule body
atoms {bi}mi=1, {cj}ni=1 can be propositional or
(quantifier-free) first-order logic formulas. An
intuitive reading of the rule, by itself, is that
a is logically justified if and only if all of the
positive body atoms {bi}mi=1 hold and none of
the negative body atoms {cj}ni=1 are proven to
hold. For instance, the ASP rule fly(X) ←
bird(X),not abnormal(X) would roughly cor-
respond to the meaning of the generic NL statement
“Birds (generally) fly”. A rule whose head is empty
(⊥) represents an integrity constraint that its rule
body should not hold in answer models.

In probabilistic ASP (Lee and Wang, 2016), each
rule is associated with a weight, such that possible
worlds satisfying a set of rules with higher total
weights are assigned greater probability. Thus a
rule may be violated at the expense of its weight.
Formally, a probabilistic ASP program Π = {w :
R} is a finite set of weighted rules whereR is a rule
of the form (1) and w is its associated weight value.
The probability of a possible world I according to
Π is computed via a log-linear model on the total
weight of rules in ΠI , where ΠI is the maximal
subset of Π satisfiable by I .

WΠ(I) = exp

( ∑
w:R∈ΠI

w

)
(2)

PΠ(I) =
WΠ(I)∑

J∈possible worlds by ΠWΠ(J)
(3)

For more rigorous technical definition, refer to Lee
and Wang (2016).

Each symbol grounding problem is cast into an
appropriate program as follows. First, serialize
the learner’s visual observations contained in the
scene graph SG into ΠO = {logit(s) : γ(o1, ...).},
where each γ(o1, ...) is a visual observation in SG
with confidence score s ∈ [0, 1]. Then we export
the KB into a program ΠK , built as follows:

• For each KB entry κ, add to ΠK :

logit(Ud) : ⊥ ← Ante(κ),not Cons(κ).

which penalizes ‘deductive violation’ of κ.

• For each set of KB entries {κi} that share
identical Cons(κi), add to ΠK :

logit(Ua) : ⊥ ← Cons(κi),∧
κi

{not Ante(κi)}
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which penalizes failure to explain Cons(κi).

Here, Ud, Ua ∈ [0, 1] are parameters encoding the
extent to which the agent relies on its symbolic
knowledge; we use Ud = Ua = 0.95 in our exper-
iments. For instance, the KB consisting of a sin-
gle PROP parsed from “Brandy glasses have short
stems” will be translated into ΠK consisting of the
two rules (7) and (8) in Example 1 below. Finally,
the program Π = ΠO∪ΠK is solved using a belief
propagation algorithm (Shenoy, 1997) modified to
accommodate the semantics of logic programs.

Example 1. The program Π below encodes a sce-
nario where the agent sees an object o1 and ini-
tially estimates o1 is equally likely to be a brandy
or burgundy glass. The agent also notices with high
confidence it has a short stem, and knows brandy
glasses have short stems:

logit(0.61) : brandyGlass(o1). (4)

logit(0.62) : burgundyGlass(o1). (5)

logit(0.90) : haveShortStem(o1). (6)

logit(0.95) : ⊥ ← brandyGlass(O),

not haveShortStem(O).
(7)

logit(0.95) : ⊥ ← haveShortStem(O),

not brandyGlass(O). (8)

This results in PΠ(brandyGlass(o1)) = 0.91,
whereas PΠ(burgundyGlass(o1)) = 0.62. Thus
the agent forms a stronger belief that o1 is a brandy
glass than it is a burgundy glass.

See Appendix C for more examples.

4 Interactive Visual Concept Acquisition

4.1 Task description
In our symbol grounding task, each input is a tuple
xi = (Ii, bi), where Ii ∈ [0, 1]3×H×W is an RGB
image and bi is a specification of a bounding box
encasing an object in Ii. That is, xi is essentially
reference to an object in an image. The task output
yi is dependent on two possible modes of querying
the agent about the identity of the object referenced
by xi. The first ‘polar’ mode amounts to testing
the agent’s knowledge of a concept in isolation
(i.e., “Is this a X?”; so yi is yes or no). The second
‘multiple-choice’ mode demands the agent selects
a single object class yi describing the object among
possible candidates (i.e., “What is this?”, and yi is a
class). The teacher’s response to yi is dependent on

What is this?

