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Abstract

The distinction between arguments and ad-

juncts is a fundamental assumption of several

linguistic theories. In this study, we investi-

gate to what extent this distinction is picked

up by a Transformer-based language model.

We use BERT as a case study, operationaliz-

ing arguments and adjuncts as core and non-

core FrameNet frame elements, respectively,

and tying them to activations of particular

BERT neurons. We present evidence, from

English and Korean, that BERT learns more

dedicated representations for arguments than

for adjuncts when fine-tuned on the FrameNet

frame-identification task. We also show that

this distinction is already present in a weaker

form in the vanilla pre-trained model.

1 Introduction

The widely used Transformer-based contextualized

language model BERT (Devlin et al., 2019) has

been extensively studied regarding its capability to

uncover linguistic patterns from raw text, with anal-

yses focused mostly on syntax. Both constituency

and dependency trees were either found encoded

inside the model or were used to probe for syntac-

tic rules such as agreement (Jawahar et al., 2019;

Rogers et al., 2020).

In this paper, we shift the focus of BERT anal-

ysis to the syntax-semantics interface, considering

the foundational distinction between arguments

and adjuncts. According to Koenig et al. (2003),

arguments and adjuncts differ in two crucial ways:

arguments describe necessary participants in the

event described by the verb and are therefore both

obligatory, i.e. they have to be realized by default,

and specific, i.e. they express idiosyncratic prop-

erties of the event or the event class. In contrast,

neither is necessarily true for adjuncts. For exam-

ple, in the sentence Peter praised his colleague

repeatedly, the praising event is accompanied by

two necessary, specific participants, namely a com-

municator, Peter, and an evaluee, the colleague;

in contrast, the adverb repeatedly, which specifies

the frequency, could be left out and applies to a

very broad range of events. The argument–adjunct

distinction has played a major role in linguistic

theory (Chomsky 1981; Pollard and Sag 1994, but

see Przepiórkowski 2016) and has implications for

human language processing (Tutunjian and Boland,

2008) and semantic NLP (Zhang et al., 2020).

We empirically assess the status of the argument–

adjunct disinction in BERT by making use of

FrameNet (Baker et al., 1998) – an implementa-

tion of frame semantics (Fillmore, 1982), a theory

of predicate-argument structure, which describes

predicate meaning in terms of frames (prototypi-

cal situations) and frame elements (the situations’

participants). FrameNet maintains a distinction be-

tween core elements and non-core elements, which

maps onto the argument–adjunct distinction (see

Section 2 for details).

We use a modification of the method of model

analysis proposed by Rethmeier et al. (2020) for

associating neurons inside neural-network models

with features they are particularly attuned to. In

our main analysis, we use FrameNet annotations

to fine-tune BERT for a task – frame identifica-

tion, – for which frame elements are informative,

without exposing the frame-element labels to the

model, and then correlate the learned model rep-

resentations with the presence of these labels. We

also repeat the correlational analysis on the vanilla

(pre-trained) BERT model.

Our contribution is twofold: (a) we extend Reth-

meier et al.’s methodology, which targeted LSTMs,

to BERT and, instead of constructing a probability

distribution of features a given neuron is attuned

with, we extract tight neuron–feature combinations

using correlation analysis, reminiscent of the larger

neuroscience literature on input-specific neural ac-

tivations (Dayan and Abbott, 2001); (b) we use

this method for an analysis of the representation

of arguments vs. adjuncts in Multilingual BERT
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(mBERT) based on English and Korean data. We

find that even though BERT representations are

dominated by frequency effects, with common in-

put patterns more robustly tracked by individual

neurons, arguments and adjuncts differ in their acti-

vation patterns (arguments produce relatively more

robust activations while adjuncts generally lack

highly specialized neurons that track them) and

that this distinction is already present, to a lesser

extent, in a vanilla pre-trained model.1

2 Frame Semantics and FrameNet

Frame semantics (Fillmore, 1982) posits that a key

element of the understanding of an utterance is

knowledge about the situations that the predicates

in it evoke. This knowledge is captured through

frames, schemas that associate predicates (frame-

evoking elements / FEEs) with situations, their in-

ferences, and their relevant participants, which are

realized in language as so-called frame elements.

