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Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France

{firstname.lastname}@loria.fr

Abstract

A number of graph-based semantic representa-
tion frameworks have emerged in recent years,
but there are few parallel annotated corpora
across them. We want to explore the viability
of transforming graphs from one framework
into another to construct parallel datasets. In
this work, we consider graph rewriting from
Discourse Representation Structures (Parallel
Meaning Bank (PMB) variant) to Abstract
Meaning Representation (AMR). We first build
a gold AMR corpus of 102 sentences from the
PMB. We then construct a rule base, aided by
a further 95 sentences. No benchmark for this
task exists, so we compare our system’s output
to that of state-of-the-art AMR parsers, and ex-
plore the more challenging cases. Finally, we
discuss where the two frameworks diverge in
encoding semantic phenomena.

1 Introduction

Many semantic representation frameworks have
emerged over the years (Kamp and Reyle, 1993;
Copestake et al., 2005; Banarescu et al., 2013;
Abend and Rappoport, 2013), at varying levels of
abstraction in terms of encoding semantic phenom-
ena. We want to be able to compare frameworks
empirically across phenomena, with the goal to un-
derstand, unify and extend them. Unfortunately,
this is difficult to do in a data-driven manner as
there are few freely available parallel datasets. As
manual annotation is laborious, it is important to de-
velop automatic tools to create and expand datasets.
One way to approach this is by transforming an-
notations across frameworks. In this work, we
take a look at Abstract Meaning Representation
(AMR) (Banarescu et al., 2013), and Discourse
Representation Structures (DRS) (Kamp and Reyle,
1993), as expressed in the Parallel Meaning Bank
(PMB) (Abzianidze et al., 2017), to see how much
of the former can be constructed from the latter.

We show a significant portion of AMR can be
constructed from DRS and provide a discussion on
our insights as to where the process is not possible.
To achieve this we build a graph rewriting system
from DRS to AMR. As there is no parallel data
between the two, we also annotate a small part of
the PMB into AMR.

Our motivation for this work is twofold. Our
first goal is to get more parallel annotated data be-
tween semantic formalisms in general, and between
AMR and DRS for this particular study, in order
to foster empirical cross-formalism comparison. A
natural question to ask here is, since (as we will
see in section 5) automatic parsers based on ma-
chine learning techniques seem to perform better
than rule-based transformation systems on this task,
why do we bother with such an experiment. We
have a few reasons: (i) rule-based transformation
systems may still perform quite well, especially for
more closely-related formalisms (as we show in
this study) and we do not know how well exactly
until we test such a system; (ii) it is possible that the
two approaches make different kinds of mistakes,
which opens the possibility for hybrid solutions
that combine their strengths; (iii) with a rule-based
system, tracking the decision-making process is
possible, rendering the method explainable.

Our second goal is to better understand the dif-
ferences between formalisms with a view to ex-
tend and unify them. This is difficult to do in a
non-data-driven manner as the formal definitions
of formalisms are rarely complete. More impor-
tantly, within the community, it is not clear what a
complete semantic representation should consist of.
Thus, while not as direct as the first, an outcome
we hope to get from this work is a deeper insight
into what is needed in a semantic representation
and what are the missing links between formalisms,
as a step towards defining a unifying framework.

The rest of the paper is structured as follows:
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in section 2, we present the two frameworks; in
section 3 – our graph rewriting system (GRS); sec-
tion 4 is about our annotation procedure for a small
gold AMR dataset; in section 5, we present our
experiments, discuss the results, and compare them
to those of SoTA AMR parsers; in section 6, we
provide a discussion and future work directions.
Our code and data are publicly available1.

2 Background

In this section we present the Parallel Meaning
Bank as an instance of a large corpus of Discourse
Representation Structures, and Abstract Meaning
Representation.

2.1 DRS in the PMB
The Parallel Meaning Bank (PMB) is a semanti-
cally annotated corpus, with parallel annotations
available for four languages – English, German,
Italian and Dutch. The portion of the PMB that
contains gold annotations for English is signif-
icantly larger than the other three: 10,715 sen-
tences vs 2,844 (German), 1,686 (Italian) and 1,467
(Dutch). The formalism behind the PMB semantic
representations is Discourse Representation Theory
(DRT) (Kamp and Reyle, 1993) and in particular
Projective DRT (PDRT) (Venhuizen, 2015), which
differs from DRT in the way it accounts for pre-
suppositions and conventional implicatures. DRT
expressions are called Discourse Representation
Structures (DRS). DRS are typically represented
as boxes with variables defined at the top of the
box and the entities and relations between them
in the bottom. The boxes are used to label scopes
and discourse units. Similar to (Muskens, 1996),
the PMB “dialect” of DRS is compositional and it
allows to embed boxes into one another, specifying
the relations between them. Sentences from the
PMB can be viewed on the PMB explorer2. There,
DRS’s can be seen in three kinds of notation: the
traditional box notation (Figure 1a), clause notation
(Figure 1b), and the recently proposed Simplified
Box Notation (SBN) (Bos, 2021) (Figure 1d).