This is a brandy glass.

Correct. □ This is not a brandy glass.

This is a burgundy glass.

How are brandy glasses 
and burgundy glasses 

different?

Okay. □

Brandy glasses have short 
stems.

Correct answer Incorrect answer

On first confusion of 
two concepts

(Update XB)

(Update XB)

(Update KB)

this
T

L

T T

T

T

LL

T

L

Figure 4: Flowchart covering the range of training dia-
logues modeled in this study. □ signals termination of
an interaction episode.

the content of yi and the teacher’s dialogue strategy
as described in §4.2.1. The learner updates its
symbol grounding model from the teacher’s moves
using the methods described in §3 and §4.2.2.

As mentioned earlier, the agent’s domain model
may entirely lack the concept of interest for la-
belling xi. The agent acquires unforeseen concepts
via teacher utterances. For example, if “This (xi) is
a brandy glass” introduces the agent to the unfore-
seen concept “brandy glass”, then BrandyGlass
is added to L and the visual XB is augmented
with newly generated sets χ+

BrandyGlass = {xi}
and χ−

BrandyGlass = ∅.

4.2 Flow of dialogues
We focus on a family of dialogues illustrated in
Fig. 4. As depicted, each interaction episode is
initiated by a teacher query. Dialogues will pro-
ceed according to the learner’s responses and the
teacher’s strategy. In this research, we want to
investigate how different interaction and learning
strategies affect learning efficiency.

4.2.1 Teacher’s strategy options
The teacher starts off each interaction episode
by presenting an instance o of some visual con-
cept p, querying the learner with a probing QUES

“?λP.P (o)”.3 If the learner provides the correct
3Note that the expression ?λP.P (o) does not fully capture

the intended meaning of “What is this?” in its own right, since
the discourse contexts set up additional semantic/pragmatic
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answer as the PROP “p(o)”, the teacher responds
“correct” and the episode terminates without agent
belief updates. Otherwise, if the learner provides
an incorrect answer, “p̃(o)” or “I am not sure”, the
teacher needs to provide some corrective informa-
tion so that the learner can adjust its beliefs. We
implement and compare the following variations
in the teacher’s response, in increasing order of
information content:

• minHelp: Provides only boolean feedback to
the learner’s answer, i.e., “¬p̃(o)”.

• medHelp: In addition to minHelp, provides
the correct answer label, saying “p(o)”.

• maxHelp: In addition to medHelp, provides
a set of generic PROPs that characterize p or
p̃. The feedback is provided after the learner’s
QUES “?conceptDiff(p, p̃)”, asked once
on the first confusion between p and p̃.

The generic PROPs provided by maxHelp teach-
ers originate from the teacher’s domain knowledge,
which we assume here to be correct and exhaustive.
The set of PROPs to be delivered is computed as the
symmetric difference between the set of properties
of p versus that of p̃ (see Appendix D for an exam-
ple). minHelp and medHelp serve as vision-only
baselines since only concept exemplars with binary
labels are communicated as teaching signal.

4.2.2 Learner’s strategy options
Another dimension of variation we model is the
learner’s strategy for interpreting generic state-
ments within dialogue contexts. Note that the vari-
ation in this dimension is meaningful only when
the teacher deploys the maxHelp strategy, thereby
allowing exploitation of generic statements.

In human dialogues, interlocutors infer, and
speakers exploit, implicatures that are validated by
linguistically explicit moves, given the context of
utterance (Grice, 1975). As a core contribution of
this study, we model how generic statements given
as an answer to a question about similarities and
differences give rise to certain implicatures (Asher,
2013) that can be exploited for more data-efficient
learning.

Suppose a question “How are X and Y different?”
is answered with a generic statement “Xs have at-
tribute Z”. The following implicatures can arise

constraints on what counts as acceptable answers. We have
approximated those constraints via our pre-defined dialogue
strategies.

Situation

Confusion brandy glass vs. burgundy glass

Teacher input “Brandy glasses have short stems.”

