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Abstract
We describe the first experimental results for
data-driven semantic parsing with Tree Rewrit-
ing Grammars (TRGs) and semantic frames.
While several theoretical papers previously dis-
cussed approaches for modeling frame seman-
tics in the context of TRGs, this is the first
data-driven implementation of such a parser.1

We experiment with Tree Wrapping Grammar
(TWG), a grammar formalism closely related
to Tree Adjoining Grammar (TAG), developed
for formalizing the typologically inspired lin-
guistic theory of Role and Reference Gram-
mar (RRG). We use a transformer-based multi-
task architecture to predict semantic supertags
which are then decoded into RRG trees aug-
mented with semantic feature structures. We
present experiments for sentences in different
genres for English data. We also discuss our
compositional semantic analyses using TWG
for several linguistic phenomena.

1 Introduction

While many user-facing applications of Natural
Language Processing such as machine translation
or sentiment analysis can these days be performed
with state-of-the-art accuracy by syntax-agnostic
machine learning models, grammar-based meth-
ods are still important. For one thing, they offer
more transparency and insight into the decisions of
a model, while in many cases having near-state-
of-the-art performance (Xia et al., 2019; Kasai
et al., 2019; Lindemann et al., 2019; Poelman et al.,
2022). Secondly, they tend to be less data-hungry
and therefore more readily adapted or transferred to
low-resource languages. Symbolic methods for se-
mantic parsing can also greatly contribute to gram-
mar theory studies and to linguistic investigations
of different languages.

1The code for our semantic parser can be found on
https://github.com/TaniaBladier/
Frame-Semantic-Parser-with-Lexicalized-Grammars

In this paper, we are interested in developing
a methodology for deep semantic parsing (i.e.,
producing semantic representations for entire sen-
tences) which would also allow easy transfer to
different languages, including low-resource ones.
We start from the typologically oriented linguis-
tic theory of Role and Reference Grammar (RRG).
This theory uses a common inventory of labels
and structures to describe languages from differ-
ent language families (Van Valin and Foley, 1980;
Van Valin, 2005). The formalization of RRG using
Tree Wrapping Grammar (TWG; Kallmeyer et al.,
2013) has paved the way for using this theory in
computational linguistics and for developing NLP
applications such as syntactic parsers (Bladier et al.,
2022; Evang et al., 2022).
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Figure 1: Frame-semantic derivation with TWG for
John needed help

The TWG formalism is inspired by Tree-
Adjoining Grammar (TAG; Joshi and Schabes,
1997) and allows for adequate modeling of long-
distance dependencies. Since TWG is closely re-
lated to TAG, we can readily apply existing com-
putational methods developed for TAG. In this
work, we explore how well the methodology for
compositional semantics with a tree-based syn-
tax outlined in several theoretical papers on TAG
(Kallmeyer and Osswald, 2012a,b; Zinova and

https://github.com/TaniaBladier/Frame-Semantic-Parser-with-Lexicalized-Grammars
https://github.com/TaniaBladier/Frame-Semantic-Parser-with-Lexicalized-Grammars
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Kallmeyer, 2012) is suitable for TWG and can be
used for a large scale implementation.

A small-scale frame-semantic parser based on
the Tree Adjoining Grammar was already imple-
mented by Arps and Petitjean (2018). Our ap-
proach differs from theirs in that it is data-driven
and aims for a broad-coverage semantic parser. Our
method is based on transformers and contextual
embeddings and we do not use a metagrammar
in our application, but go for an approach based
on supertagging. Our work also differs from Se-
mantic Role Labeling (i.e., shallow semantic pars-
ing) with TAG (Liu and Sarkar, 2009; Kasai et al.,
2019) since we are interested in deep semantic rep-
resentations of the sentences. Figure 1 shows how
the semantic representations for the sentence John
needed help can be produced compositionally with
elementary trees in TWG paired with frames, and
Figure 3 shows the frame representation for this
sentence.