Frame-semantic resources were first developed for

English (FrameNet; Baker et al., 1998) but have

been extended to other languages (Baker et al.,

2018).

The example given in the introduction, Peter

praised his colleague repeatedly, evokes the

JUDGMENT_COMMUNICATION frame where

a COMMUNICATOR expresses an evaluation

of an EVALUEE. These are two of the core

elements (CEs) of this frame, which generally

meet both of Koenig et al.’s criteria for argu-

menthood: they are obligatory (unless they are

null-instantiated, cf. Fillmore 1986) and they are

specific to frames (or groups of closely related

frames, cf. Fillmore et al. 2004). In contrast, the

JUDGMENT_COMMUNICATION frame contains

a number of non-core elements (NCEs), which do

not meet at least one of the two criteria and thus

show adjunct behavior: they are either not specific

(MANNER, FREQUENCY) or not obligatory

(GROUNDS: the basis for the judgment; ROLE: the

capacity of the evaluee). A similar situation obtains

with many other frequently found frames, and

we assume that the core vs. non-core distinction

largely mirrors the argument/adjunct dichotomy.

Data For our experiments, we use FrameNet cor-

pora in English and Korean. For English, we use

the FrameNet 1.7 lexical unit annotations, which

1The code used for the analyses in this paper
is available at https://github.com/macleginn/

argument-adjunct-framenet

cover over 1.2k frames and 13k unique predicates.

The Korean FrameNet was created around a set of

about 4k sentences translated from English, which

were then added to using crowd sourcing. It aims

for full compatibility with the English FrameNet

(Hahm et al., 2020). We select 50 most frequent

frames in both languages for analysis; the full list is

given in the Appendix. There are 34,373 sentences

in the English train set and 3,819 sentences in the

test set. We use the Korean dataset only as a test set

in a zero-shot setting. It contains 4,591 sentences.

3 Experimental Setup

Fine-tuning BERT We start from a pre-trained

BERT model and fine-tune it to assign a single

frame to each sentence (Hermann et al., 2014) in

line with the FrameNet annotation (cf. Section 2).

We experiment with two variants of the task. In

the FEE present setting, the model is shown com-

plete sentences, including the FEEs, but no frame-

element annotation. This task aims at encouraging

the model to connect FEEs with arguments, which

are known to be relevant for frame identification

(Yang and Mitchell, 2017). Adjuncts are expected

to be less relevant (as they are unspecific) or less

reliable (as they are optional). To select the frame,

we feed the first subword of the first FEE token to a

fully-connected 50-neuron layer (corresponding to

the 50 frames) and obtain a prediction by applying

the usual softmax.2

In the FEE masked setting, all FEE tokens are

replaced with the [MASK] token, so that the model

has to rely on the sentential context to identify the

frame. Our hypothesis is that this version of the

task incentivizes the model to more actively focus

on extracting arguments. In this case, we feed the

embedding of the first masked token into the frame

classification head as above.

In both variants, the model is trained end-to-end

using cross-entropy loss for twenty epochs with

early stopping when the performance on the test set

decreases. We use the pre-trained mBERT model

provided by HuggingFace (Wolf et al., 2020). For

English, we report results for the test set. For Ko-

rean, we adopt a zero-shot setting and, after check-

ing that mBERT fine-tuned on English has some

success in identifying Korean frames, analyze the

activations that Korean sentences produce in it.

2We opt for a simplistic classifier head to keep more infor-
mation in the embeddings.

https://github.com/macleginn/argument-adjunct-framenet
https://github.com/macleginn/argument-adjunct-framenet
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Figure 1: Left: Accuracy of predictions based on the

output of different layers (development set). Right: the

Kullback–Leibler divergence between the probability

distribution of frame labels induced by intermediate

layers and by the final layer.

Probing analysis Once the BERT model has

been fine-tuned, we can analyze the activation pat-

terns of different layers of the model (Rethmeier

et al., 2020). On the data side, we cast input sen-

tences as a binary matrix whose columns corre-

spond to the presence or absence of each CE or

NCE in these sentences, i.e. to their indicator func-

tions. On the model side, we associate each input

sentence with a d = 768-dimensional embedding

of the first subword of the FEE token or the embed-

ding of the first [MASK] token, depending on the

setting, for a selected subset of BERT layers. We

then carry out correlational analysis to identify, for

each CE or NCE indicator function and for each

layer of interest, the neuron whose activations are

most strongly correlated with these functions.