Current KB GO.brandyGlass(O) ⇒ haveWideBowl(O)

Strategy New KB entries added

semOnly GO.brandyGlass(O) ⇒ haveShortStem(O)

semNeg GO.brandyGlass(O) ⇒ haveShortStem(O)
GO.burgundyGlass(O) ⇒ ¬haveShortStem(O)

semNegScal
GO.brandyGlass(O) ⇒ haveShortStem(O)
GO.burgundyGlass(O) ⇒ ¬haveShortStem(O)
GO.burgundyGlass(O) ⇒ haveWideBowl(O)

Table 1: An example of how different learner strategies
update their KBs from the teacher’s generic statement
feedback after the learner has confused a burgundy glass
for a brandy glass. The learner has already learned that
burgundy glasses have wide bowls. PROPs in black
is obtained from the teacher’s NL utterance; PROPs
in red from ‘negative’ implicatures (ψneg from ψ) as
demanded by coherence; and PROPs in blue from scalar
implicatures (κscl from κ).

from this discourse context: 1) “Ys do not have
attribute Z”, and 2) “X and Y are otherwise simi-
lar”. The former follows from the assumption that
the generic is a coherent answer to a contrastive
question (Asher and Lascarides, 2003). The latter,
which arguably is more defeasible (Grice, 1975),
is what’s known as a scalar implicature: if there
were other important differences that the learner
should know, then Gricean maxims of conversation
predict that the teacher would have included them
in the answer as well.

For a PROP ψ, let ψp↔q denote a PROP which is
identical to ψ except that occurrences of the predi-
cate p are all substituted with the predicate q and
vice versa. We consider the following strategies the
learner can take when interpreting a set of generic
PROPs {ψi} provided during an episode:

• semOnly: Simply add all ψi’s to KB.

• semNeg: In addition to semOnly, infer
a generic PROP ψneg

i = Ante(ψp↔p̃
i ) ⇒

¬Cons(ψp↔p̃
i ) for each ψi given as answer

to ?conceptDiff(p, p̃).

• semNegScal: In addition to semNeg, in-
fer a generic PROP κscl = Ante(κp↔p̃) ⇒
Cons(κp↔p̃) for each KB entry κ that has
either p or p̃ mentioned, only if κscl is not
inconsistent with any of ψi’s or ψneg

i ’s.

For example, consider the example situation illus-
trated in Tab. 1. The semNeg learner adds “Bur-
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gundy glasses do not have short stems” to its KB,
and semNegScal in addition adds “Brandy glasses
have X” for every property X that, according to its
KB, burgundy glasses have (e.g., wide bowls).

While the semNeg inference stems from the
demand that the teacher’s move is a coherent an-
swer (Asher and Lascarides, 2003), the scalar im-
plicatures inferred by semNegScal are defeasi-
ble presumptions (Grice, 1975). That is, sem-
NegScal risks misunderstanding the teacher’s in-
tended meaning, inferring general rules that are
incorrect—yet cancellable (see Appendix E for an
example failure case). Subsequent pieces of re-
futing evidence may falsify the inferred implica-
tures without rendering the conversation incoherent.
Therefore, we equip our agents with some risk man-
agement faculty that can assess and reject contents
of scalar implicatures. This is achieved by periodi-
cally testing KB entries whose origin is solely from
scalar implicatures, rejecting those whose coun-
terexamples can be found in the episodic memory.

5 Experiments

5.1 Evaluation Scheme

We run a suite of experiments that evaluate the
data efficiency of the learner’s and teacher’s strate-
gies from §4.2. Results are averaged over multi-
ple sequences of interaction episodes for each of
five combinations of teacher’s and learner’s strate-
gies: minHelp, medHelp, maxHelp+semOnly,
maxHelp+semNeg and maxHelp+semNegScal.
Each episode-initial probing question “?λP.P (o)”
is associated with a randomly selected instance o of
a concept selected from a round-robin of the target
concepts to be acquired. For controlled random
selections of concept instances and shuffling of the
round-robin, 40 seeds are shared across different
configurations. Each sequence continues until the
learner makes Nt mistakes in total.