The objective of this paper is to implement
a broad-coverage semantic parser based on Tree
Rewriting Grammars. Since this is the first broad-
coverage implementation of a deep semantic parser
for either TAG or TWG, we are particularly inter-
ested in modeling linguistic phenomena which we
came across during this data-driven implementa-
tion. We describe this in §2. We also want to inves-
tigate if our syntax-aware methodology allows us
to achieve state-of-the-art results on semantic pars-
ing. We describe the theoretical background of our
work and introduce our approach to frame-based se-
mantics with TWG in §3 and present experimental
results in §4. We discuss future work in §5.

2 Semantic Parsing with TWG

2.1 Tree Wrapping Grammar

TWGs consist of elementary trees which can be
combined using the operations of a) substitution (re-
placing a leaf node with a tree), b) sister adjunction
(adding a new daughter to an internal node), and
c) tree-wrapping substitution (adding a tree with a
d(ominance)-edge by substituting the lower part of
the d-edge for a leaf node and merging the upper
node of the d-edge with the root of the target tree,
see Fig. 2). The latter is used to capture long dis-
tance dependencies (LDDs), see the wh-movement
in Fig. 2. Here, the left tree with the d-edge (de-
picted as a dashed edge) gets split; the lower part
fills a substitution slot while the upper part merges
with the root of the target tree. TWG is more pow-

erful than TAG (Kallmeyer, 2016). The reason
is that a) TWG allows for more than one wrap-
ping substitution stretching across specific nodes
in the derived tree and b) the two target nodes of
a wrapping substitution (the substitution node and
the root node) do not have to come from the same
elementary tree, which makes wrapping non-local
compared to adjunction in TAG.

TWG emerged as a result of the formalization
of Role and Reference Grammar (RRG; Van Valin
and LaPolla, 1997; Van Valin, 2005). RRG is a
linguistic theory strongly inspired by typological
concerns. RRG was used to describe languages
with diverse syntactic structures such as Lakhota,
Tagalog, and Dyirbal. RRG’s syntactic structures
are rather flat in order to be applicable to all types of
different languages. According to RRG, sentence
structure is organized in layers: nucleus (containing
the predicate), core (containing the nucleus and
the arguments of the predicate) and clause (the
core and extracted arguments). Each layer can
have modifiers (called periphery elements), and
operators attach to the layer over which they take
semantic scope.

2.2 Frame Semantics and TWG
We adapt the syntax-semantics interface for LTAG
proposed by Kallmeyer and Osswald (2013) to se-
mantic parsing with TWG. Kallmeyer and Osswald
represent semantic frames as base-labelled, typed
feature structures. The frames can be understood
as a straightforward representation of the semantic
and conceptual knowledge about a situation, while
having good computational properties as their com-
position relies on the unification of attribute-value
structures. The frames represent genuine semantic
representations, and not logical expressions, whose
meaning has to be derived during semantic compo-
sition2.

The elementary trees in a lexicalized TWG are
paired with frames via interface feature structures,
as shown in Figure 1. Here, the root of the el-
ementary tree for ‘needed’ is augmented with an
interface feature structure whose E (event) attribute
value is a frame of type require need want hope,
which has two attributes: an agent and a theme.

2The advantage of the unification is that the order of se-
mantic argument filling is not specified by successive lambda
abstraction or the like. Instead, semantic argument slots can
be filled in any order (in particular, independently of surface
word order) via unifications triggered by syntactic compo-
sition). For a more detailed discussion see Kallmeyer and
Romero (2004) and Kallmeyer and Osswald (2014)
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Figure 2: Tree-wrapping substitution for the sentence “What do you think you remember” with long-distance
wh-movement.
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Figure 3: Frame-semantic representation for John
needed help.

The values of these attributes are shared with the
feature structures paired with the NP substitution
nodes for the subject and the object, where they
are the values of the I (individual) attribute3. The
roots of the elementary trees for ‘John’ and ‘help’
are augmented with feature structures for whose
I attribute values are feature structures for whose
types we use the respective lemmas (more detailed
semantic representations of NPs are beyond the
scope of this paper).