To choose layers for the analysis, we evaluated

English model predictions based on the represen-

tations in each layer. The results are shown in

Figure 1. For both variants of the task, we find

similar results: the outputs of the 11th layer are

close to the final layer, and there is a swift increase

in prediction accuracy from the 7–8th layer onward.

On this basis, we probe the activation patterns of

layer 11 (near-convergence) and layer 9 (start of

competitive performance).

Analysis of neural activity was performed in a

similar fashion by Durrani et al. (2020). They, how-

ever, extract activations in the context of specific

tasks, such as POS tagging and syntactic chunking,

instead of feeding sentences to a headless embed-

ding model in an unsupervised setting.

Language FEE FEE MBL RBL

present masked

EN 96 55 15 2

KO 40 21 12 2

Table 1: Frame ID accuracy in % on test set (layer 11).

MBL: majority class baseline, RBL: random baseline

4 Results and Discussion

English Table 1 shows the test-set performance

of layer 11 in the fine-tuned model.3 As expected,

the FEE-present setting is much easier than the

FEE-masked one, where the model still substan-

tially outperforms the baselines.

The results of the correlation analysis are pre-

sented in the scatterplots in Figure 2. Individual

points show, for a frame element with a given fre-

quency, how large the correlation with the most

attuned neuron activation vector in the respective

model is. The left plot shows core elements, the

right plot non-core elements.

The plots show that frequency is the dominating

factor: high-frequency frame elements tend to have

(more or less) dedicated neurons tracking them,

with correlations of 0.4 and above, while this is

not true for low-frequency frame elements. This

is to be expected given the maximum-likelihood

training objective.

However, there still is a clear difference between

CEs and NCEs: even the most frequent NCEs do

not attain correlations above 0.3, and only a handful

show correlations above 0.2, in both the standard

and masked settings. In contrast, the correlations

for CEs with frequencies above 100 are all higher

than 0.2. This shows the model’s low reliance on

NCEs for frame identification.

Comparing the behaviors at layers 9 (red) and

11 (turquoise), we do not see major differences: in

particular for NCEs, the plots are extremely simi-

lar. Comparing the two variants of the task (solid

vs. dashed), we see that the masked-task model

learns less dedicated representations for the CEs

but spends some more effort on representing high-

frequency NCEs – contrary to the expectation we

formulated in Section 3. The global advantage of

CEs over NCEs in all settings leads us to believe

that the model simply relies on arguments in either

case, and that in the masked setting the model just

struggles more to identify where they are.

3Results for layer 12: 96.5/60.8 (EN), 41.3/23.9 (KO).
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Figure 2: English fine-tuned setting: Averages and 95% confidence intervals for maximal correlations between

BERT neurons and CEs (left) / NCEs (right), by frequency. Solid/dashed lines: FEE present/masked task. The

curves show GAM-smoothed averages with 95% confidence intervals.
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Figure 3: Correlations between frames (rows) and their

core elements (columns).

This interpretation is corroborated by an analy-

sis of CE information content. Figure 3 shows a

matrix of correlations between frames with non-

masked FEEs (rows) and their CEs (columns).

Some frames are in a nearly one-to-one correspon-

dence with their CEs, but other CEs can be found

with several frames. Arguably, when FEEs are

present, they form a strong signal together with

the CEs pointing towards particular frames. When

FEEs are masked, however, frequent CEs – pre-

cisely those that are found with many different

frames – become less informative, and the model

shifts some of the weight towards NCEs.

Korean The accuracy results for the zero-shot

application to Korean in Table 1 show similar ten-

dencies to English, but with much lower accuracies.

