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Abstract

Current symbolic semantic representations
proposed to capture the semantics of human
language have served well to give us insight
in how meaning is expressed. But they are
either too complicated for large-scale annota-
tion tasks or lack expressive power to play a
role in inference tasks. What I propose is
a meaning representation system that it is in-
terlingual, model-theoretic (by translation to
first-order logic), and variable-free. It divides
the labour involved in representing meaning
along three levels: concept, roles, and con-
texts. As natural languages are expressed as
sequences of phonemes or words, the meaning
representations that I propose are likewise se-
quential. However, the resulting meaning rep-
resentations can also be visualised as directed
acyclic graphs.

1 Introduction

There are many proposals for representing meaning
of natural language expressions in a formal way.
These originate from various disciplines, including
formal semantics (Thomason, 1974; Dowty et al.,
1981; Heim, 1982; Kamp, 1984; Groenendijk and
Stokhof, 1990; Chierchia, 1992), artificial intelli-
gence (Schubert, 1976; Sowa, 1984, 1995; Schu-
bert, 2015), and computational linguistics (Copes-
take et al., 2005; Banarescu et al., 2013; Abzian-
idze et al., 2017; Martı́nez Lorenzo et al., 2022).
Although most of these do a tremendous job in
analysing meaning, I think none of them offers a
meaning representation that is the ideal candidate
for large-scale annotation tasks in computational
semantics requiring supervised machine learning:
some of them lack expressive power, some of them
are only partially interpretable, some of them are
tailored to specific natural languages, and yet oth-
ers are featured with a complex syntax that makes
them unsuitable for human annotation tasks.

What nearly all of these semantic formalisms
have in common is that they all share the prop-
erty of using variables ranging over (first-order
or higher-order) entities. Representations without
variables have potential advantages and benefits
when we think of human annotation efforts, ma-
chine learning approaches, and meaning visuali-
sations techniques. Hence, the question I take at
heart is whether it is possible to eliminate variables
from formal meaning representations without los-
ing expressive power required to interpret linguistic
expressions.

The goal of this paper is to propose a meaning
representation that is a healthy mixture of interlin-
guality, simplicity, and expressiveness. With inter-
linguality I mean a meaning representation that is
not designed to support a single language. With
simplicity I mean a kind of semantic representation
that supports an intuitive way of drawing a graphi-
cal representation of the meaning that it is supposed
to represent. With expressiveness I mean at least
the expressive power of first-order logic (i.e., quan-
tification, negation, and conjunction) and support
for discourse phenomena such as co-reference and
discourse structure.

Current graph-based meaning representations
such as AMR, Abstract Meaning Representation
(Banarescu et al., 2013) lack expressive power. Cur-
rent logic-based meaning representations such as
DRS, Disourse Representation Structure (Kamp
and Reyle, 1993) are unattractive to represent
as graphs as they require substantial reification
(Abzianidze et al., 2020). What I propose is a
formalism that combines AMR with DRS while re-
moving notational redundancies such as variables
and punctuation symbols. It takes the attractive and
simple graph-based visualisation of AMR but adds
the “boxes” of DRS, arriving at a formalism that
includes negation and quantification as in predicate
logic. The formalism accommodates two ways
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of represent meaning: the variable-free sequential
notation, and directed acyclic graphs. The variable-
free sequence notation is expected to be advanta-
geous for human annotation efforts and language
technology applications that require machine learn-
ing (e.g., applying neural networks for the tasks of
semantic parsing or natural language generation).
This is because it doesn’t require the process of
using variables nor explicit indication of scope for
logical operators like negation. The graph repre-
sentation is convenient for human readers and for
software designed to work with graphs.

2 Simplifying Meaning Representations

In this section I will present a new meaning repre-
sentation system. Using this formalism, annotation
can be done with a simple text editor. There are no
logical variables but there is still support for nega-
tion and scope. The primary encoding of meaning
is done in sequence notation. But the meanings
can be visualised as directed acyclic graphs. The
sequence notation can be applied to various mean-
ing representation formalisms including AMR and
DRS. In this paper I focus on the latter.