The PMB uses WordNet (Fellbaum, 1998)3 to
encode senses (e.g. attack.v.04, shark.n.01)
and VerbNet/LIRICS (Bonial et al., 2011) for se-
mantic roles (e.g. Agent, Patient, etc.).

1https://gitlab.inria.fr/
semagramme-public-projects/drs2amr

2https://pmb.let.rug.nl/explorer/explore.php;
data freely available under ODC-BY 1.0

3https://wordnet.princeton.edu/

For the purposes of our work, as the three nota-
tions available in the PMB are equivalent4, we use
SBN as a starting point, as it is simplest to process.
We transform SBN representations into graphs for
easier manipulation and visualisation (Figure 1c).

2.2 AMR
Abstract Meaning Representation (AMR) repre-
sents “who did what to whom” in a sentence. It
is meant to be rather abstract in order to be easily-
readable by humans and easier for annotators to
work with. The simplification is achieved by not en-
coding phenomena such as tense, plurality or scope,
though this can also be seen as a disadvantage.

AMR abstracts away from the surface represen-
tation, allowing multiple sentences with the same
meaning to have the same representation. The
AMR in Figure 2 is the representation of the sen-
tence “He was attacked by a shark.”, but also of “A
shark attacked him.”. Furthermore, as AMR does
not encode various semantic phenomena, sentences
with similar (but not the same) meanings can also
get the same representation. The AMR in Figure 2
also represents the sentences “The shark attacked
him.” and “Sharks will attack him.”, among others.

AMR is centered around predicate-argument
structure and, for English, makes extensive use
of PropBank predicates (Palmer et al., 2005). Pred-
icates are used to annotate verbs in a sentence, but
also adjectives, and sometimes even nouns, if the
appropriate PropBank frames exist. Each predicate
has a set of arguments which are called core roles
and appear as numbered arguments in AMRs (see
ARG0 and ARG1 in Figure 2). Additionally, non-core
roles such as time, domain, duration make up the
rest of the AMR relations.

AMRs are directed acyclic graphs (DAGs) with
a single root. Respecting both of these properties
does not always come naturally. To preserve both,
an AMR role can be inverted by changing its direc-
tion and adding -of to its label. Inverse roles are
also useful for highlighting the focus of a sentence.

Unlike for DRS, the larger, more commonly used
AMR datasets, are only available via a paid license
from the Linguistic Data Consortium5. Still, a
smaller portion of the so-called AMR Bank is freely
available6, namely the Little Prince corpus and the
BioAMR corpus. However, for the purposes of
our work, we need parallel data between DRS and

4with the exception of PRESUPPOSITION
5https://www.ldc.upenn.edu/
6https://amr.isi.edu/download.html

https://gitlab.inria.fr/semagramme-public-projects/drs2amr
https://gitlab.inria.fr/semagramme-public-projects/drs2amr
https://pmb.let.rug.nl/explorer/explore.php
https://wordnet.princeton.edu/
https://www.ldc.upenn.edu/
https://amr.isi.edu/download.html
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(a)

b1 REF x1 % He [0...2]
b1 PRESUPPOSITION b2 % He [0...2]
b1 male "n.02" x1 % He [0...2]
b2 REF t1 % was [3...6]
b2 TPR t1 "now" % was [3...6]
b2 Time e1 t1 % was [3...6]
b2 time "n.08" t1 % was [3...6]
b2 REF e1 % attacked [7...15]
b2 Patient e1 x1 % attacked [7...15]
b2 attack "v.04" e1 % attacked [7...15]
b2 Agent e1 x2 % by [16...18]
b2 REF x2 % a [19...20]
b2 shark "n.01" x2 % shark [21...26]

% . [26...27]

(b) (c)
male.n.02 % He [0-2]
time.n.08 TPR now % was [3-6]
attack.v.04 Patient -2 Time -1 Agent +1 % attacked by [7-18]
shark.n.01 % a shark. [19-27]

(d)

Figure 1: The sentence “He was attacked by a shark.” in box notation (a), clause notation (b), as a graph (c), and in
simplified box notation (SBN) (d).

(a / attack-01
:ARG0 (s / shark)
:ARG1 (h / he))

(a)

(b)

Figure 2: AMR annotation of the sentence “He was
attacked by a shark.”, among others, in (a) Penman
notation and (b) as a graph.

AMR. Since that, to the best of our knowledge,
does not exist, we chose to annotate a small portion
of the PMB into AMR (section 4).

3 System

We use GREW7 (Guillaume, 2021; Bonfante et al.,
2018) to build a graph rewriting system (GRS) for
rewriting SBN graphs into AMR ones. GREW is a
tool that allows the user to define rules to match pat-
terns in a graph and apply a set of commands that
transform the matched part of the graph. GREW

also allows for the use of lexicons, which lets us
map sets of values and assign a value to a variable
based on the value of another variable.