During parsing, as syntactic trees are combined
(by adjunction, substitution or wrapping substitu-
tion), the semantic representations are also com-
bined. The unification of interface feature struc-
tures triggers unification of feature values in the
frames. In our example, as the substitution of the
subject NP takes place (combining the elementary
trees of ‘needed’ and ‘John’), the respective val-
ues associated to the attribute I in the interface
feature structures are unified. This results in the
unification of the feature structures 3 and 1 , which
makes the frame for John become the agent of the
event ‘needed’. The same happens when the tree
for ‘help’ is substituted at the object NP node of
the ‘needed’ tree: 4 and 2 unify to let the frame
for ‘help’ become the value of the theme attribute
in the frame 0 .

To build our frame lexicon, we use the inven-
tory of the lexical-semantic resource VerbAtlas
(Di Fabio et al., 2019). VerbAtlas covers over
13 700 verbal WordNet (Fellbaum, 2000) senses,
but organizes them into a relatively small number
of frames (466) with only 25 cross-frame seman-
tic roles, which makes it well suited for training

3The feature I is used as a variable in untyped frames re-
ferring to an argument (possibly syntactically complex) which
fills the substitution slot.

neural language models. The frames in VerbAt-
las are mapped to PropBank (Palmer et al., 2005)
framesets and multilingual BabelNet (Navigli and
Ponzetto, 2010) frames, and can potentially be
linked to FrameNet (Baker et al., 1998; Baker,
2014) frames.

2.3 Complex linguistic cases

In the process of developing our data-driven se-
mantic parser, we came across several complex
linguistic constructions which were not previously
described in papers dealing with the combination of
Tree Rewriting formalisms and semantics. Depend-
ing on the syntactic complexity of the sentences,
such constructions occur in about 20% of all sen-
tences in our data, distributed unevenly among the
subcorpora we used for the experiments. We de-
scribe some of our semantic modeling choices in
this section4.

Control constructions We introduce the variable
pivot for cases in which an elementary tree does
not have an explicit syntactic argument, but shares
the argument with an elementary tree it combines
with. Figs. 4 and 5 show an example. The pivot
variable is only assigned to CORE nodes and is
used to propagate the semantic representation of
the controlled argument.

Constructions with a peripheral subordinate
clause The representation of discourse relations
is beyond the scope of this work, so for now we
generate semantic representations for such clauses
separately. Fig. 6 shows the elementary tree-frame
pairs and Fig. 7 shows a representation for the sen-
tence The sheep follow him because they know his
voice.

Constructions with a non-peripheral subordi-
nate clause If a subordinate clause is not a modi-

4For the sake of space we only represent the relevant el-
ementary trees in the figures of this section and skip some
initial elementary trees that are substituted or adjoined into
the larger trees.
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Figure 5: Label unifications and resulting frame for she
loves to cook.
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Figure 6: Tree-frame pairs for the sentence The sheep
follow him because they know his voice
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Figure 7: Semantic representations of a main clause and
a peripheral subordinate clause in sentence The sheep
follow him, because they know his voice

fier, but an argument of a main clause, the frame of
the subordinate clause fills the corresponding argu-
ment slot of the parent frame (see the elementary
trees and frame representation in Fig. 8, 9 for the
sentence What people say about themselves means
nothing).

Treatment of prepositional phrases The treat-
ment of prepositional phrases depends on whether
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Figure 8: Tree-frame pairs for constructions with subor-
dinate clauses
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Figure 9: Constructions with subordinate clauses, here
What people say about themselves means nothing

the PP is an argument or an adjunct of the predicate.
In (1-a) below, the PP fills a core role of the predi-
cate lowered. However, the role filler well for this
argument slot should itself be substituted first into
the elementary tree of the preposition into. Thus, to
propagate the filler of the destination role to the des-
ignated argument slot of lowered, we check during
the substitution of the PP subtree and the subse-
quent frame unification that the argument role of
the PP corresponds to the required argument role of
the sentential predicate (see Fig. 10). If the preposi-
tional phrase is an adjunct of the predicate (as, for
example, in (1-b), where with a check modifies the
predicate pay), the subframe of the prepositional
phrase is added as an additional semantic role of
the predicate after adjoning the PP subtree.