2.1 The Sequence Notation
I will introduce the sequence notation by first ex-
plaining what the elementary building block are.
Then I explain how sequences can be constructed,
visualised, and interpreted. The sequence notation
has the following ingredients (with examples in
brackets):

• Concepts (cat.n.01, see.v.03, . . . )

• Constants ("Mary", speaker, 20, π, . . . )

• Roles (Agent, Theme, Patient, . . . )

• Operators (=, 6=, ≈, <, ≤, ≺, . . . )

• Indices (. . . , -2, -1, +1, +2, . . . )

• Contexts

• Separators (NEGATION, CONJUNCTION,
EXPLANATION, NARRATION, . . . )

• Connectors (. . . , <2, <1, >1, . . . )

Concepts identify an entity or event as belonging
to a certain class within a domain ontology. Con-
cepts are always written in lower case and are rep-
resented as interlingual WordNet synsets as triplets
comprising of a lemma, part of speech (n, v, a, or
r) and a sense number, e.g., cat.n.01 represents
the first sense of the noun cat. I view a WordNet

synset as language-neutral, even though in this pa-
per I will use the synsets as defined in Princeton’s
American English WordNet 3.0 (Fellbaum, 1998)
because of its common use in the NLP commu-
nity. Adoption of a multi-lingual wordnet (Nav-
igli and Ponzetto, 2012; Bond and Foster, 2013)
would eventually be the target in a large-scale multi-
lingual implementation.

Constants comprise proper names (of people,
animals, organisations, locations, artifacts), numer-
ical values (integers and reals), times and dates,
literal mentions. They also include deictic refer-
ences: the speaker of the utterance (speaker),
the addressee (hearer), the utterance time (now)
and location (here).

Roles connect an event to an entity (or relate two
entities to each other). Roles always start with an
uppercase character followed by lowercase to dis-
tinguish them from concepts. The roles used in this
paper are by and large based on thematic role in-
ventory provided by VerbNet and LIRICS (Kipper
et al., 2008; Bonial et al., 2011). The connections
between events and entities are established with
indices (see § 3.3). The operators are used to ex-
press comparisons between entities and are written
in mathematical notation or with three uppercase
letters (EQU, NEQ, SIM, LES, LEQ, TPR, and so
on).

All concepts are introduced in a context. Con-
texts are not explicit in sequence notation. A sep-
arator introduces a new context connecting it to a
previously introduced context as indicated by its
connector (see § 3.4). Separators are always writ-
ten in all uppercase to distinguish them from roles
and concepts.

2.2 Forming Sequences

A role followed by a constant is an anchor. So,
Name "Mary" is an anchor. A role followed
by an index is a hook. Hence, Owner +1 is
a hook. A simple sequence is a sequence of
one or more concepts, where a concept can be
followed by zero or more anchors or hooks.
Therefore, dog.n.01 is a simple sequence, and
so are cat.n.01 dog.n.01, and cat.n.01
Owner +1 person.n.01 Name "Mary".
A simple sequence represents a single context. A
context is similar to a box in Discourse Representa-
tion Theory (Kamp and Reyle, 1993). They set the
stage for the entities that play a part of the context.

A complex sequence is formed by combining
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two (simple or complex) sequences using a sepa-
rator and connector. For instance, person.n.01
NEGATION <1 smile.v.01 Theme -1 is
a complex sequence, constructed from the sim-
ple sequences person.n.01 and smile.v.01
Theme -1 using the separator NEGATION and
connector <1 as glue. A complex sequence repre-
sents two or more contexts.

2.3 Graph Visualisation

A meaning in sequence notation can be visualised
as a directed acyclic graph, where the vertices
denote concepts, contexts or constants, and the
edges are decorated by roles or comparison
operators. Concept nodes are drawn as ovals
and context nodes as boxes. Figure 1 shows
how the sequence male.n.02 Name "Tom"
time.n.08 TPR now cry.v.02 Agent
-2 Time -1 is visusalised as a graph.