3.1 Lexicons

AMR and the PMB use different lexical resources,
so our system relies extensively on lexicons to map

7https://grew.fr/

them: WordNet verbs to PropBank predicates, and
VerbNet semantic roles to PropBank arguments.

SemLink8 (Palmer, 2009) is an existing ef-
fort aimed at linking English linguistic resources,
among which PropBank and WordNet. We scraped
the SemLink verb groupings9 to collect mappings
between the WordNet senses used in our dataset
and the corresponding PropBank predicates. We
note that this is a many-to-many mapping, as can
be seen in the sample below.

wn pred pb pred
%=================
try.v.01 try-01
try.v.01 try-04
play.v.01 play-01
play.v.07 play-01

We collected 133 such mappings in total for the
197 (95 from dev set + 102 from test set) sentences
in our dataset10. These span across 110 WordNet
senses and 119 PropBank predicates. The map-
pings do not cover all the predicates present in our
dataset, as either the WordNet or PropBank predi-
cate does not exist in its respective resource or the
mapping between the two is not a part of SemLink.
We found 22 such WordNet predicates, 13 of which
correspond to phrasal verbs.

Next, for each PropBank predicate in our lexi-

8https://verbs.colorado.edu/semlink/
9https://verbs.colorado.edu/html groupings/

10For this experiment, we wanted to simulate having a com-
plete lexicon mapping. Constructing such a mapping is out of
the scope of this work. Instead, we chose to have a lexicon that
is “complete” at least for our dataset by pulling the predicate
senses appearing in both the dev and test sets.

https://grew.fr/
https://verbs.colorado.edu/semlink/
https://verbs.colorado.edu/html_groupings/


212

con, we manually11 went over the corresponding
PropBank entry and collected the VerbNet role for
each argument where that was present. This way,
we produced the first version of our lexicon, which
we will refer to as incomplete lexicon. Out of the
119 PropBank predicates, 61 (around 51%) were
missing a VerbNet role for some or all arguments.

Finally, we produce the final version of our lex-
icon, which we will refer to as complete lexicon.
We do this by going over all the predicates again
and deciding on a VerbNet role for each of the
arguments that do not have one.

For example, in PropBank, for try-01, we have
the following:

Arg0-PAG: Agent/Entity Trying (vnrole: 61.1-
agent)

Arg1-PPT: thing tried (vnrole: 61.1-theme)

whereas for try-04, we have:

Arg0-PAG: tryer
Arg1-PPT: thing tried (hand, patience)
Arg2-PRD: attribute of Arg 1

As can be seen, for try-01 the corresponding
VerbNet roles are explicitly specified in the brack-
ets, whereas for try-04 they are not. Thus, while
the incomplete lexicon contains entries for both
try-01 and try-04, it specifies the PropBank num-
bered arguments only for try-01.

wn pred pb pred Agent Theme ...
%===============================
try.v.01 try-01 ARG0 ARG1 ...
try.v.01 try-04 - - ...

The complete lexicon, on the other hand, speci-
fies the roles for try-04 as well. As can be seen
below, based on the descriptions from PropBank,
we have decided to link ARG0 to Agent, ARG1 to
Theme and ARG2 to Attribute.

wn pred pb pred Agent Theme Att.
%================================
try.v.01 try-01 ARG0 ARG1 -
try.v.01 try-04 ARG0 ARG1 ARG2

The PMB typically uses WordNet’s
measure.n.02 as a node when talking about

11This seems like a lot of work for a small dataset, but it is a
one-off effort. Once done for the entire sense bank for a given
language, it can be used for all datasets for that language.

quantities. In AMR, this is more fine-grained,
with concepts such as temporal-quantity or
distance-quantity. Many of these can be
deduced based on the :unit of said quantity, e.g.
if the :unit is day, then the concept should be
temporal-quantity. To address this, we also
produce and use a lexicon which maps unit types
to quantity types.

3.2 Our Graph Rewriting System

Our Graph Rewriting System (GRS) includes a few
groups of rules, centered around different types of
roles or structures in both AMR and the PMB. We
selected partition 00 of our split of the PMB (see
section 4 for explanation on partitions) as the set
used for constructing rules, referred to hereupon as
our dev set. AMR annotations for it were produced
by annotator D (see section 4). All our data comes
from the English section of the PMB.

Core roles with lexicon. This set of rules en-
compasses a rule for picking a PropBank predicate
for the WordNet verbs in the input SBN graph if
a mapping for that WordNet verb is present in our
lexicon, and rules for rewriting the VerbNet roles
from the input graph into PropBank numbered ar-
guments. This category contains 27 rules – one
for sense picking and one each for the 26 VerbNet
predicates in our lexicon.