As is common in ITL scenarios, training and
inference are fully integrated. Learning has to take
place during use whenever the teacher imparts in-
formation. In this work, we evaluate our learners by
having them take ‘mid-term exams’ on a separate
test set after every Nm mistakes made (Nm ≤ Nt).
The mid-term exams comprise binary prediction
problems “?p(o)” asked per every target concept p
for each test example o, and we collect confidence
scores between 0 and 1 as response. The primary
evaluation metric reported is mean average preci-

(a) fineEasy difficulty (three glass types)

(b) fineHard difficulty (five glass types)

Figure 5: Averaged learning curves (with 95% confi-
dence intervals): effective training examples vs. mAP.

sion (mAP)4; we do not use an F1 score because
we are more interested in relative rankings between
similar-looking concepts than the learners’ absolute
performances at some fixed confidence threshold.
We also report averaged confusion matrices col-
lected for the sequence-final exams (partially in
Fig. 6, fully in the supplementary material).

5.2 Setup

The learner agents start with relatively good, but
still error-prone, priors of what bowls and stems
and their attributes (e.g., “short stem”) look like,
but completely lacks the vocabulary, concepts and
related visual features for the various glass types.
The prior knowledge is injected into the learner
agents by exposing them to the full set of posi-
tive examples of stems and bowls in our data set,
and randomly sampled non-instances for negative
examples. The average binary classification accu-
racies on balanced test sets were 98.11% for the
part concepts and 86.12% for their attributes.

Our training and testing images are randomly
generated from a simulation framework Cop-
peliaSim (Rohmer et al., 2013), using a toolkit
for controlled sampling of 3D environments (Innes
and Ramamoorthy, 2021). Each image features a

4Mean of areas under interpolated precision-recall curves.
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scene of several objects from the restaurant domain
laid on a tabletop (e.g., the image in Fig. 2). Each
type of glass in our tabletop domain can be charac-
terized by its parts having different attributes; see
Appendix D for the complete list. We implement
simulated teachers in place of real human users
for the experiments, which perform rule-based pat-
tern matching just sufficient for participating as
a teacher in our training dialogues. Our imple-
mentation and datasets are publicly released in
https://github.com/itl-ed/ns-arch.

The more distractor concepts we have, the
more difficult the task becomes; difficulty scales
roughly quadratically with respect to the num-
ber of concepts, since C concepts enable(
C
2

)
different pairwise confusions. Our ex-

periments cover two levels of difficulty: fi-
neEasy and fineHard. For fineEasy, we
set (C,Nt, Nm) = (3, 30, 5), where target
concepts are {brandy glass, burgundy
glass, champagne coupe}. For fineHard,
we set (C,Nt, Nm) = (5, 60, 10), where target
concepts as those for fineEasy plus {bordeaux
glass, martini glass}.

5.3 Results and Discussion

Fig. 5 and Tab. 2 display the averaged learning
curves for the five strategy combinations in each
task difficulty setting, along with 95% confidence
intervals. It is obvious that learners exploiting the
semantics of generic statements from maxHelp
teachers are significantly faster in picking up new
concepts, compared to the vision-only baseline con-
figurations with minHelp or medHelp teachers.
Among the maxHelp results, the learners which
extract and exploit additional, unstated information
from the context (i.e., semNeg and semNegScal)
outperform the learner semOnly, which doesn’t
exploit pragmatics.

Our error analysis reveals that the significant
performance boosts enjoyed by semNeg and sem-
NegScal learners comes from the ability to in-
fer non-properties from property statements (i.e.
ψneg from ψ). The confusion matrices reported in
Fig. 6 allow us to study the mechanism. Specifi-
cally, notice how the maxHelp semOnly learner
in Fig. 6a frequently misclassifies brandy glasses
as burgundy glasses, whereas it is considerably
less likely to make such mistakes in the opposite
direction: 91% vs. 30%. We can see this is be-
cause semOnly learners do not have access to

(a) maxHelp semOnly on fineEasy difficulty.

(b) maxHelp semNeg on fineEasy difficulty.

Figure 6: Averaged confusion matrices taken from the
sequence-final evaluations for two configurations.

the negative property of burgundy glasses of not
having short stems (GO.burgundyGlass(O) ⇒
¬haveShortStem(O)). Therefore, while se-
mOnly learners can confidently dismiss instances
of burgundy glasses as non-instances of brandy
glasses, they are not able to dismiss instances
of brandy glasses as non-instances of burgundy
glasses. We can observe in Fig. 6b that this is pre-
cisely remedied by semNeg and semNegScal
learners, which are able to reliably distinguish the
two types in both directions: 24% vs. 19%.