Since we focus on verbal predicates in this work,
we do not explore an explicit frame representation
of different prepositions, as outlined in Kallmeyer
and Osswald (2013). Instead, we leave the rep-
resentation of prepositions and other non-verbal
predicates for future work.

(1) a. Tom lowered the bucket into the well.
b. I want to pay with a check.

Constructions with non-local dependencies
Constructions with non-local dependencies (e.g.
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long-distance wh-movement or extraposed relative
clauses) can be handled via unification during wrap-
ping substitution (see tree-frame pairs in Fig. 11
and the resulting representation in Fig. 12).

Supertag Frame Arg. Link.

she (NP (PRO ⋄)) (entity) (–)
loves (CL (CO (like) ((1, ‘Exp.’),

(NP ) (2, ‘Stim.’))
(NUC (V ⋄))
(CORE )))

to (CO* (CLM ⋄)) (–)
cook (CO (NUC (V ⋄))) (cook) ((0, ‘Agent’))

Table 1: Example of the training data, CL stands for
Clause, CO means Core.

3 Method

3.1 Argument linking
As outlined in the previous section, our approach to
semantic parsing requires two components which
are used to compositionally produce a deep seman-
tic representation of the sentences: TWG elemen-
tary trees and the corresponding semantic frames.
We divide prediction of semantic frames into two
subtasks: prediction of the correct frame and learn-
ing the argument linking within those frames.

The argument linking mechanism relies on the
elementary tree of the predicate and predicts which
substitution slot of the supertag carries which se-
mantic role. For example, in Table 1 the argu-
ment linking for the predicate likes means that the
first substitution slot of the corresponding supertag
should get the role label “Experiencer” and the
second slot gets the label “Stimulus”, hence the
numbers 1 and 2. In case an elementary tree has a
semantic role with no local filler, as in control or
raising constructions (see Figure 4) or in sentences
with conjoining predicates, we mark the seman-
tic role with the index 0, indicating that there is
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Figure 10: Propagating the role of the argument PP into
to the main frame lower for the example (1-a)

no substitution slot for this role (see, for example
the frame cook in Table 1). For non-predicative
frames we learn the frame with the dummy type
ENTITY and resolve the type of the frame to the
corresponding lemma after parsing.

3.2 Reducing the size of TWG grammars
Since the TWG grammars are usually large and
contain several thousands distinct elementary trees,
which is potentially hard for a neural model to learn,
we reduce the size of the grammar by flattening the
elementary trees and thus simplifying the syntactic
structure of the trees from which we induce the
TWG grammar. We collapse the internal structure
of the trees, so that it preserves the relevant syn-
tactic information about the lexical anchor and its
argument structure. In particular, we delete the
internal nodes of the tree which are not relevant
for syntactic composition (i.e. the nodes are not
involved in any tree combination operations) while
leaving the root node and unlexicalized leaves un-
touched. We delete all SENTENCE nodes while
keeping however the spine of CLAUSE, CORE
and NUC since these are important targets for mod-
ifier and operator adjunctions. Figure 13 shows an
example. After flattening the trees, we extract a
TWG elementary trees using the automated gram-
mar extraction approach of Bladier et al. (2020a).
Since the syntactic trees in TWG grammars can
have crossing branches, but the algorithm for TWG
parsing (Bladier et al., 2020b), which we use to
obtain syntactic representations for our data, does
not support crossing branches, some nodes in trees
have to be reattached before grammar extraction
and re-attached to the correct nodes after parsing.