Core roles without lexicon. Here, we include
a set of rules that rewrite the most common Verb-
Net roles, Agent, Patient, Theme, Stimulus and
Experiencer, into PropBank numbered arguments
in case they were not present in the lexicon for the
relevant PropBank entry. For each, we select the
most common numbered argument that that role
has in our lexicon. These are later referred to as
our fallback rules. This category contains 5 rules.

Non-core roles. This set of rules covers rewrit-
ing of PMB roles, such as Duration, Manner,
Beneficiary, etc., to their AMR counterparts
(:duration, :manner, :beneficiary, etc.). This
category contains 21 rules.

Structures. Another set of rules deals with what
we call structures. As structures, we consider a set
of nodes and edges (as opposed to just a single node
or a single edge) that can be rewritten into another
set of nodes and edges or an individual edge. One
such example is the structure used by the PMB
when we have person.n.01 -EQU-> speaker.
This corresponds to using either the concept I or
the concept we as a single node in place of the
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whole structure. Here we also include rules where
a single node or edge is rewritten into a set of nodes
and edges. An example of this is the rule we use
for named entities that rewrites the edge Name from
the SBN graph into a structure that encompasses
the name, wiki and their corresponding values in
the AMR graph. We have 25 rules in this category.

Special words. A small set of rules deals with
special concepts and relations. One such example
is the concept be-03 which is most often used to
refer to spatial location and therefore invokes the
special AMR concept be-located-at-91. There
are 12 rules in this category.

Boxes. As described in subsection 2.1, the PMB
groups nodes in boxes. When there is a single
box in the SBN representation of a sentence, this
generally does not bring any new information for
the AMR graph. However, when more than one
box is present, for example to introduce phenomena
such as negation or universal quantification, this
can be informative for the AMR graph as well.
For example B1 -NEGATION-> B2 can introduce
a :polarity - relation to AMR. Our final set
of rules deals with the different types of relations
between boxes when more than one box is present.
A final rule removes all the boxes that are left at
the end. This category contains 36 rules.

The different sets of rules presented here are ap-
plied in the following order: special words, core
roles with lexicon, non-core roles, structures, core
roles without lexicon, boxes, except the two rules
dealing with the AttributeOf SBN role, which
are applied after boxes. An additional rule for re-
moving cycles with three nodes by inverting one of
the relations in the cycle is applied at the end.

Some of the rules are combined into non-deter-
ministic strategies. For example, since there is no
way to tell from the SBN graph only (i.e. with-
out referring to the text) whether person.n.01
-EQU-> speaker refers to I or we, both versions are
produced by our GRS. Similarly, as we mentioned
in subsection 3.1, the WordNet to PropBank predi-
cate mapping is many-to-many. In case a WordNet
predicate maps to multiple PropBank ones, all pos-
sible graphs are produced.

3.3 Post-processing

After applying the GRS to our data, we do some
post-processing on the GREW graphs. For named
entities, our GRS only produces an :op1 property
for the name of the entity even if the name consists

of multiple words. This is addressed in the post-
processing step by adding :op2 to :opN accord-
ingly. Additionally, for any remaining WordNet
concepts (be it verbs, nouns or adjectives) we re-
move the trailing part starting from the first dot, i.e.
piano.n.01 becomes piano. Finally we produce
the PENMAN notation for the output AMR graph
(or graphs in the case of non-determinism).

4 Gold Data

To evaluate our system, we produced gold AMR
annotations for 102 sentences of the English part
of the PMB. In order to make sure that there were
no specific phenomena concentrated in certain par-
tition of the PMB data, instead of picking a random
partition and risking having a non-representative
sample, we applied an algorithm to “randomise”
that12. We created 100 new partitions, by find-
ing the sum of the part and document number of
each sentence and applying modulo 100 to get a
new partition number. This approach groups the
data randomly, but is reproducible and as the PMB
expands, the partitions should grow in a fairly uni-
form manner. Version 4.0.0 of the PMB contais
10,715 gold English sentences, so 107 sentences
on average per partition.

We picked partition 25 (i.e. all the documents for
which (p+ d)%100 is 25) to annotate manually. It
contains 102 sentences. Our four annotators – A, B,
C and D – annotated half of the sentences (51) each.
Every sentence was annotated by two annotators.
To ensure that each pair of annotators had the same
number of overlapping sentences, we split the 102
sentences into six groups of 17 and distributed the
groups among the six different pairings.

The annotators consulted the following resources
during the annotation process:

• AMR Specifications13 as the primary source
for examples and explanations on how to an-
notate different phenomena

12As per (Abzianidze et al., 2017), the corpora used in the
PMB are balanced across parts. It is difficult to verify whether
the dataset is also balanced across various semantic phenom-
ena. In case it is, our randomization step is not necessary.
We do, however, want to point out that the English gold data
in the PMB 4.0.0 is not distributed uniformly across parts.
Those towards the beginning and those with a number divisi-
ble by 10 have significantly more sentences than the rest (see
subsection C.1 in the Appendix).