The difference between semNeg and sem-
NegScal learner is more subtle. Although their
performances generally tend to converge after suf-
ficient training, learners that exploit scalar implica-
tures seem to show higher data efficiency at earlier
stages, especially in the fineHard task. Nonethe-
less, the two learning curves have largely overlap-
ping confidence intervals; we cannot make a strong
scientific claim based on these results, and we will
have to conduct experiments at a larger scale to
corroborate this difference.

https://github.com/itl-ed/ns-arch
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Task difficulty fineEasy fineHard

# training examples 5 15 30 10 30 60

minHelp 0.372 0.478 0.507 0.253 0.345 0.355
medHelp 0.371 0.494 0.529 0.241 0.346 0.426
maxHelp semOnly 0.719 0.743 0.750 0.551 0.558 0.582
maxHelp semNeg 0.727 0.797 0.805 0.572 0.636 0.681
maxHelp semNegScal 0.744 0.803 0.811 0.574 0.649 0.681

Table 2: Task performances of agents by mAP scores after different numbers of effective training examples.

6 Conclusion and Future Directions

In this research, we have proposed an interactive
symbol grounding framework for ITL, along with
a neurosymbolic architecture for the learner agent.
We empirically showed that learners who can com-
prehend and exploit valid inferences from generic
statements, including pragmatic content given their
context of use, can learn to ground novel visual con-
cepts more data-efficiently. Our findings confirm it
pays to study human-AI natural language interac-
tions through the lens of discourse semantics, not
only the truth conditions of isolated sentences but
also their coherent connections to their context.

In future, we plan to relax some of many sim-
plifying assumptions we made for controlled ex-
periments, possibly exploring other domains. For
instance, the ideal assumption that teachers are in-
fallible and communication is noise-free does not
hold in most real-world scenarios (Appelgren and
Lascarides, 2021). Further, the set of linguistic
constructions we have studied in this work is very
constrained (as intended), and a natural next step
is to accommodate a wider range of diverse and
free-form NL constructions. It is also a strong
assumption that the learner agent already has rela-
tively reliable beliefs about object part and concept
attributes. For example, if the learner does not
know what the “stem” of a wine glass means, the
absence of the concept must be resolved before
communicating any generic characterizations in-
volving stems. Finally, our approach does not fully
exploit the semantics of generic statements, which
express qualitative rules that admit exceptions (Pel-
letier and Asher, 1997). The generic quantifier G
did not play any significant role in this work. One
major strength of ASP is that it is well suited for
modeling non-monotonic inferences, and it would
be interesting to study how to model ITL scenar-
ios that can robustly address exceptions to generic
rules.
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A Vision processing module:
implementational details

Our implementation of the few-shot neural vision
processing module is based on the pretrained model
of two-staged Deformable DETR (Zhu et al., 2021).
We train new lightweight multilayer perceptron
(MLP) blocks for embedding image regions into
low-dimensional feature spaces. The MLP blocks
replace the existing pretrained prediction heads that
have fixed number of output categories, enabling
metric-based few-shot predictions of incrementally
learned visual concepts.

Let C, A and R denote open sets of visual con-
cepts of different types: object classes5, attributes6

and pairwise relations7. In principle, we need one
metric space for each concept type for their sep-
arate handling, hence three MLP blocks to train.
But for this work, |R| = 1, where the only relation
concept we need to capture is ‘have’ (whole-part re-
lationship). We can make proxy predictions for the
concept by the ratio of the area of bounding box in-
tersection to the area of the candidate object part’s
bounding box. Therefore, in the interest of simplic-
ity, we prepare only two embedder blocks for C
and A respectively; in future extensions where we
need to deal with a truly open R, we will have to
implement a relation-centric embedder block for R
as well.

