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Abstract

The task of natural language inference (NLI)
asks whether a given premise (expressed in NL)
entails a given NL hypothesis. NLI benchmarks
contain human ratings of entailment, but the
meaning relationships driving these ratings are
not formalized. Can the underlying sentence
pair relationships be made more explicit in an
interpretable yet robust fashion? We compare
semantic structures to represent premise and
hypothesis, including sets of contextualized em-
beddings and semantic graphs (Abstract Mean-
ing Representations), and measure whether the
hypothesis is a semantic substructure of the
premise, utilizing interpretable metrics. Our
evaluation on three English benchmarks finds
value in both contextualized embeddings and
semantic graphs; moreover, they provide com-
plementary signals, and can be leveraged to-
gether in a hybrid model.

1 Introduction

Natural language inference (NLI) and textual en-
tailment (TE) assess whether a hypothesis (H) is
entailed by a premise (P). Systems have various
interesting applications, e.g., the validation of au-
tomatically generated text (Holtzman et al., 2018;
Honovich et al., 2022). Recent systems make use
of neural networks to encode H and P into a vec-
tor and thereupon make a prediction (Jiang and
de Marneffe, 2019). While this can provide strong
results when such systems are trained on large-
scale training data, the overall decision process is
not transparent and may rely more on spurious cues
than on informed decisions (Poliak et al., 2018).

We aim to develop more transparent alternatives
for NLI prediction, and therefore compare repre-
sentations and metrics to predict entailment. Fig-
ure 1 gives an intuition of how 5 different sentences
overlap in meaning. Representing each sentence
with a semantic structure, we assume that, by and

a) A kitten is drinking fresh milk.

b) The milk is being drunk by a cat

c) The milk is not drunk by any kitten.

d) There is no milk being drunk by a cat.

e) There is milk

Figure 1: Semantic (sub-)structure analysis shows that
4 of 25 candidate relations are true entailment relations:
b) is entailed by a). d) is entailed by c). e) is entailed by
a), b), and c).

large, the semantic elements of an entailed sentence
should be contained within the premise.

These considerations trigger three interesting re-
search questions that we will investigate in this
paper: RQ1. How to characterize a semantic struc-
ture? RQ2. How to determine/measure what is a
substructure? RQ3. Is there a suitable and inter-
pretable structure and measure that help to make
NLI judgments more robust, or more accurate?

To assess RQ1, we test three options: token sets,
sets of contextualized embeddings, or graph-based
meaning representations (MRs). As a meaning
representation, we select Abstract Meaning Rep-
resentation (AMR; Banarescu et al., 2013), using
automatic AMR parses of the NLI sentences. To
assess RQ2, we test different types of metrics that
are designed or adapted to measure entailment on
the selected structures, inspired from research on,
e.g., MT evaluation and MR similarity. One of our
key goals is to investigate whether it is possible
to accurately capture relevant semantic substruc-
ture relationships via meaning representations. Fi-
nally, we show that we can positively answer all
aspects of RQ3: First, besides their enhanced in-
terpretability, unsupervised semantic graph metrics
are more robust and generalize better than fine-
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tuned BERT. Second, importantly, we show that
they are high-precision NLI predictors, a property
that we exploit to achieve strong NLI results with
a simple decomposable hybrid model built from
a fine-tuned BERT on the one hand, and a seman-
tic graph score on the other. Code and data are
available at https://github.com/flipz357/AMR4NLI.

2 Related work

Textual entailment Automatic approaches for
this task date back to, at least, Dagan et al. (2006),
who introduced a shared task for entailment clas-
sification. Since then, we can distinguish many
different kinds of systems for addressing the task
(Androutsopoulos and Malakasiotis, 2010), for in-
stance, based on logics (Bos and Markert, 2005)
or string- and tree-similarity (Zhang and Patrick,
2005), or graph matches of semantic frames and
syntax (Burchardt and Frank, 2006) that aim in a
similar direction as us. Recent releases of large-
scale training corpora, such as SNLI (Bowman
et al., 2015), or MNLI (Williams et al., 2018) can
be exploited for supervised training of strong clas-
sifiers, e.g., by fine-tuning a BERT language model
(Devlin et al., 2019). However, trained systems
tend to suffer from the ‘Clever Hans’ effect and fall
prey to spurious cues (Niven and Kao, 2019; Jin
et al., 2020), such as position (Ko et al., 2020) or
even gender (Sharma et al., 2021). This can lead to
undesired and peculiar NLI system behavior. Po-
liak et al. (2018) show that supervised NLI systems
can make many correct predictions solely based on
P , without even seeing H. In our work, we want
to test more transparent ways of rating entailment.