13https://github.com/amrisi/amr-guidelines/
blob/master/amr.md (points to version 1.2.6 of the
specifications at the time of writing)

https://github.com/amrisi/amr-guidelines/blob/master/amr.md
https://github.com/amrisi/amr-guidelines/blob/master/amr.md
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• AMR Annotation Dictionary14 for additional
annotation examples grouped by specific roles,
concepts, words and constructions

• PropBank Searchable Frame Files15 for Prop-
Bank predicates and their argument structures

• A full list of PropBank frames from the AMR
website16 to find “hidden” AMR frames (e.g.
“strong-02” is hidden in strengthen.html
in the Searchable Frame Files). PropBank
Searchable Frame Files took precedence in
case of conflict.

• GREW-MATCH17 to search for examples of
different concepts or structures, in graph for-
mat. For AMR, GREW-MATCH currently con-
tains all the examples from the AMR Speci-
fications, AMR Annotation Dictionary, The
Little Prince corpus, and the BioAMR corpus.

We used Smatch (Cai and Knight, 2013) to com-
pute the inter-annotator agreement (IAA). Smatch
uses a hill-climbing algorithm to find the maximum
number of triples between two graphs. There are
three types of triples: instance, relation, and at-
tribute. Instance triples match nodes in the graph,
counting exact matches between the node concepts.
Relation triples match edges in the graph. Attribute
triples match properties of the nodes. Each type
has equal weight in the overall score count.

The results of our IAA are reported in Table 1.
Annotator A appears to have the lowest agreement
with the other three annotators. One reason for this
may be that annotator A correctly observed that
named entities in AMR always get a :wiki prop-
erty, even if they do not have an existing Wikipedia
page18 and added them accordingly. The other
three annotators only added a :wiki property to
Wikipedia named entities. We have adopted anno-
tator A’s approach for the gold data.

To produce the final version of the gold data,
the four annotators gathered in groups (two, three,
or four) over the course of a few sessions. For
each sentence, the two existing annotations were

14https://www.isi.edu/∼ulf/amr/lib/amr-dict.
html

15http://verbs.colorado.edu/propbank/
framesets-english-aliases/

16https://amr.isi.edu/doc/
propbank-amr-frames-arg-descr.txt

17http://semantics.grew.fr/
18Indeed, we observe that all the named entities in the AMR

annotated data, except from one sentence from the BioAMR
corpus have a :wiki property.

A B C D
A – 0.76 0.82 0.81
B 0.76 – 0.83 0.86
C 0.82 0.83 – 0.84
D 0.81 0.86 0.84 –

Table 1: Inter-annotator agreement – Smatch f-score.

compared and after a discussion, one was chosen
or a modification that combines elements of both
annotations was selected. In a small number of
cases, the annotators agreed on an entirely different
annotation from the two proposed ones.

5 Evaluation

As with our IAA, we use Smatch to evaluate our
system’s output against the gold annotations. As
mentioned in section 4, Smatch takes into account
not only the graph structure, but also the exact
match of concepts between graphs. Thus, we
expected that the predicate lexicon and the sec-
ond post-processing step (removing trailing part of
WordNet concepts) would have a substantial im-
pact on the final score. To evaluate this, we run the
experiment with no lexicon (1), with the incomplete
lexicon (2), and with the complete lexicon (3). Ad-
ditionally, we also run a version with the complete
lexicon, but without the second post-processing
step (4). Finally, while adding a lexicon of senses
increases the results for both the test and dev sets
significantly, we see that the difference in results
between the incomplete lexicon and the complete
lexicon setting is very small. Our hypothesis is
that this is due to the fallback rules for core roles
that have not been rewritten. To verify this, we
run the three different lexicon versions (no lexicon
(5), incomplete lexicon (6), and complete lexicon
(7)) also without the fallback rules. We run each of
these experiments on both the dev and test sets.

The results from our experiments are reported
in Table 2. As can be seen our hypothesis about
the benefit of a lexicon and the post-processing
step is justified: we get an increase of 6− 7% on
both the dev and test sets for all scores. When
we consider the fallback rules, we can compare
experiments (1), (2) and (3) with experiments (5),
(6) and (7). We see that the fallback rules do a lot
of the groundwork, but more so when we have no
lexicon or an incomplete one. They have less of an
impact when working with a complete lexicon.