Fig. 7 depicts how our vision module summa-
rizes the raw RGB image input I ∈ [0, 1]3×H×W

into a preliminary scene graph
∼
SG, and then makes

few-shot predictions to finally yield a scene graph
SG. I is first passed through the feature extractor
backbone to produce {fl}Ll=1, a set of feature maps
f l ∈ RC×Hl×W l

at L different scales. {fl}Ll=1

are flattened into a single sequence of input tokens
(thus in RC×

∑
l H

l·W l
), combined with appropri-

ate positional encodings and fed into the encoder.

5Intuitively corresponding to concepts denoted by nouns—
e.g.,‘brandy glass’, ‘stem’.

6intuitively corresponding to concepts denoted by
adjectives—e.g., ‘wide’, ‘short’.

7intuitively corresponding to concepts denoted by transi-
tive verbs and adpositions—e.g., ‘have’, ‘of’

We obtain from the encoder an objectness logit
score si and a proposal bounding box coordinate
bi ∈ [0, 1]4 for the input tokens, out of which
the top k proposals with the highest si scores are
selected. The selected proposals are fed into the
decoder along with corresponding feature vectors
to generate f ci , f

a
i ∈ RD, the class/attribute-centric

embeddings of each input token, in addition to
the (refined) bounding box coordinates bi. The
decoder outputs are collated into the preliminary
scene graph template

∼
SG= (Ñ , Ẽ). Ñ is the node

set containing bi, f
c
i , f

a
i for each detected object. Ẽ

is the edge set that would contain pairwise relation-
centric embeddings f ri,j for each pair of detected
objects. However, Ẽ is essentially empty in our
current implementation since as mentioned above,
we fall back to proxy prediction by area ratio for
the only relation concept of interest ‘have’.

For each visual concept γ ∈ C,A(, R), the
agent’s visual XB stores χ

+/−
γ , a set of posi-

tive/negative exemplars, which together naturally
induce a binary classifier BinClfγ . We are free
to choose any binary classification algorithm as
long as it can return probability scores for concept
membership from χ+

γ and χ−
γ . We use Platt-scaled

SVM with RBF kernel (Platt et al., 1999) in our
implementation. Then, SG = (N,E) is gener-
ated from

∼
SG and a set of BinClfγ’s, where N

and E are each the scene graph node set and the
scene graph edge set. For each scene object,N con-
tains ci ∈ [0, 1]|C| and ai ∈ [0, 1]|A|, each a vector
designating the probabilistic beliefs of whether the
object classifies as an instance of concepts inC and
A, as well as the box specification bi. E contains
information about binary relationships between or-
dered pairs of objects, namely ri,j ∈ [0, 1]|R|, the
probabilistic beliefs of whether the pair (i, j) is
an instance of concepts in R. As a reminder, in
our setting, N is computed from Ñ and BinClfγ
for each γ ∈ C,A, whereas E is computed from
bounding box area ratios.

Our new embedder blocks are trained on 50% of
the Visual Genome dataset (Krishna et al., 2017)
with NCA loss objective (Goldberger et al., 2004)
for metric learning, for 80,000 steps using SGD op-
timizer with the batch size of 64, the learning rate
of 3× 10−4 and the momentum factor of 0.1. The
prediction heads are then fine-tuned on our tabletop
domain dataset8 for 2,000 steps using Adam opti-
mizer, with the batch size of 16, the initial learning

8Excluding the fine-grained types of drinking glasses.

https://openreview.net/forum?id=gZ9hCDWe6ke
https://openreview.net/forum?id=gZ9hCDWe6ke
https://openreview.net/forum?id=gZ9hCDWe6ke
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Figure 7: A schematic of the structure of the vision processing module component in our agent architecture, and the
pipeline through which raw visual inputs are processed into the final scene graph estimate.

rate of 2 × 10−4 and PyTorch default values9 for
the hyperparameters β1, β2, ϵ.

B FOL representation of concept
properties

In the main paper, we have represented the NL
predication “have short stems” with an agglomer-
ate predicate haveShortStem for the sake of brevity,
so that “Brandy glasses have short stems” would be
translated into the PROP GO.brandyGlass(O)⇒
haveShortStem(O). However, this is an over-
simplification of what is actually happening under
the hood in our implementation. The predication
“have short stems” ought to be broken down into its
constituent meanings delivered by the individual
tokens “have”, “short” and “stem” respectively, for
primarily two reasons: 1) they are the elementary
units of concepts handled by the vision module
and included in the output scene graphs, and 2) the
object parts should be explicitly acknowledged as
entities separate from the objects they belong to,
and the generic PROPs should model relations be-
tween objects and their parts (plus their attributes).