Metrics and meaning representations In part
due to the reduced dependence on spurious cues,
unsupervised/zero-shot metrics are found in evalu-
ation of MT (e.g., BERTscore (Zhang et al., 2020),
BLEURT (Sellam et al., 2020)), and NLG faithful-
ness checks (Honovich et al., 2022). Through the
lens of abstract meaning representation (Banarescu
et al., 2013), systems perform explainable sentence
similarity (Opitz et al., 2021b; Opitz and Frank,
2022b), NLG evaluation (Opitz and Frank, 2021;
Manning and Schneider, 2021), cross-lingual AMR
analysis (Wein and Schneider, 2021, 2022; Wein
et al., 2022), and search (Bonial et al., 2020; Müller
and Kuwertz, 2022; Opitz et al., 2022). Leung et al.
(2022) discuss different use-cases of embedding-
based and MR-based metrics.

3 Method

3.1 Underlying research hypotheses
RH1: Semantic substructure analysis with
asymmetric metrics can predict entailment We
aim to study the entailment problem through analy-
sis of semantic structure of P and H. To perform
such analysis, we need a metric that can measure
the degree to which H-structure is contained in
the P-structure. Therefore, we hypothesize that
an asymmetric metric is preferable. Note that
asymmetric metrics of complex objects like sets
or graphs tend to be under-studied in NLP.1

RH2: Meaning representations are suitable se-
mantic structures Semantic structures for P/H
should (ideally) hold facts that make them true. In
this work we explore three options to build such
structures for H/P: i) the set of text tokens, ii) the
set of (contextual) embeddings obtained from them,
and iii) graph-structured MRs. It is the latter that
we hope will represent the facts best: A token set
holds ‘facts’ in their surface form, which can be
lossy in morphologically rich languages or with
paraphrases. Contextual embedding sets, on the
other hand, are powerful meaning representations,
but hardly offer interpretability. An MR-structure
is semantically more explicit, and is defined to rep-
resent a sentence’s meaning through its parts.

3.2 Implementation
Preliminaries Let us define a

metricDT : D ×D → [0, 1] (1)

where 1 implies true entailment. With the parame-
ter D we denote the metric domain (i.e., text with
metrictext or MR with metricgraph). The type
parameter T specifies whether the metric is sym-
metric (metricsym), or asymmetric (metricasym).

3.3 Text metrics: metrictext

Token metrics Given a set of tokens from H and
from P , our asymmetric metrictextasym calculates a

1Indeed, most metrics used in NLP are naturally symmetric
(e.g., cosine distance). Others fuse two asymmetric metrics
into, e.g., an F1 score from precision and recall (Popović,
2015; Zhang et al., 2020). Alternatively, they are inherently
asymmetric but enforce symmetry via balancing with an in-
versely correlated metric, e.g., BLEU (Papineni et al., 2002)
focuses on precision but tries to factor in recall via a ‘brevity
penalty’. Even in related cases, where using an asymmetric
metric seems intuitive, we find that sometimes symmetric met-
rics being used instead, e.g., Ribeiro et al. (2022) design a
baseline for assessing faithfulness of automatically generated
summaries with a symmetric F1 score using an AMR metric.

https://github.com/flipz357/AMR4NLI
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unigram precision-score:

TokP = |H|−1 · |toks(H) ∩ toks(P)|, (2)

which is known to be a simple but strong predictor
baseline for NLI-related tasks such as faithfulness
evaluation in generation (Lavie et al., 2004; Baner-
jee and Lavie, 2005; Fadaee et al., 2018) (the most
closely related ‘BLEU-1’ is used in many papers
to assess system outputs). By switching H and P
in Eq. 2, we calculate TokR, and based on these a
symmetric metrictextsym TokS via harmonic mean.