Due to non-deterministic rules, for some sen-

https://www.isi.edu/~ulf/amr/lib/amr-dict.html
https://www.isi.edu/~ulf/amr/lib/amr-dict.html
http://verbs.colorado.edu/propbank/framesets-english-aliases/
http://verbs.colorado.edu/propbank/framesets-english-aliases/
https://amr.isi.edu/doc/propbank-amr-frames-arg-descr.txt
https://amr.isi.edu/doc/propbank-amr-frames-arg-descr.txt
http://semantics.grew.fr/
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tences we get more than one output graph. As we
want to see what is the biggest part of the AMR
structure that can be built from DRS, the scores we
report take the graph with highest overlap (accord-
ing to Smatch F1-score) with the gold graph19.

Comparing the scores on the dev and test sets,
we notice the big disparity in the scores between
the two. This is due to our building the rules based
on the dev set and thus missing out on structures
that do not appear in it, but appear in the test set.
This suggests that our rule set is incomplete and a
larger dev set may be necessary to ensure broader
structure coverage. One such example is that the
structure used in the PMB for expressions such as
instead of and rather than needs special treatment
which requires either the duplication of a specific
node or the introduction of the predicate prefer-01.
However, since our rule base was built from the dev
set and that does not include such an example, we
do not have a rule to address it. We do, however,
have such an example in the test set and it cannot
be addressed properly.

5.1 Comparison to AMR parsers

As far as we are aware, transforming DRS graphs
into AMR ones is a new task. There is, therefore,
no benchmark against which we can compare our
outputs. For the sake of argument, however, we
got predictions from two SoTA AMR parsers – an
ensemble one, and a single-model one.

MBSE. Maximum Bayes Smatch Ensemble
(MBSE) (Lee et al., 2022) is an ensemble dis-
tillation model that combines knowledge from a
number of models to produce a single prediction.
MBSE is currently the SoTA AMR parser.

AMRBART. AMRBART (Bai et al., 2022) uses
graph-to-graph pre-training to improve pre-trained
language models’ awareness of the graph structure
of AMRs. It is currently the best single-model
and fifth best overall parser on the AMR2.0 and
AMR3.0 datasets.

We sent our dataset to the MBSE authors and ob-
tained the predictions from the Ensemble-5 MBSE
model back from them. As for AMRBART, we ran
the fine-tuned on AMR parsing AMRBART-large
(AMR2.0)20 on our dataset. The granular Smatch
scores21 (Damonte et al., 2017) for these two as
well as for our system on both our test and dev

19For completeness, if we take the worst graph instead, the
F1-score for experiment (3) is 0.71 for dev and 0.65 for test.

20https://github.com/goodbai-nlp/AMRBART
21https://github.com/mdtux89/amr-evaluation

sets are in Table 3. MBSE predictions have not
been wikified. We expect that after wikification,
MBSE’s score will be on par with AMRBART’s.

As can be seen in the table, the AMR parsers
perform better overall compared to our system. We
believe there are two main reasons for this. Firstly,
the AMR parsers have been trained on a lot more
data: tens of thousands of sentences versus 95 for
our system. Secondly, we are limited by the infor-
mation that is present in the DRS and parts of the
AMR structure simply cannot be predicted from it
(see section 6 for further discussion).

A closer look at the granular scores indicates that
the areas where our system performs particularly
poorly is when dealing with negations and reen-
trancies, both of which are the hardest areas for the
parsers as well. For negation, we owe this to the
fact that in DRS, when negation is morphological,
but there is a corresponding WordNet concept, as
is the case with unhealthy.a.01 in “I knew it was
unhealthy” (26/2674), this is expressed in one node,
whereas in AMR, we have a node for healthy-01
and a node that negates that22.

In some cases, our system performs better than
the parsers. For example, in sentences that use
comparison (e.g. “This car is bigger than that one”
(67/2333)). However, this is likely because our rule
for handling these cases was built following the
AMR guidelines, as was our gold dataset. The data
that the two parsers have been trained on uses a dif-
ferent than in the guidelines structure, leading them
to learn that instead. To their credit, our hypothesis
is that if they were trained on the same structure,
they would be more likely to predict it correctly.

5.2 Error Analysis
As discussed earlier, some of our errors are due
to certain structures not being present in our dev
set. These do not, however, account for the errors
on the dev set itself. There are a number of other
aspects which come at play here.

Missing predicates from lexicon. A number
of the predicates in our sentences, while present
in both WordNet and PropBank, do not appear in
Semlink. Therefore we have not been able to add
them to our lexicon. This leads to a non-overlap

22It would be possible to address this via a rule that captures
such words. However, only words where the negative particle
is indeed a morpheme, need to follow this rule (it would not
apply to ”uniform”, for example). This would require the
construction of a lexicon of words with negative morphemes.
This is ultimately a task that requires morphological analysis
and, as such, is out of the scope of this work.

https://github.com/goodbai-nlp/AMRBART
https://github.com/mdtux89/amr-evaluation
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Dev set Test set
Precision Recall F1-score Precision Recall F1-score