In light of this, we choose to read NL sentences
of the form “{object}s have {attribute}
{part}s” as follows: “If O is an object, there
exists an entity P such that O has P as its part, and
P is a part that is attribute”. Then, for exam-

9https://pytorch.org/docs/stable/
generated/torch.optim.Adam.html

ple, the sentence “Brandy glasses have short stems”
would be represetned by the following PROP:

GO.brandyGlass(O)⇒
(∃P.have(O,P ), short(P ), stem(P ))

or alternatively,

GO.brandyGlass(O)⇒
have(O, f(O)), short(f(O)), stem(f(O))

where f is a skolem function that maps from the
instance of brandy glass to its (only) short stem.
We opt for the latter option because it is more com-
pliant with the formalism commonly used by logic
programming methods, in which existential quanti-
fiers are not admitted and variables are all implicitly
universally quantified.

C More examples of grounding problems
as probabilistic ASP programs

Example 2 below illustrates how lack of high-
confidence observation of a short stem of a glass o1
results in a weaker belief that o1 is a brandy glass.

Example 2. The agent sees an object o1 and ini-
tially estimates it’s equally likely to be a brandy
or burgundy glass. The agent also notices with
high confidence it does NOT have a short stem, and

https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
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knows brandy glasses have short stems:

logit(0.61) : brandyGlass(o1). (9)

logit(0.62) : burgundyGlass(o1). (10)

logit(0.10) : haveShortStem(o1). (11)

logit(0.95) : ⊥ ← brandyGlass(O),

not haveShortStem(O).
(12)

logit(0.95) : ⊥ ← haveShortStem(O),

not brandyGlass(O). (13)

This results in PΠ(brandyGlass(o1)) = 0.20,
whereas PΠ(burgundyGlass(o1)) = 0.62.

Example 3 shows how knowledge of neg-
ative properties of an object class can affect
symbolic reasoning. The example supposes
the agent’s KB only consists of the knowledge
“Burgundy glasses do not have short stems”,
namely the PROP GO.burgundyGlass(O) ⇒
¬haveShortStem(O). Note how we translate a
generic PROP whose Cons is a negation of some
L-formula into probabilistic ASP rules. Only rules
penalizing deductive violations are generated, in
which the negation (¬) that wraps around Cons
‘cancels out’ the default negation not. We do
not generate rules for penalizing failures to ex-
plain Cons from negative PROPs, as abductive in-
ferences of object classes from lack of properties
would give rise to far-fetched conclusions: e.g.,
inferring something might be a banana because it
does not have wheels.

Example 3. The agent sees an object o1 and ini-
tially estimates it’s equally likely to be a brandy or
burgundy glass. The agent also notices with high
confidence it has a short stem, and knows burgundy
glasses do NOT have short stems:

logit(0.61) : brandyGlass(o1). (14)

logit(0.62) : burgundyGlass(o1). (15)

logit(0.90) : haveShortStem(o1). (16)

logit(0.95) : ⊥ ← burgundyGlass(O),

haveShortStem(O).
(17)

This results in PΠ(brandyGlass(o1)) = 0.61,
whereas PΠ(burgundyGlass(o1)) = 0.19.

Note that knowledge about brandy glasses
do not affect the likelihood of o1 being a bur-
gundy glass, and vice versa: i.e., for an ob-
ject, the events of being a brandy glass vs. a

burgundy glass are independent. This is be-
cause the KBs in the examples do not introduce
any type of dependency between the two glass
types. For instance, if we inject mutual exclu-
sivity relation between the two types in the KB,
both probability values PΠ(brandyGlass(o1))
and PΠ(burgundyGlass(o1)) would be affected
by knowledge about either.

D Task domain: Fine-grained types of
drinking glasses to distinguish

Type Properties Sample image

bordeaux
glass

Bowl: elliptical, tapered.

brandy
glass

Bowl: wide, tapered, round.
Stem: short.

burgundy
glass

Bowl: wide, tapered, round.

champagne
coupe

Bowl: broad, round.

martini
glass

Bowl: broad, conic.