BERTscore (Zhang et al., 2020) is a contex-
tual embedding metric that calculates a greedy
match between BERT embeddings of two texts,
in our case: hypothesis EH := embeds(H) and
premise EP := embeds(P). For our asymmetric
metrictextasym, we calculate a precision-based score:

BertScoP = |EH|−1
∑
e∈EH

max
e′∈EP

eT e′. (3)

Symmetric metrictextsym BertS is calculated as har-
monic mean of BertScoP and BertScoR, the latter
being obtained by switching H and P in Eq. 3.

3.4 MR Graph metrics: metricgraph

We study the following (a)symmetric MR metrics.

GTok Emulating TokP and TokS, we introduce
GTokS and GTokP via Eq. 2 applied to two bags
of graphs’ node- and edge-labels.

Structural matching with Smatch (Cai and
Knight, 2013) aligns triples of two graphs for best
matching score, and returns precision (SmatchP)
and a symmetric F1 score (SmatchS). We use the
optimal ILP implementation of Opitz (2023).

Contextualized matching with WWLK aims
at a joint and contextualized assessment of node
semantics and node semantics informed by neigh-
borhood structures. Therefore, Opitz et al. (2021a)
first iteratively contextualize a vector representa-
tion for each node by averaging the embeddings
of all nodes in their immediate neighborhood (the
iteration count is indicated by K, which we set
to 1). The normalized Euclidean distance of the
concatenation of these refined vectors defines a
cost matrix C, where Cij is the distance of nodes
i ∈ P , j ∈ H. The AMR similarity score
is derived by solving a transportation problem:

WWLK = 1 − minF
∑

i

∑
j FijCij where Fij

is the flow between nodes i, j. Opitz et al. con-
strain

∑
j F∗j = 1/|P| and

∑
i Fi∗ = 1/|H|. We

call this symmetric setting WWLKS. We addition-
ally propose an asymmetric sub-graph matching
score WWLKP where we let

∑
j F∗j ≤ 1 instead.

The most reduced version, which deletes
all structural information from the graphs, is
achieved by setting k = 0, which we denote as
N(ode)Mover(P|S) score, analogously to the popu-
lar word mover’s score (Kusner et al., 2015).

3.5 Hybrid model

Our decomposable hybrid model takes the predic-
tion of a text metric, and the prediction of a graph
metric, and returns an aggregate score. Such a met-
ric can provide an interesting balance between a
score grounded in a linguistic interpretation, and
a score obtained from strong language models. If
the two scores are both useful and complemen-
tary, we may even hope for a rise in overall results.
To test such a scenario we will combine the best
performing metricgraph with the best performing
metrictext via a simple sum (α = 0.5):

α ·metricgraph + (1− α)metrictext. (4)

4 Evaluation setup

Data sets We employ five standard sentence-
level data sets: i) SICK (test) by Marelli et al.
(2014) and SNLI (dev & test) by Bowman et al.
(2015), as well as iii) MNLI (matched & mis-
matched) by Williams et al. (2018). Mismatched
(henceforth referred to as MNLI-mi) can be under-
stood as a supposedly more challenging data set
since it contains entailment problems from a differ-
ent domain than the training data, allowing a more
robust generalization assessment of trained models.
By contrast, in MNLI-ma(tched) the domain of the
testing data matches that of the training data. For
each data set, we map the three NLI labels to a
binary TE classification setting, by merging contra-
diction and neutral to the non-entailed class.2

Evaluation metric We expect predictions to cor-
relate with the probability of entailment, i.e.,

metricDT (x, y) ↑ =⇒ P (x entails y) ↑,
2Same as in Uhrig et al. (2021), we use the T5-based off-

the-shelf parser from amrlib for projecting AMR structures.

https://github.com/bjascob/amrlib
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where ↑ means ‘higher is better’. The NLI ‘gold
probability’ labels are approximated as binary hu-
man majority labels. To circumvent a threshold
search and obtain a meaningful evaluation score
for comparing our metrics, we follow the advice of
Honovich et al. (2022), who evaluate metrics for
zero-shot faithfulness evaluation of automatic sum-
marization systems, using mainly the Area Under
Curve (AUC) metric. The AUC score is the proba-
bility that given randomly drawn instances (P,H,
entailed) and (P ′,H′, non-entailed) the entailed in-
stance receive a higher score. To rank metrics, we
calculate two averages: AVGall averages the scores
over all data sets, while AVGnli excludes SICK.3

Trained (upper-bound) We use a BERT trained
on 500k SNLI examples.4 It predicts an entailment
probability from a vector representation generated
by a transformer model.