Figure 1: Graph for “Tom was crying.”

Although contexts are implicit in the sequence
notation, drawn as a graph the contexts become ex-
plicit as boxes. Each concept is related to a context
with a membership edge connected to its context,
as Figure 1 shows.

Note that the sequence notation corresponds to
a topological ordering of its graph. As a directed
acyclic graph can give rise to one or more topologic
orderings, the preferred ordering is one that resem-
bles the linguistic realisation. As a consequence, a
meaning-preserving translation from a sentence in
one language to another language could result in
a single meaning representation that would show
different orders in sequence notation for the two
languages. This is exemplified for a simple English
sentence (1) and its translation in Dutch (2) with a
different word order.

(1) a. (that) a boy bought a book.
b. boy.n.01 buy.v.01 Agent -1

Theme +1 book.n.02

(2) a. (dat) een jongen een boek kocht.
b. boy.n.01 book.n.01 buy.01

Agent -2 Theme -1

2.4 Role Inversion

A role connects two entities, but can only be
hooked to one. This could cause unwanted side-
effects such as cycles in the corresponding graph
(see previous section) or imperfect linguistic align-
ment (see next section). The mechanism of role
inversion, as introduced in description logics, AI
approaches of knowledge representation and AMR,
is therefore a useful one to have at one’s disposal
because of the added flexibility in creating mean-
ings.

Role inversion is defined as follows:
∀R∀x∀y(R(x,y) ↔ ←−

R (y,x)), where ←−R is the
inversion of R. In words: every role, a binary
relation, has a dual, and if you want to swap the
arguments of a role, you can do so using the dual
without changing the overall meaning. Following
the convention in AMR, I use the Of suffix to
indicate inverted roles. Consider (3) with an
inverted role and compare it to the earlier (1).

(3) a. A boy bought a book.
b. boy.n.01 buy.v.01 Agent -1

book.n.02 ThemeOf -1

Role inversion does not affect the truth-conditional
meaning, and for checking syntactic equivalence
of graphs inverted roles are normalised (Cai and
Knight, 2013). Role inversion gives us flexibility
in the sequence notation, which is useful in seman-
tic annotation tasks where linguistic alignment is
important.

2.5 Linguistic Alignment

For practical purposes (human annotation and veri-
fication and natural language processing technolo-
gies using machine learning) it is convenient to
get a close alignment between the meaning repre-
sentation and the natural language expression that
it forms the interpretation of. It is hard to align
meaning graphs with text, which is linear by na-
ture (Pourdamghani et al., 2014; Liu et al., 2018;
Anchiêta and Pardo, 2020; Blodgett and Schneider,
2021). I show how a reasonably fine-grained align-
ment can be provided using the sequence notation.
(Appendix B shows an elaborated example.)

Because the sequence notation is simply a suc-
cession of hooked or anchored concepts, possibly
divided by context separators, it gives us a lot of
freedom in the way it can be encoded. As most
writing systems in western cultures possess a left-
to-right direction, it is convenient to follow this
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convention when describing languages following
this direction, as I have done in the examples above.
However, for annotation purposes a top-to-bottom
organisation is handy and perhaps also the most
neutral seen from the perspective of the various
writing systems used for natural languages. It is
also used in computational linguistics to annotate
text with labels classifying word tokens in cate-
gories for tasks such as part-of-speech or named
entity tagging, known as the column-based format
(Buchholz and Marsi, 2006). Figure 2 gives us the
idea.

boy.n.01 % A boy
bought.v.01 Agent -1 Theme +3 % bought
quantity.n.01 2 QuantityOf +1 % two
box.n.03 MeasureOf +1 % boxes of
bonbon.n.01 % bonbons.

Figure 2: Aligning a sequence meaning with text.

Even though there is no one-to-one mapping
between words and elements of the meaning rep-
resentation, the alignment is reasonably executed,
with all concepts in line with a noun, adjective,
or verb. Prepositions, determiners, and particles
aren’t always directly alignable, and nor are dis-
continuous expressions. The alignment could be
further improved using the machinery introduced
by Blodgett and Schneider (2021).

