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Abstract

The similarity of graph structures, such as
Meaning Representations (MRs), is often as-
sessed via structural matching algorithms, such
as SMATCH (Cai and Knight, 2013). How-
ever, SMATCH involves a combinatorial prob-
lem that suffers from NP-completeness, making
large-scale applications, e.g., graph clustering
or search, infeasible. To alleviate this issue, we
learn SMARAGD®: Semantic Match for Ac-
curate and Rapid Approximate Graph Distance.
We show the potential of neural networks to
approximate SMATCH scores, i) in linear time
using a machine translation framework to pre-
dict alignments, or ii) in constant time using
a Siamese CNN to directly predict SMATCH
scores. We show that the approximation er-
ror can be substantially reduced through data
augmentation and graph anonymization.

1 Introduction

Semantic graphs such as Meaning Representation
(AMR) are directed, rooted and acyclic, and la-
beled. For instance, in AMR (Banarescu et al.,
2013) labels indicate the events and entities of a
sentence, and structures capture semantic roles and
other key semantics such as coreference.

Often, pairs of MRs need to be studied, using
MR metrics. Classically, MRs are compared to
assess Inter Annotator Agreement in SemBank-
ing or for the purpose of parser evaluation, typi-
cally using the structural SMATCH metric (Cai and
Knight, 2013; Opitz, 2023). Going beyond these
applications, researchers have leveraged SMATCH-
based MR metrics for NLG evaluation (Opitz and
Frank, 2021; Manning and Schneider, 2021), for
re-inforcing AMR parsers (Naseem et al., 2019),
as a basis for a COVID-19 semantics-based search
engine (Bonial et al., 2020), comparison of cross-
lingual AMR (Uhrig et al., 2021; Wein et al., 2022),
and fine-grained argument similarity assessment

(Opitz et al., 2021b). Many of these extended sce-
narios greatly profit from a quick similarity compu-
tation. Also, additional future applications can be
anticipated that require fast metric inference: e.g.,
corpus linguists who want to find instantiations of
abstract semantic patterns in a large corpus.

But graph metrics typically suffer from a high
time complexity: Computation of SMATCH is NP-
hard (Nagarajan and Sviridenko, 2009), and it can
take more than a minute to compare some 1,000
AMR pairs (Song and Gildea, 2019). To understand
that this can become problematic in many setups,
consider a hypothetical user who desires exploring
a (small) AMR-parsed corpus with only n = 1, 000
instances via clustering. The (symmetric) SMATCH
needs to be executed over (n? —n)/2 = 499, 500
pairs, resulting in a total time of more than 6 hours.

This high time complexity is a well-known bot-
tleneck and negatively impacts AMR evaluation
time (Song and Gildea, 2019), as well as parsing
efficency of approaches involving re-inforcement
learning (Naseem et al., 2019) or graph ensem-
bling (Hoang et al., 2021), where the SMATCH
metric is executed with high frequency. Further-
more, given recent interest into larger meaning rep-
resentations that cover multiple sentences, such
as multi-sentence AMR (O’Gorman et al., 2018),
dialogue AMR (Bonial et al., 2021) or discourse
representation structures (Kamp, 1981; van Noord
et al., 2018), we anticipate that this problem will
become more pressing in the future.

Testing ways to mitigate these issues, we pro-
pose a method that learns to match semantic graphs
from a teacher SMATCH, and show that this can re-
duce AMR clustering time from hours to seconds,
with only little expected loss in accuracy.

Our contributions are:

1. We explore three different neural approaches
to synthesize the combinatorial graph metric
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SMATCH from scratch.

2. We show that we can approximate SMATCH
up to a small error, by leveraging novel data
augmentation tricks.

Our code is available at: https://github.com/
PhMeier/Smaragd/.

2 Related work

Other metrics for MR similarity Recently, re-
searchers have proposed AMR metrics beyond
SMATCH. We can distinguish two lines of work:
1) metrics aiming at extreme efficiency by skip-
ping the alignment and extracting graph parts via
breadth-first traversal (Song and Gildea, 2019; An-
chiéta et al., 2019). ii) Weisfeiler-Leman graph
metrics that aim to reflect human similarity ratings
(Opitz et al., 2021a). Opitz et al. (2020) make an
argument for the importance of graph alignment.