5 Results

5.1 Main insights
Main insights can be inferred from Table 1. On
all data sets, and overall on average, asymmet-
ric metrics substantially outperform symmetric
metrics. Sometimes they improve results by up
to ten AUC points over their symmetric counter-
parts (e.g., NMoverS vs. NMoverP, +9.2). Com-
paring token sets, embedding sets and graphs, we
find that both embedding set and graph prove ad-
vantageous: NMoverP achieves slightly better re-
sults than BertScoP, which has been pre-trained
on large data. Fine-tuned BERT outperforms the
tested unsupervised metrics when test data is in-
domain (see SNLI results), but falls short at gen-
eralization. However, our simple hybrid model
can inform the output with sub-graph overlap
and yields a strong boost outperforming all un-
supervised and even trained metrics by a large
margin (+4.5 points).

5.2 Analysis
Advantage of AMR and AMR metrics: high pre-
cision For each metric, we retrieve the p% most
probable predictions, and calculate their accuracy.
Results, averaged over all data sets, are displayed in
Table 2. In high % levels, MR metrics outperform
BertScoP by almost 20 points (e.g., BertScoP vs.

3SICK contains entailment labels but not the direction of
entailment and thus we do not include it in AVGnli.

4https://huggingface.co/textattack/
bert-base-uncased-snli

WWLKP: +17.6 points), and even the fine-tuned
BERT is strongly outperformed. Therefore, we can
attribute the surprisingly strong performance of the
graph metrics (and the hybrid model) to its poten-
tial for delivering high scores in which we can trust
– if it determines that the semantic graph of H is
(largely) a subgraph of P , true entailment is most
likely (in Appendix A, we show two examples).

Advantage of untrained (AMR) metrics: better
robustness We check the robustness of our di-
verse NLI metrics on a controlled substructure of
3,261 SNLI testing examples by Gururangan et al.
(2018), who removed examples that show spuri-
ous biases and/or annotation artifacts. Results in
Table 3 show a catastrophic performance drop by
trained BERT (−12.0 points), while untrained met-
rics such as TokP and WWLKP remain unaffected
(+0.4 points) and WWLKP now even outperforms
the SNLI-trained BERT model. Lastly, we see that
the hybrid model can (partially) mitigate the drop
introduced by its trained component (−7.3 points).

Discussion: graph metrics struggle with recall,
and other limitations The MR metrics struggle
with recall since they have problems to cope with
MRs that strongly differ structurally, but not (much)
semantically, which is a known issue (Opitz et al.,
2021a). An example from our data is the following:
In The man rages, man is the arg0 of rage, while in
the entailed sentence A person is angry, person is
the arg1 of angry, yielding large structural dissimi-
larity of MR graphs (SmatchP=0.0). In future work
we aim to explore and improve this issue, such that
we are able to identify that the experiencer of angry
is strongly related to the agent of rage.

Potentially unrelated to the recall problem, other
issues may hamper AMR usage for NLI, e.g., in-
consistent copula modeling (Venant and Lareau,
2023), or parsing errors: even though parsers tend
to provide high-quality output structures, they can
still suffer from significant flaws (Opitz and Frank,
2022a), and thus their improvement may positively
affect AMR4NLI performance.