2.6 Evaluation

Evaluation of meaning representation becomes im-
portant and interesting when one wants to compare
two meanings that are independently produced for
the same input. This could be a comparison be-
tween computer output and gold standard annota-
tion (curated by a semanticist), or a comparison
between two human-created meanings in order to
calculate inter-annotator agreement. A simple pro-
posal using existing software is put forward in Poel-
man et al. (2022) who convert sequential mean-
ings to PENMAN format (Kasper, 1989) and then
use SMATCH to compute overlap of triples (Cai
and Knight, 2013). Therefore no new machinery
is required to evaluate meanings in sequence no-
tation, and improved evaluation metrics such as
SEMBLEU can also be adopted easily (Song and
Gildea, 2019).

3 Interpreting Sequences

In the previous section I showed how sequential
meanings can be constructed. In this section I ex-

plain how they are interpreted. Appendix A illus-
trates how sequential meanings can be converted
to Discourse Representation Structures from DRT.

3.1 Concepts

A concept in a sequence has a dual purpose: it
(a) introduces an entity within its context, and (b)
classifies it to a particular concept. Hence, every
entity has a corresponding one-place predicate, a
“guard”, that classifies it within some background
knowledge ontology.1 Roughly speaking, a simple
sequence of concepts [[C1 . . . Cn]] corresponds to
the first-order formula ∃x1 . . .∃xn(C(x1). . .C(xn)).
In the terminology of Discourse Representation
Theory (Kamp and Reyle, 1993), a concept C that
is part of a context B introduces a fresh discourse
referent x in the domain of B and a basic condition
C(x) in the set of conditions of B.

3.2 Anchors

Anchors connect a concept in a meaning represen-
tation with an external entity. It can be seen as a
means of grounding or anchoring abstract units of
meaning with concrete entities present in the real
world. The denotation of an anchored concept is
defined as follows: [[C Rc]] = ∃x(C(x)∧R(x, c)).

3.3 Hooks

A hook connects (”hooks”) a concept to another
concept by a two-place relation. Recall that a hook
is always (a) attached to a concept and (b) ends with
an index. The indices replace the variables found
in traditional meaning representation, inspired by
work of Nicolaas Govert de Bruijn (1972). There
are negative and positive indices. As concepts are
strictly ordered in the sequential notation, we can
refer to a concept by refering to the relative position
the relation is situated: the index 0 refers to the cur-
rent concept, −1 to the concept introduced before
the current concept, −2 to the concept before that,
and so on. Negative indices refer to entities intro-
duced before, and positive indices refer to entities
that are available later in the sequence: +1 refers
to a concept that is introduced after the current in-
dex. This mechanism is crucial to understand how
hooks work, and bears also resemblance with how
co-reference is implemented in Lexical Functional

1This is reminiscent of guarded quantifiers (Andréka et al.,
1998), and it is equivalent to a many-sorted first-order logic,
where sorts, sometimes called types, denote subsets of the
domain. Instead of assigning a sort to a variable directly, I do
this by adding a one-place predicate (a concept).
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Grammar (Kaplan and Bresnan, 1982). The first-
order logic interpretation of a concept with hooks is
thus roughly defined as follows: [[C H1 · · ·Hn]] =
∃x(C(x) ∧H1(x, y1) ∧ · · · ∧Hn(x, yn)). Indices
without an antecedent concept correspond to free
variables in first-order logic.

3.4 Separators

A separator divides a sequential meaning represen-
tation into two contexts: the context before, and
the context after the separator. Hence, a sequen-
tial meaning representation with n separators has
exactly n + 1 contexts. There are various kinds
of separators. The type of separator tells us what
logical or rhetorical relationship exists between the
two contexts. A key application of separators is
the treatment of negation, disjunction and universal
quantification, but separators also find use in as-
signing discourse structure and rhetorical relations
in text.