3.3 Multi-task transformer-based learning
We use the MaChAmp toolkit (van der Goot et al.,
2021) to build a multi-task neural model for si-
multaneous learning of the elementary tree tem-
plates (i.e. supertags), frame selection, and argu-
ment linking, all cast as sequence labeling tasks.
The MaChAmp multi-task models share a BERT-
based encoder, but use task-specific decoders for
the subtasks. Table 1 shows an example of the in-
put for the multi-task neural model. We initially
experimented with training a single-task model for
each subtask and tried out different combinations
of multi-task models. Since the results of a multi-
task model turned out to be comparable with the
single-task models (showing only around 0.1 per-
cent of difference), we therefore carry out our ex-
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Figure 11: Wrapping substitution for wh-LDD in sentence Whom does Paul think Mary likes? The OP=CL notion
means that the node will be attached to the CLAUSE node of the parent tree after the parsing step.
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Figure 13: Example of a transformed tree before gram-
mar extraction: the crossing branch from the original
tree (on the left) is reattached and some of the internal
nodes are removed. OP=CL indicates that the OPtns

node was originally immediately below CLAUSE.

periments with the multi-task model. This model
has the advantage of predicting all the components
of our semantic parsing approach at once, resulting
in lower training and prediction times. We tried
to apply different weights on the loss function of
each subtask to see if it affects the performance of
the multi-task model, however the results did not
change significantly. Apart from experimenting
with different loss functions, we used the default
values of the MaChAmp Bert model for training.
The model is trained for 10 epochs, and we select
the model with the highest F1-checkpoint for the
evaluation.

4 Experiments and Discussion

4.1 Data

Since there is currently no manually annotated gold
dataset for semantic parsing with TWG, we use al-
ternative resources to train our model. We use the
statistical neural TWG parser ParTAGe (Bladier
et al., 2020b) developed for syntactic parsing with
TWGs and train it on multilingual data from RRG-
parbank, the first large resource for TWG and Role
and Reference Grammar (Bladier et al., 2022). The
ParTAGe parser predicts the syntactic trees based
on predicted n-best supertags for each sentence
and also predicts the dependency heads based on
the produced syntactic tree. The performance of
this parser is different for sentences with different
sentence length, but is sufficiently high for shorter
sentences. We measured the ParTAGe performance
on English sentences from the RRGparbank cor-
pus (since the parser was originally trained on this
data). We found that the performance of the parser
on sentences with less then 7 tokens had the labeled
F1 score of 93.52 for the produced syntactic trees,
and the labeled F1 score of longer sentences was
around 85.26.

We use the Parallel Meaning Bank v3.0.0 (PMB;
Abzianidze et al., 2017) and the CoNLL-2012 En-
glish dataset based on OntoNotes 5.0 (Pradhan
et al., 2012) for the frame-semantic parsing ex-
periments. The PMB provides deep semantic rep-
resentations of sentences following Discourse Rep-
resentation Theory. It has rather short sentences
(around 6.7 tokens on average) consisting of Web
texts, newspaper articles and the Bible. The En-
glish part of the CoNLL-2012 corpus is a large re-
source which includes over 94 000 sentences from
different genres, including journal articles, web
data, broadcast news and phone conversations. We
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use the pre-defined train, development and test sets
for both resources (see Table 2).

PMB OntoNotes

# sents (train, dev, test) 6654, 886, 75187, 9480,
902 9260

avg. sent length 6.94 16.71
# tokens 54205 201300
# lemmas 5463 10975
# dist. frames 350 436
# dist. frame/lemma pairs 949 2965
# frame occurrences 4783 34930
# role occurrences 13495 45496
# supertags 782 4158
# supertags occ. once 354 2204

Table 2: Statistics on the used data.

PMB and OntoNotes are not explicitly annotated
with VerbAtlas frames, but PMB provides WordNet
senses and VerbNet semantic roles, and OntoNotes
is annotated with PropBank framesets and semantic
roles. Since VerbAtlas provides manually created
mappings to these resources, we used these map-
pings to create a sufficient amount of semantically
annotated data. In order to obtain syntactic repre-
sentations needed for our frame-semantic parser,
we parse all sentences with the pretrained ParTAGe
models available from Bladier et al. (2022).

4.2 Frame-semantic parsing experiments
Our frame-semantic parser predicts supertags
needed to produce syntactic trees in parallel with
the frame labels and corresponding semantic roles.
We predict only heads of the semantic roles, since
the full spans can be reconstructed deterministically
from the predicted syntactic trees. We use the con-
stituent trees produced by our parser to reconstruct
the full spans of semantic roles5.