We attribute this to the simplistic linear classifier

we use (cf. the observations on multilingual zero-

Core element Non−core element

0 2500 5000 7500 0 2500 5000 7500

0.0

0.1

0.2

Frequency

C
o
rr

e
la

ti
o
n

Figure 4: English vanilla BERT: GAM-smoothed aver-

ages and 95% confidence intervals for maximal corre-

lations between neurons and CEs (left) / NCEs (right),

by frequency. Solid/dashed lines: FEE present/masked

task.

shot transfer by Lauscher et al. 2020). However,

the results of the correlation analysis shown in Fig-

ure 5 are strikingly similar to English: (a) top cor-

relations of neural activations with CEs are much

higher than those with NCEs; (b) strong frequency

effects are evident; (c) the masked variant moves

some focus from CEs to high-frequency NCEs. We

take these observations as evidence that mBERT

represents arguments and adjuncts in a remarkably

similar way across languages as different as En-

glish and Korean, with the latter’s rich morphology

and SOV word order.

Without fine-tuning The above analysis uses

a fine-tuned model. This begs the question of
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Figure 5: Korean zero-shot setup (model fine-tuned for English): GAM-smoothed averages and 95% confidence

intervals for maximal correlations between BERT neurons and CEs (left) / NCEs (right), by frequency. Solid/dashed

lines: FEE present/masked task.

whether the distinction between arguments and ad-

juncts is a side-effect of the fine-tuning task, as

opposed to mBERT’s acquiring it in an unsuper-

vised way in pre-training (Tenney et al., 2019). To

test this, we repeat the experiment using a vanilla

English pre-trained model and the complete Berke-

ley FrameNet 1.7 release instead of the sentences

with most-frequent frames. The results for layer

11, shown in in Figure 4, are remarkably similar in

terms of the general pattern but with significantly

weaker correlations: for CEs, correlations exceed

0.1 reliably for N > 1000, with maximum values

approaching 0.3.4 For NCEs, correlations are al-

most always < 0.1, reaching this value only for

the most frequent NCEs, with N ≈ 5000. This

indicates that after pre-training BERT already has

some notion of the distinction between arguments

and adjuncts, but that this distinction becomes sub-

stantially more pronounced after fine-tuning on a

task for which it is relevant.

5 Conclusion

Our study asked whether BERT can distinguish be-

tween arguments and adjuncts and operationalized

these concepts via FrameNet’s core vs. non-core

frame-element distinction. For both English and

Korean, our analysis of the presence of dedicated

4Two most-frequent frames, AGENT and THEME, are very
general and unsurprisingly display weaker correlations. By
comparison, the next three most-frequent frames, SPEAKER,
GOAL, and TIME, are much richer semantically and have more
dedicated representations.

neurons that track individual frame elements found

that this is the case, with frequency as a major

covariate. The picture is clearer for a fine-tuned

model, but the main patterns emerge already after

pre-training.

On the neural-language-model side, our study

confirms the ability of such models to recover

‘deep’ linguistic categories in an unsupervised man-

ner. On the FrameNet side, our results have bear-

ing on the status of borderline-core frame elements

(Ruppenhofer et al., 2006), for which the behaviour

of the model may serve as a heuristic. A promising

avenue for future work would be to turn around our

setup and to explore BERT representations in or-

der to identify a set of properties that differentiate

arguments and adjuncts from the model’s point of

view, à la Geva et al. (2021).

This work has focused on FrameNet. Other

frameworks giving access to semantic-role infor-

mation, such as the PropBank annotation scheme

(Palmer et al., 2005), AMR (Banarescu et al., 2013),

and UCCA (Abend and Rappoport, 2013), also may

be fruitful for this type of analysis.
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A Appendix

Most frequent frames used in the analysis

ARRIVING, ATTEMPT SUASION, AWARENESS,

BECOMING AWARE, BODY MOVEMENT, BRING-

ING, CATEGORIZATION, CAUSE HARM, CAUSE

MOTION, CHANGE POSITION ON A SCALE,

CHANGE POSTURE, COGITATION, COMING TO

BELIEVE, COMMITMENT, COMMUNICATION

MANNER, COMMUNICATION NOISE, COMMUNI-

CATION RESPONSE, CONTACTING, COTHEME,

DEPARTING, DESIRING, EVIDENCE, EXPE-

RIENCER FOCUS, EXPERIENCER OBJ, FILL-
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