Algorithm synthesis Neural networks have been
studied for solving other problems efficiently. Ex-
amples range from sorting numbers (Graves et al.,
2014; Neelakantan et al., 2016) to solving elabo-
rated tasks such as symbolic integration (Lample
and Charton, 2019), the famous traveling salesman
problem (Gambardella and Dorigo, 1995; Budinich,
1996; Bello et al., 2016; Zhang et al., 2021), and
computer programs (Balog et al., 2016; Nye et al.,
2020; Chen et al., 2021). The ‘long-range arena’
benchmark (Tay et al., 2021) includes algorithm
synthesizing tasks, such as ‘listOps’ (learning to
calculate), or Xpath (tracing a squiggly line), which
prove challenging even for SOTA architectures.
Since structural graph matching with SMATCH con-
stitutes a very hard combinatorial problem, inves-
tigating efficient neural approximations seems an
interesting challenge in general — beyond the use-
case of rapid graph distance calculation.

3 Learning NP-hard graph alignment

The SMATCH metric measures the structural over-
lap of two graphs. We i) compute an alignment
between variable nodes of graphs and ii) assess
triple matches based on the provided alignment.
Formally, we start with two graphs a and b with
variable nodes X = (z1,...zp) and Y = (y1...Ym)-
The goal is then to find an optimal alignment

map* : X =Y, (1)

searching for a map that maximizes the number
of triple matches for the two graphs. For instance,

assume two AMR triples (x, ARGQ, y) € G and
(u, ARGO, v) € ¢'. If x = uand y = v, we count
one triple match. Finally:

SMATCH = max score(a,b,map) (2)

map

Researchers typically use a harmonic mean
based overlap score = F'1 = 2PR/(P + R),
where P = |triples(a) N triples(b)|/|triples(a)
and R = [triples(a) N triples(b)|/|triples(b|.

3.1 Setup

Experimental data creation We create the data
for our experiments as follows: 1. We parse 59,255
sentences of the LDC2020T02 AMR dataset with a
parser (Lyu and Titov, 2018) to obtain graphs that
can be aligned to reference graphs; 2. For every par-
allel graph pair (a, b), we use SMATCH (ORACLE)
to compute an F1 score s and the alignment map”*,
yielding an extended data tuple (a, b, s, map*) We
shuffle the data and split it into training, develop-
ment and test set (56255-1500-1500).

Objective and approach The task is to repro-
duce the teacher ORACLE as precisely as possible.
We design and test three different approaches. The
first is indirect, in that it predicts the alignment,
from which we compute the score. The second
directly predicts the scores. The third approach en-
hances the second, to make it even more efficient.

3.2 Synthesis option I: Alignment learning

Here, we aim to learn the alignment itself (Eq. 1)
with an NMT model, as illustrated in Figure 1. For
the input, we linearize the two AMRs and concate-
nate the linearized token sequences with a special
<SEP> token. The output consists of a sequence
TjYk ... Ti'Ym ... Where in every pair u:v, u is
a variable node from the first AMR mapped to a
node v from the second AMR. The SMATCH score
is then calculated based on the predicted alignment.
To predict the node alignments/mapping of vari-
ables, we use a transformer based encoder-decoder
NMT model. Details about the network structure
and hyperparameters are stated in Appendix A.1.

3.3 Synthesis option II: SMATCH prediction

In this setup, we aim to predict SMATCH F1 scores
for pairs of AMRs directly, in a single step. This
means that we directly learn Eq. 2 with a neural
network and our target is the ORACLE F1 score.
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Figure 1: Seq2seq SMATCH alignment-learner.
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Figure 2: Implicit CNN-based SMATCH graph metric predictor.

To learn this mapping, we adapt the convolu-
tional neural network (CNN) of Opitz (2020), as
shown in Figure 2. The model was originally in-
tended to assess AMR accuracy (Opitz and Frank,
2019), i.e., measuring AMR parse quality without
a reference. Taking inspiration from human anno-
tators, who exploit a spatial ‘Penman’ arrangement
of AMR graphs for better understanding, it models
directed-acyclic and rooted graphs as 2d structures,
employing a CNN for processing, which is highly
efficient. To feed a pair of AMRs, we remove the
dependency graph encoder of the model and re-
place it with the AMR graph encoder. Moreover,
we increase the depth of the network by adding
one more MLP layer after convolutional encoding.
A basic mean squared error is employed as loss
function. More details about hyperparameters are
stated in Appendix A.2.

3.4 Synthesis option III: AMR Vector learning

Inspired by Reimers and Gurevych (2019), we aim
to make the CNN even more efficient, by allevi-
ating the need for pair-wise model inferences. In-
stead of computing a shared representation of two
CNN-encoded graphs, we process each representa-
tion with an MLP (w/ shared parameters), to obtain
two vectors NN (a) and NN (b). These vectors

are then tuned with signal from ORACLE(s):

=y

2
([1— |INN(a)—NN(b)|] —s) , (3)
(a,b,s)

where || is returns a vector distance € [0, 1]. This
approach enables extremely fast search and clus-
tering: the required (clustering-)model inferences
are O(n) instead of O(n?), since the similarity is
achieved with simple linear vector algebra.