VerbAtlas has 466 frames, 350 of which we ob-
serve in PMB and 436 in the OntoNotes data. The
distribution of the frames is relatively even, without
any frames occurring particularly more frequent
then other frames. We do not consider frames asso-
ciated with modal verbs. Since some of the frames
occur only in test or development set and thus can-
not be learned, we calculate the upper bound for
the data to determine what would be the highest
possible achievable score. The evaluations show
a long tail of prediction errors without particular
errors occurring more often then the others. Table 4
shows some of the most frequent mistakes.

5We reconstructed full spans of semantic roles only for
OntoNotes, since the data from PMB are not annotated with
full-span semantic roles.

The distribution of the supertags is uneven with
a couple of most frequent ones occurring in the
majority of the cases. We found 225 distinct pred-
icative supertags in the PMB data, and 1358 in
OntoNotes. Table 5 shows that the first three most
common predicative supertags make up around two
thirds of all predicates in PMB. A similar distribu-
tion is also present in the larger OntoNotes corpus,
although the frequency of the most common su-
pertags is less prominent.

The results of the frame-semantic parsing show
that we achieve results comparable with the base-
line Semantic Role Labeling (SRL) results on the
OntoNotes and show a slight improvement on the
PMB data (see Table 36). The results on different
genres in OntoNotes show a significant increase in
performance on the Bible data and the worst results
for the web texts. This result is due to the greater
sentence length for the web data and a high amount
of internet slang and deviations from standard En-
glish orthography and syntax.

4.3 Error analysis

Although VerbAtlas has rather coarse-grained
frame lexicon, the number of frames (466) is still
large and some frame pairs have only a subtle dif-
ference in its definition (e.g. the frame pairs GO-
FORWARD and LEAVE DEPART RUN-AWAY or AF-
FIRM and SPEAK). Also there are some verbs, like
for example go, which are polysemous and can be
assigned different frames which appear more or
less frequent in the annotated data. Since the ma-
jority of the frames appear only a couple of times
in the training data, the model sometimes predicts
the wrong frame which appears more frequently, as
for example the frame LEAVE DEPART RUN-AWAY

is wrongly predicted instead of CONTINUE in ex-
ample (2).

(2) [...] but they’re determined to keep
going[leave depart run-away]

Each frame in VerbAtlas comes with its own set
of semantic roles. Although the number of the
roles is small (26), the model has to learn the cor-
rect labels for each of the 466 frames. Since for
most frames in VerbAtlas, the agentive and patien-
tive role have the labels AGENT and THEME, the

6We use the following terms while describing our semantic
parsing experiments: the term trigger stands for a lexical unit
that can evoke a frame, the term role for frame element, and
role candidate for the sequence of words that instantiates a
role.
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PMB OntoNotes
avg. bn+bc nw+mz pt tc wb

frame trigger detection 93.75 92.92 92.35 92.14 96.41 94.79 91.56
frame label selection 89.75 89.57 88.56 88.65 95.81 92.5 86.15

(w. entity and event labels)
frame label selection 83.9 89.06 87.93 87.78 97.11 92.06 85.48

(only VA-labels)
*upper bound 99.81 99.46 99.59 99.38 99.71 99.65 98.88

role candidate detection 91.1 87.47** 86.54** 87.91** 91.45** 86.45** 86.25**
role label selection (head) 86.15 89.67** 88.36** 90.08** 93.16** 89.56** 88.15**
role label selection (full span) – 88.34** 87.61** 88.63** 92.11** 88.82** 86.43**

role label selection 85.8 92.1
(baseline, head) Bladier et al. (2021) InVeRo-XL (Conia et al., 2021)
role label selection – 86.8
(baseline, full span) InVeRo-XL (Conia et al., 2021)

avg. sent. length 5.99 14.73 14.36 20.09 11.02 8.04 16.71
# sents 902 9260 2968 2568 1051 1618 1055

Table 3: Frame-semantic parsing results. We use the frame inventory from VerbAtlas (VA; Di Fabio et al., 2019) in
our semantic representations. The role label selection for full spans is not evaluated for the PMB experiment, since
only semantic heads of role spans are annotated in gold PMB data. *Since some labels from the test set are not
present in the training data, we measure the highest possible upper bound for the VA-label selection. **We measure
the scores for OntoNotes only for pre-identified predicates to make the evaluations comparable with the reported
baseline. bn+bc = broadcast, nw+mz = newswire, pt = bible, tc = telephone conversations, wb = web.