A separator decorated with a connector <1
means that the separator connects two local con-
texts. A connector <2 means that the context fol-
lowing the separator is attached to an earlier in-
troduced context: not the previous context but the
one just before that. Newly introduced contexts
always connect to a previously introduced context.
A new context cannot be linked to more than one
context. Usually, a separator connects two adjacent
contexts. But it is possible that a separator connects
two contexts that are not adjacent. This happens
with wide-scope interpretations, presuppositional
accommodation, non-local discourse relations, and
disjunction.

4 Semantic Phenomena

4.1 Negation and Disjunction

Negation has impact on the structure of mean-
ing: it doesn’t introduce a new conceptual en-
tity or hook, but rather packages the information
in what is asserted as positive information and
what is negative. In sequence notation, nega-
tion introduces the separator NEGATION, stat-
ing that the negated information following the
separator is attached to the context just before
the separator (Figure 3). Its first-order equiva-
lent is ∃x(person.n.01(x) ∧¬∃y∃z(book.n.02(z) ∧
buy.v.01(y) ∧ Agent(y,x) ∧ Theme(y,z))). In DRT
parlance, the corresponding DRS would have a
nested box with a unary negation operator (see Fig-
ure 9 in Appendix A).

person.n.01 % Somebody
NEGATION <1 %

buy.v.01 Agent -1 Theme +1 % bought
book.n.02 % no book.

Figure 3: Graph for “Somebody bought no book.”

Another example with negation is given in Fig-
ure 4, displaying a sequential meaning with three
contexts, where the contextual index <2 ensures
that the second negation is correctly attached to the
main context, rather than the first negated context.

female.n.02 % She
NEGATION <1 % is neither

rich.a.01 AttributeOf -1 % rich
NEGATION <2 % nor

famous.a.01 AttributeOf -2 % famous.

Figure 4: Graph for “She is neither rich nor famous”.

Disjunction is represented in sequential mean-
ings using the equivalence (p1 ∨ p2 ∨ ... ∨ pn) ≡
¬(¬p1 ∧¬p2 ∧ ...∧¬pn). This representation has
the advantage that no new separators are required,
and that there is no limit to the number of disjuncts,
as shown in Figure 5.

person.n.01 EQU speaker % I
NEGATION <1 %
NEGATION <1 %
bake.v.02 Agent -1 Patient +1 % bake
bread.n.01 % bread,
NEGATION <2 %
listen.v.01 Agent -3 Theme +1 % listen
music.n.01 % to music,
NEGATION <3 % or
read.v.01 Agent -5 Source +1 % read comic
comic-book.n.01 % books.

Figure 5: Graph exemplifying disjunction.
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4.2 Universal Quantification

Universal quantification is encoded in sequential
meanings by making use of the logical equivalence
∀x(P (x) → Q(x)) ≡ ¬∃x(P (x) ∧ ¬Q(x)).
For instance, the sentence “Everyone smoked.”
is analysed as: it is not the case that there is a
person that is not smoking. In sequence notation
this would be NEGATION <1 person.n.01
NEGATION <1 smoke.v.01 Agent -1.
The reason to use nested negation rather than a
conditional is because this way there is no need to
add two new separator relations—that would need
to be coordinated as well, because unlike negation,
a unary operator, implication and disjunction are
binary operators—to the vocabulary.

Universal quantifiers in object position pose a
challenge to meaning-text alignment in the se-
quence notation because of the scope they take
over the transitive verb. An example is given in
Figure 6, where the CONJUNCTION separator per-
forms a merge of semantic information akin to
merging of Discourse Representation Structures
(Zeevat, 1991). This representational technique
effectively gives the object wider scope, and is sim-
ilar to presuppositional accommodation (Van der
Sandt, 1992).

female.n.02 % She
NEGATION <1
NEGATION <1

buy.v.01 Agent -1 Theme +1 % bought
CONJUNCTION <2 % every

book.n.02 % book.

Figure 6: Graph displaying universal quantification.