3.5 Data compression and extension tricks

Vocabulary reduction trick The SMATCH met-
ric measures the structural overlap of two graphs.
This means that we can greatly reduce our vocabu-
lary, by assigning each graph pair a local vocabu-
lary (see Figure 3, ‘anonymize’).

First, we gather all nodes from two graphs a
and b, computing a joint vocabulary over the con-
cept nodes. We then relabel the concepts with
integers starting from 1. E.g., consider AMR a:
(r / run-01 :ARGO (d / duck)), and AMR b: (x
/ run-01 :ARGO (y / duck) :mod (z / fast)). The
gold alignment is map* = {(r,z), (d,y), (0, 2)}.
Now, we set the shared concepts and relations to
the same index run=run=1 and duck=duck=2 and
:ARGO=:ARGO0=3 and distribute the rest of the in-
dices r=4, d=5, x=6, y=7, z=8, fast=9, :mod=10.
This yields equivalent AMRs o' =(4/1:3(5/2))

269



Anonymize

[ s=x; c=w; r=z; y=None |
477 triples matching |

[6=10; 7=11; 9=12; 8=None]|
[ 477 triples matching |

Permute

[ 12=6; 4=9; 8=3; 7=None |
[ 4/7 triples matching |

Figure 3: AMR graph anonymization and permutation.

andb' =(6/1:3(7/2):10(8/9)). The target align-
ment then equals map* = {(4,6),(5,7),(0,8)}.
This strategy greatly reduces the vocabulary size,
in our case from 40k tokens to less than 700.

Auxiliary data creation trick We also find that
we can cheaply create auxiliary gold data. We
re-assign different indices to AMR tokens, and cor-
respondingly modify the ORACLE alignment (Fig-
ure 3, ‘permute’). In our experiments, we permute
the existing token-index vocabularies 10 times, re-
sulting in a ten-fold increase of the training data.
We expect that, with this strategy, the model will
better learn properties of permutation invariance,
which in turn will help it synthesize the algorithm.

3.6 Evaluation

Output post-processing For the score synthe-
sis (Option II) and vector synthesis (Option III),
no further post-processing is required, since we
directly obtain the estimated SMATCH scores as
output. In the explicitly synthesized alignment al-
gorithm, however, we get map, which is the pre-
dicted alignment from the sequence-to-sequence
model. In this case, we simply feed map as an
argument into Eq. 2, to obtain the scores.

Evaluation We compare the predicted scores 3
against the gold scores y with Pearson’s p. How-
ever, for the model that predicts the explicit align-
ment (Option I), we can compute another inter-
esting and meaningful metric. For this, we first
calculate the average SMATCH score over AMR
pairs given the gold alignment map*, and then we
calculate the average SMATCH score over AMR
pairs given the predicted alignment map using Eq.

secs)

datatrick Eq.2 Pea’sp timel
ORACLE na 71.5 100 28680
rand. baseline na 13.5 222 0.4
align. synthesis 39.0 52.8 1089
align. synthesis  voc 64.5 80.0 1089
align. synthesis ~ voc+aug 76.4 98.4 1089
score synthesis na 817.5 140
score synthesis  voc na 82.0 140
score synthesis  voc+aug na 96.8 140
vector synthesis na 84.7 0.7
vector synthesis  voc na 75.6 0.7
vector synthesis  voc+aug na 94.2 0.7

Table 1: Results of experiments. time: Approximate
time for computing a pair-wise distance matrix on 1k
AMRs on a TI 1080 GPU.

2. Note, that the SMATCH score based on the gold
alignment constitutes an upper bound (max). There-
fore, the SMATCH score based on the predicted
alignment shows us how close we are to this up-
per bound. Our baseline consists of scores that are
computed from a random alignment (random).

Results (Table 1) Our best model is the NMT
approach using both data augmentation tricks. Ob-
taining 98.4 p, it very closely approximates the
ORACLE, while being about 30 times faster than
ORACLE and 76.2 points better then the random
baseline. Perhaps the best tradeoff between speed
and approximation performance is gained by the
simple CNN score synthesis (96.8 p, 200x faster
than ORACLE), also using both data tricks. The
vector synthesis falls a bit shorter in performance
(94.2 p), but it is extremely fast and achieves a
40,000x speed-up compared to ORACLE and about
1500x compared to the NMT approach. !