Gold frame Predicted frame %

GO-FORWARD LEAVE DEPART RUN-AWAY 0.7
CONTINUE LEAVE DEPART RUN-AWAY 0.48
INCITE INDUCE EXIST-WITH-FEATURE 0.42
KNOW MEET 0.42
RESULT CONSEQUENCE ARRIVE 0.42

Table 4: Most frequent frame label prediction mistakes
with the percentage from the overall frame label predic-
tion errors, measured on OntoNotes data.

Supertag % %
(PMB) (ON)

(CL (CO (NP ) (NUC (V ⋄)) (NP ))) 38.82 8.5
(CL (CO (NP ) (NUC (V ⋄)))) 14.37 6.64
(CL (CO (NP ) (NUC (V ⋄)) (PP ))) 10.62 3.3
(CL (CO (NP ) (NUC (V ⋄)) (NP ) (NP ))) 7.6 0.1
(CL (CO (NP ) (NUC (V ⋄)) (P ) (NP ))) 5.28 0.01

Table 5: Most common predicative supertags for PMB
and OntoNotes (ON) data.

model frequently picks these two labels instead of
some less frequent frame-specific role labels. For
example in (3), the correct role set for the COME-
AFTER FOLLOW-IN-TIME frame is THEME and CO-
THEME, but the model predicts the more common
AGENT and THEME role labels.

(3) That[agent] follows[come-after follow-in-time] a
decline[theme] in the prior six months [. . .]

As for the errors in prediction of argument linking,
the most errors emerge when an infinitive modifies

a noun or an adjective (see an example in (4)). The
supertag for the verb in such constructions has the
type of an auxiliary tree and thus lacks the agentive
argument slot. In these cases, the semantic role
corresponding to the PIVOT variable sometimes is
not predicted (we described the PIVOT in greater
detail in Section 2.3). For example, in (4) for the
MANAGE frame, only the role THEME is predicted,
but not the AGENT role for strategy.

(4) A time-honored strategy to control[manage]
the masses[theme].

5 Conclusion and Future Work

In this paper, we presented the first broad-coverage
frame-semantic parser with Tree Wrapping Gram-
mar, a grammar formalism closely related to Tree
Adjoining Grammar. To develop our parser, we
adapted the theoretical approach of Kallmeyer and
Osswald (2013) to semantic parsing with TAG
and transferred it to TWG. We explored parsing
strategies for several complex linguistic construc-
tions. We developed our transformer-based lan-
guage model based on the VerbAtlas frame lexicon,
and experimented with English data in several gen-
res. We could see that our semantic parser shows
results close to the state-of-the-art semantic parsers.

In future work we want to explore the transfer-
ability of our approach to different languages, in-
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cluding low-resource ones. Our approach to seman-
tic parsing starts from statistical syntactic parsing
for TWG proposed by Waszczuk (2017); Bladier
et al. (2020b). A recent work by Evang et al. (2022)
presents a modification of this method for cross-
lingual syntactic parsing based on word embed-
dings and English glosses. The underlying idea is
to transfer supertag information from an English
translation to the target sentence via word align-
ments. We plan to extend this method to semantics.

The frame lexicon VerbAtlas, which we use as
a frame inventory for the semantic representations,
lacks relations between frames. In order to enable
semantic inference and logical reasoning with our
parser, we currently investigate possibilities to de-
velop a rule-based mapping from VerbAtlas frames
to FrameNet frames, which would then yield also
hierarchical relations between frames.
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