Weights in hybrid model Recall that we can use
α in Eq. 4 to weigh two metrics. We inspect dif-
ferent α in Figure 2 for fusing trainBERT (text)
and WWLKP (graph, α ≥ 0.5: graph metric is
weighted higher). While a balance (α ≈ 0.5) over-
all seems effective, SNLI profits if the text metric
has more influence, and MNLI profits if the graph
metric dominates. Finally, again we see more stable

https://huggingface.co/textattack/bert-base-uncased-snli
https://huggingface.co/textattack/bert-base-uncased-snli
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D(omain) metric SICK SNLI-dev SNLI-test MNLI-ma MNLI-mi AVGall AVGnli

te
xt

TokS 72.1 64.2 64.6 66.7 68.7 67.2 66.0
TokP 74.7 70.0 70.6 68.2 70.3 70.8 69.8
BertScoS 79.8 66.7 66.2 68.4 71.6 70.5 68.2
BertScoP 82.0 74.5 74.0 74.5 77.5 76.5 75.1

A
M

R
gr

ap
h

GTokS 78.2 63.2 62.6 66.4 68.5 67.8 65.2
GTokP 81.0 75.1 74.7 71.1 72.6 74.9 73.4
NMoverS 77.7 65.8 64.9 66.7 68.5 68.7 66.5
NMoverP 79.4 77.9 77.2 72.9 74.8 76.5 75.7
SmatchS 76.3 63.3 62.3 65.7 67.6 67.0 64.7
SmatchP 79.2 72.3 71.6 70.0 71.9 73.0 71.4
WWLKS 77.2 66.4 65.6 65.7 67.5 68.5 66.3
WWLKP 79.3 78.0 77.3 71.9 73.8 76.1 75.3

text trainBERT 81.0 88.8 88.2 71.5 72.0 80.3 80.1
hybrid trainBERT + WWLKP 85.9 91.0 90.4 77.9 78.9 84.8 84.5

Table 1: Overall AUC results on five data sets. The last two rows involve a trained component.

AVG Accuracy scores
D(omain) metric 1% 2% 3% 4% 5% 7% 10% 15% AVGall AVGnli

te
xt TokP 88.4 87.1 81.0 74.4 72.8 71.4 68.3 64.2 76.0 77.3

BertScoP 74.5 74.0 73.3 73.9 73.9 73.0 72.0 69.4 73.0 73.8

A
M

R
gr

ap
h GTokP 86.5 86.5 87.1 88.0 87.7 86.1 80.4 73.6 84.5 88.4

NMoverP 85.3 84.5 85.0 85.2 86.2 84.7 82.4 74.2 83.4 89.6
SmatchP 90.0 89.1 88.4 85.2 81.9 77.9 74.2 68.3 81.9 83.8
WWLKP 97.3 96.8 96.1 95.0 93.8 88.4 82.4 74.8 90.6 90.7

text trainBERT 84.5 84.0 82.9 81.5 80.6 79.0 76.8 73.2 80.3 81.9
hybrid trainBERT + WWLKP 96.7 95.7 94.3 93.4 92.5 90.2 86.7 82.2 91.5 92.9

Table 2: Precision assessment. We select p% of a metric’s highest predictions and check the ratio of true entailment.

training no yes no no/yes
domain text text embedding AMR hybrid
metric TokP BScoP BERT WWLKP +BERT

AUC 71.0 71.4 76.2 77.7 83.1
AUC ∆ +0.4 -3.6 -12.0 +0.4 -7.3

Table 3: Evaluation on 3,261 hard SNLI-test examples.
AUC ∆: observed change in performance (cf. Table 1).

performance of graph metrics overall (converging
AUC with high α vs. diverging AUC with low α).

6 Conclusion

We find that metrics defined on advanced semantic
representations are useful predictors of entailment.
This is especially true for metrics performing asym-
metric measurements on graph-structured meaning
representations and sets of contextualized embed-
dings. Interestingly, meaning representation-based
metrics offer advantages over strong embedding-
based metrics beyond just interpretability: while
showing similar performance as BERTscore, they
are more robust than fine-tuned BERT and offer

Figure 2: Balancing the hybrid text-graph metric.

high-precision predictions. With this, we show
that linguistic and neural representations can com-
plement each other in a hybrid model, leading to
substantial improvement over both untrained and
trained neural approaches.
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A Appendix

Figure 3: Two example ratings assessing true entailment:
The first shows how MR can define a useful semantic
set, the second shows that sometimes embedding-based
graph metrics, such as WWLKP, are needed to assess the
subgraph properly (in this example, SmatchP provides
semantically meaningless alignments and a score that is
too low.)