Consistently, the data extension (aug) is very
useful. However, the vocabulary reduction (voc)
is only useful for the NMT model (+27.2 points),
whereas the scores are lowered for the CNN-based
models (—5.5 for score synthesis, —9.1, vector
synthesis). We conjecture that the CNNs learn
SMATCH more indirectly by exploiting token simi-
larities in the global vocabulary, and therefore strug-
gle more to build a generalizable algorithm, in con-
trast to the bigger NMT transformer that learns to
assess tokens fully from their given graph context.

"Note also that all models in Table 1 are significantly bet-
ter (p<0.001) than the random baseline (one-sided test w/
z-transform).
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4 Conclusion

We tested methods for learning to solve the hard
structural graph matching problem that is key to
many applications where we compare meaning rep-
resentations. To this aim, we explored different
neural architectures, and data augmentation strate-
gies that help models to generalize. Our best mod-
els increase metric calculation speed by a large
factor while incurring only small losses in accu-
racy that can be tolerated in many use cases. Our
work paves the way to emergent use-cases of mean-
ing representation that involve pair-wise analysis:
e.g., semantic clustering or semantic pattern-based
search for corpus linguistic studies.

Limitations

An issue of the tested methods concerns the align-
ment of larger graphs with many variables. On
one hand, when the alignment candidate space in-
creases, the runtime of SMATCH increases expo-
nentially, while our considered approaches remain
fast. However, in such a scenario, the neural mod-
els are bound to trade in some accuracy. Table 4
(Appendix A.3) assesses the effect size for differ-
ently sized alignment candidate spaces: while the
model overall copes with different search space
sizes, the accuracy loss is more considerable for
large problems. We conclude that the fast and ac-
curate alignment of larger AMR graphs remains
a challenging and unsolved problem. However,
note that such a bottleneck even exists for the al-
gorithmic metrics, which either use a hill-climber
that suffers from worsening sub-optimality or re-
quire a costly ILP procedure that may be infeasible
for larger graphs (see Opitz (2023) for discussion
and analysis). In this regard, we believe that our
proposed data extension trick in combination with
long-sequence transformers (Beltagy et al., 2020;
Rae et al., 2020; Choromanski et al., 2021) may
provide valuable means to address this limitation,
or provide useful tradeoffs.

Other limitations are: i) the models that were
trained without our proposed anonymization proto-
col were tested on graphs that contain English con-
cepts, and therefore depend on an English vocabu-
lary. ii) For loading the models, our tested methods
require more RAM memory than SMATCH, which
can be calculated on a low-budget computer.
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parameter value

embedding size 512

encoder 4 transformer layers w/ 4 heads
decoder 4 transformer layers w/ 4 heads
feed forw. dim 2048

loss cross-entropy

weight init xavier

optimizer adam

learning rate 0.0002

batch size 8192 (tokens)

Table 2: Overview of NMT hyper-parameters.

parameter value

emb. dimension 100

‘pixels’ 60x15
CNN encoder concatenate(
256 3x3 convs, 3x3 max pool
128 5x5 convs, 5x5 max pool)
MLP relu layer followed by lin. regressor
weight init xavier
optimizer adam
learning rate 0.001
batch size 64

Table 3: Overview of CNN hyper-parameters.

A Appendix

A.1 Sequence-to-sequence network
parameters

Hyper-parameters for the NMT approach are dis-
played in Table 2. The best model is determined on
the development data by calculating BLEU against
the reference alignments.

A.2 CNN network parameters

Hyper-parameters for the CNN approach are dis-
played in Table 2. The best model is determined
on the development data by calculating Pearson’s
p correlation of predicted scores and gold scores.

A.3 Analysis of performance on different
problem sizes

See Table 4.
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A vs. ORACLE

data type datasize Eq.2 Pea’sp better
full 1500 -1.1 -1.6 -

< 5 vars 505 06 -1.2 yes
< 10 vars 1041 0.7 -12 yes
< 15 vars 1206 -09  -1.2 yes
< 20 vars 1353 -09  -12 yes
< 25 vars 1449 -09  -13 yes
> 5 vars 940 -5 22 no
> 10 vars 476 2.1 -3.6 no
> 15 vars 318 23 54 no
> 20 vars 183 -3.0  -10.1 no
> 25 vars 83 -47  -19.3 no
> 30 vars 37 -8.0  -255 no
> 35 vars 20 -12.5  -41.1 no
single snt AMRs 1421 -1.0  -15 yes
multi snt AMRs 79 27 9.6 no

Table 4: Experiments on different test subsets that repre-
sent different problem complexities predicted with our
best model (align. synthesis+voc+aug). <> x vars
means that one of two graphs contains <> x variables.
better: is the drop in accuracy of the model vs. OR-
ACLE smaller compared with the model tested on all
data?

274