Table 3: Fine-grained types of drinking glasses modeled
in our tabletop domain. (Note only brandy glasses have
characteristic stems, whereas bowls of all glass types
can be characterized by some set of attributes.)

Tab. 3 lists the set of fine-grained types of drink-
ing glasses that are modeled in our simulated table-
top domain, along with their properties and sample
images. 3D meshes of the glasses are obtained
from a website that lists stock models made by
third-party providers,10 then imported into the sim-
ulation environment.

As illustrated, properties of each fine-grained
type comprise its part attributes. For instance,
the full set of properties of a brandy glass could
be expressed as a set {(wide, bowl), (tapered,
bowl), (round, bowl), (short, stem)}. When asked,
our simulated teacher computes the answer to
?conceptDiff QUES as pairwise symmetric
differences between property sets: e.g., for
?conceptDiff(brandyGlass,burgundyGlass),

10https://www.turbosquid.com/3d-models/
wine-glasses-3d-1385831

https://www.turbosquid.com/3d-models/wine-glasses-3d-1385831
https://www.turbosquid.com/3d-models/wine-glasses-3d-1385831
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Confusion champagne coupe - burgundy glass burgundy glass - bordeaux glass

KB state

GO.champagneCoupe(O) ⇒ haveBroadBowl(O) GO.burgundyGlass(O) ⇒
GO.burgundyGlass(O) ⇒ haveWideBowl(O), haveRoundBowl(O)

haveWideBowl(O), haveTaperedBowl(O) GO.bordeauxGlass(O) ⇒ haveEllipticalBowl(O)
GO.burgundyGlass(O) ⇒ ¬haveBroadBowl(O) GO.bordeauxGlass(O) ⇒
GO.champagneCoupe(O) ⇒ ¬(haveWideBowl(O), haveRoundBowl(O))

¬(haveWideBowl(O), haveTaperedBowl(O)) GO.burgundyGlass(O) ⇒ ¬haveEllipticalBowl(O)
GO.bordeauxGlass(O) ⇒

haveWideBowl(O), haveTaperedBowl(O)
GO.bordeauxGlass(O) ⇒ ¬haveBroadBowl(O)

Table 4: An example illustration of how semNegScal learners can infer incorrect and unintended knowledge. The
underlined PROP denotes a generic rule which is neither correct nor intended by the teacher.

we obtain {(short, stem)} for brandy glasses and
∅ for burgundy glasses.

These properties of glasses did not ship with the
3D models; instead, we hand-coded them based
on information available on the internet. We have
put effort to prepare an annotation scheme that is
faithful to properties of the glasses in the reality, yet
the domain knowledge may still have inconsistency
against the ‘ground-truth’—any error in that regard
remains our own.

E Rule acquisition by inference of
implicatures and failure case analysis

In this work, we assume that all generic NL state-
ments given by the teacher are characterizations
of object classes by their positive properties (those
described in Appendix D), and statements of nega-
tive properties are never explicitly provided. This
reflects the fact that we usually characterize things
by their positive properties rather than by their
negative properties because the former generally
have more determining power (Zangwill, 2011).
Therefore, in our experiments, negative proper-
ties can be obtained only by virtue of inference
of implicatures. That is, for example, only sem-
Neg or semNegScal learners have access to
the negative PROP GO.burgundyGlass(O) ⇒
¬haveShortStem(O).

Nevertheless, semNegScal learners risk acqui-
sition of incorrect and unintended knowledge when
they make inferences of scalar implicatures. To see
this, study the example illustrated in Tab. 4, where
two successive confusions take place in the or-
der of brandy glass vs. burgundy glass
and then burgundy glass vs. champagne
coupe. In the example, the underlined PROP suc-
cessfully infiltrates into the learner’s KB without
being suppressed by explicitly stated PROPs or their
negative implicature counterparts. This is why in-

ference of the scalar implicatures should be can-
cellable, so that they can be retracted in the face
of contradictory evidence. In our implementation,
this is achieved by periodically inspecting the KB
entries against the episodic memory, removing any
rules whose counterexamples are found.