(1) No lexicon 0.72 0.71 0.72 0.66 0.62 0.64
(2) Incomplete lexicon 0.79 0.77 0.78 0.72 0.68 0.70
(3) Complete lexicon 0.79 0.78 0.78 0.73 0.68 0.70
(4) Complete lexicon, no concept fix 0.65 0.63 0.64 0.61 0.57 0.69
(5) No lexicon, no fallback 0.61 0.60 0.60 0.55 0.51 0.53
(6) Incomplete lexicon, no fallback 0.75 0.74 0.75 0.69 0.65 0.67
(7) Complete lexicon, no fallback 0.77 0.75 0.76 0.70 0.66 0.68
MBSE – no wiki 0.84 0.83 0.83 0.85 0.80 0.82
AMRBART 0.85 0.83 0.84 0.86 0.86 0.86

Table 2: Smatch scores. Where “no fallback” is not specified, it means that the fallback rules have been applied.
Where “no concept fix” is not specified, it means that the post-processing concept addition has been applied.

Smatch Unlabeled No WSD Concepts NE Neg. Wiki Reent. SRL

Dev
MBSE 0.83 0.87 0.84 0.88 0.92 0.55 – 0.66 0.84

AMRBART 0.86 0.89 0.87 0.87 0.94 0.70 0.85 0.66 0.83
Our system 0.78 0.84 0.79 0.78 0.91 0.40 0.68 0.53 0.75

Test
MBSE 0.82 0.86 0.83 0.86 0.94 0.60 – 0.65 0.81

AMRBART 0.84 0.87 0.84 0.86 0.94 0.55 0.88 0.59 0.84
Our system 0.70 0.78 0.71 0.70 0.82 0.48 0.73 0.37 0.65

Table 3: Granular Smatch scores.

between instance nodes for those predicates as well
as a wrong argument structure. This is especially
true in the case of adjectives since many are Prop-
Bank predicates. However, there are no adjectives
in the Semlink groupings so we have not been able
to add them to our lexicon.

Divergence between AMR and DRS. AMR
and DRS differ in the way in which they encode
certain semantic phenomena, notably scope. There
are specific AMR structures for which it is not
possible to decide on the correct structure, given
only the DRS. We discuss some of these cases in
more detail in section 6.

Inconsistencies in the PMB data. Finally,
while a much smaller number, some errors are prop-
agated from wrong annotations in the PMB dataset.
An example of this can be seen in subsection C.2.

6 Discussion

Our goal with this work was to see what portion of
AMR can be constructed from DRS and where that
is not possible, to understand why. While construct-
ing our rule base, we observed that the way the two
frameworks encode predicate-argument structure
is very similar, differing mostly in semantic role la-
bels, where DRS relies on VerbNet roles and AMR

on PropBank predicates. With an exhaustive lexi-
con that contains a mapping between all senses and
their arguments in the two lexical resources, it will
be possible to rewrite these correctly.

The most notable difference between the two
frameworks is the lack of scope in AMR, whereas
that is present in DRS. Some phenomena linked
to scope are encoded differently in the two. E.g.,
universal quantification is typically encoded in the
PMB in the same way as generics: the sentences
“All the seats are booked.” (50/2764) and “A cat has
two ears.” (60/0913) have a similar structure, de-
spite the different phenomena. In AMR the two are
encoded differently as the quantifier “all” is present
on the surface in one and not in the other. Similarly,
the quantifiers “the” and “this” are expressed in the
same way in DRS: by neither being present in the
representation, while in AMR “this” is expressed
as a separate node and “the” is not.

DRS, as the name suggests, is centered around
discourse (as opposed to dialogue) and is not meant
to encode questions very well. We observe that in
the PMB, wh-questions can be derived from the
representation. However, this is not the case for
yes-no questions, which, in the PMB are encoded
exactly as their declarative counterparts. This is
not the case in AMR, thus preventing us from dis-
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Figure 3: AMR annotation of the sentence “All who
were arrested have been released.” (99/1243), the way
it would look like if we were to follow the “logical”
reading as in DRS.

Figure 4: AMR annotation of the sentence “All who
were arrested have been released.” (99/1243), the way a
human annotator using the AMR guidelines and datasets
as examples would likely annotate it.

tinguishing between the two without referring to
the text of the sentence.

That being said, for a number of our rules in the
Boxes category, we do make use of GREW’s abil-
ity to check for specific regular expressions in the
original sentence. This works for short sentences
where there is a small or no risk of having a specific
structure appear more than once. However, it is not
a valid solution for longer texts. A future version
of this system may benefit from using the SBN
notations comments (part after % in Figure 1d).

Finally, we want to discuss a broader issue in
relation to universal quantification in DRS. In the
PMB, sentences such as “All who were arrested
have been released.” (99/1243) have a structure
which corresponds to the reading “if a person has
been arrested, they have been released”. This is the
way to express the semantics of universal quantifi-
cation in logic. It is achieved in the PMB by using
a combination of a CONDITION-CONSEQUENCE box
embedding. This can be rewritten into AMR by
making use of the non-core role condition, ob-
taining the graph in Figure 3. This is a correct
reading of the sentence. However, if an annota-

tor was to follow the AMR guidelines, we would
get the graph in Figure 4. We believe this is also
a correct representation of the sentence. While
logically the two may be equivalent, the graph rep-
resentations are structurally different. This raises
the question of whether we can have more than one
correct AMR per sentence. If so, then this opens
the door for future considerations on how to take
that into account in our evaluation metrics.

There are a number of other improvements to
our system that are worth exploring in the future.
Expanding the rule base can happen in two main
ways (1) by expanding the dev set so that more
varying structures are present and (2) thoroughly
going though the different expressions in the AMR
guidelines and AMR dictionary and designing rules
for each of them. Ideally, a combination of the two
should be considered. Furthermore, as we have
seen with our experiments in section 5, having a
lexicon that maps WordNet senses to PropBank
predicates improves the score significantly. Our
lexicon is still incomplete and can be further im-
proved by adding adjectives, for instance. It would
also be interesting to explore how our system per-
forms on other languages (see Appendix A).

Our effort in trying to transform frameworks is
not unique for the semantic representations com-
munity. In an exploration to better understand what
linguistic semantic phenomena formalisms encode,
Hershcovich et al. (2020) propose a rule-based con-
version system from syntax and lexical semantics
into Universal Conceptual Cognitive Annotation.
Closer to our work in terms of formalisms used,
Bos (2020) proposes AMR+ (an AMR extension to
deal with scope) and a formal procedure to convert
AMR+ into DRS. As a future work, we are inter-
ested in seeing how much AMRs obtained by ap-
plying the reverse procedure (from DRS to AMR+),
then dropping the scope information, would differ
from what we obtained with our system.

7 Conclusion

The goal of this work was to build a graph rewriting
system from DRS (as in the PMB) to AMR to dis-
cover what portion of the latter can be constructed
from the former. To do so, we first constructed a
small AMR dataset from PMB sentences and built
a lexicon mapping WordNet senses to PropBank
predicates and arguments. We showed a significant
part of the AMR structure is contained in DRS.
Finally, we discussed their divergences.
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A Limitations

There are a number of limitations of our work that
we address in this section.

We work with semantics, and it can be ar-
gued that the meaning representation of a sen-
tence should be identical regardless of the language.
However, empirical experiments are necessary to
verify that this is indeed the case when we work
with real-world data and that our system still works
for languages which are structurally very different
from English.

That being said, reproducing this experiment
for another language is not as straightforward as
simply running our system on a dataset in a differ-
ent language. For our system we rely heavily on
lexical resources in English. The same are not as
well-developed for most other languages.

Furthermore, as there is no parallel data between
DRS and AMR, to run an evaluation on such a sys-
tem for another language, requires the construction
of a corpus in one or both frameworks. This comes
at the cost of either training or having access to
a skilled annotator who is also a speaker of the
language for which the system is to be constructed.

Finally, relating to subsection 3.1, the missing
VerbNet arguments for the PropBank predicates
were decided on by one of the authors, after care-
fully reading descriptions for each numbered argu-
ment of the given predicate in PropBank. However,
as none of the authors is an expert in semantic role
labeling, we have to note that the decisions may
not have always been what an expert in this field
may have chosen.

B Ethical considerations

Our system is entirely rule-based: it does not rely
on heavy computational power and takes a few
seconds to run on a standard computer.

Our code and data are freely available and it is
not necessary to obtain any paid resources to be
able to reproduce our experiments.

C PMB data

C.1 Source distribution for English gold

Figure 5 shows that the sources where data comes
from in gold English section of the PMB 4.0.0 is
balanced across parts. The total number of sen-
tences per part, however, is not evenly distributed,
with parts towards the beginning and those with

a sequence number divisible by 10 having more
sentences than the rest.

C.2 Inconsistencies in PMB data
Though not very frequent, there are errors in the
PMB annotations, which, in turn, propagate to the
AMR annotations produced by our system. One
such example is for the sentence “Since I didn’t
receive a reply, I wrote to her again” (75/3043).
Its PMB annotation, in graph format, can be seen
in Figure 6. This is incorrect, as this is the DRS
for the sentence “I didn’t receive a reply because
I wrote to her”. For the correct version of this
sentence, the NEGATION and EXPLANATION labels
have to be reversed, like they are in Figure 7 for the
sentence “I am hungry because I did not eat lunch”
(86/1591).
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Figure 5: Distribution of the sources across the English gold part of the PMB, release 4.0.0.
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Figure 6: PMB annotation of the sentence “Since I didn’t receive a reply, I wrote to her again.” (75/3043). The
NEGATION and EXPLANATION labels should be reversed.

Figure 7: PMB annotation of the sentence “I am hungry because I did not eat lunch.” (86/1591).