4.3 Discourse Relations

Rhetorical relations are also encoded in sequential
meanings by separators. Here I adopt the inven-
tory of discourse relations as proposed in SDRT
(Asher, 1993). Figure 7 shows an example where
the rhetorical relation EXPLANATION connects
two contexts. In sequential meanings discourse
relations are always between single contexts. In
SDRT, however, this is not necessarily the case
because of the recursive nature of the segmented
discourse representation structures. Yet sequen-
tial meanings can still capture rhetorical structure
(Figure 8).

person.n.01 % Someone
smile.v.01 % smiles.
EXPLANATION <1 %

male.n.01 EQU -2 % He
happy.a.01 Experiencer -1 % is happy.

Figure 7: Graph visualisation for a short text.

As Asher and Lascarides (2003) have shown,
anaphoric reference to compound discourse units is
possible. The sequence notation would require ad-
ditional machinery to catch this phenomenon. This
could be something like a summation operation
similar to handling split antecedents of plural pro-
nouns in Discourse Representation Theory (Kamp
and Reyle, 1993). This is probably also needed to
cover the CONTRAST and PARALLEL discourse
relations of SDRT.

person.n.01 Name "Max" % Max
have.v.01 Pivot -1 Theme +2 % had
lovely.a.01 AttributeOf +1 % a lovely
evening.n.01 % evening.

ELABORATION <1
male.n.02 EQU -4 % He
have.v.01 Pivot -1 Theme +2 % had
great.a.01 AtttributeOf +1 % a great
meal.n.01 % meal.

ELABORATION <1
male.n.02 EQU -4 % He
eat.v.01 Agent -1 Patient +1 % ate
salmon.n.01 % salmon.

NARRATION <1
male.n.02 EQU -3 % He de-
devour.v.01 Agent -1 Patient +2 % voured
quantity.n.01 EQU + % lots of
cheese.n.01 Quantity -1 % cheese.

NARRATION <3
male.n.02 EU -11 % He
win.v.01 Agent -1 Theme +2 % won
dancing.n.01 % a dancing
competition.n.01 Theme -1 % competition.

Figure 8: Sequential meaning for Asher and Lascarides
(2003)’s celebrated example.

In SDRT, a NARRATION of a discourse unit U′′

of U′, where U′ is an ELABORATION of U, would
automatically invoke an ELABORATION relation
of U′′ to U, given the way SDRSs are constructed.
This is not the case in sequence notation for the
reason mentioned above. To capture such indirect
discourse relations, some background inference
rules would be needed.
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5 Related Formalisms

The development of the sequence notation found
inspiration from a wide spectrum of semantic rep-
resentation systems, ranging from the classic se-
mantic networks, Discourse Representation Theory,
and Abstract Meaning Representations. In this sec-
tion we will discuss how they are related: what do
they have in common and how do they differ?

5.1 Semantic Networks

Semantic networks were introduced in the early
1970s to represent meaning (Simmons, 1973). Typ-
ically in these networks, a distinction is made be-
tween entity types and tokens (for instance, “a dog”
would introduce two nodes in the network, one de-
scribing the set of dogs, and the other a particular
member of that set, whereas in AMR just one node
would be introduced in the semantic graph). The
need for a richer network formalism was already
recognised back then by Gary Hendrix, to cover lin-
guistic phenomena such as universal quantification,
hypothethical and imaginary situations. Hendrix
(1975) introduced a method for partioning a se-
mantic network into spaces. His use of spaces in
semantic nets is strongly reminiscent to the way
we employ contexts in the sequence notation, and
is also similar to the Scoped Semantic Networks
proposed by Power (1999).

A yet even more elaborative proposal was made
around the same time by Len Schubert, who ex-
tended the expressive power of semantic nets
with negation, disjunction and lambda expressions
(Schubert, 1976). The resulting networks became
rather cumbersome, and even Schubert himself re-
marks “I hasten to add that I am not urging univer-
sal adoption of this notation.” These bunglesome
additions might have been the reason why the ex-
tended networks never became mainstream in later
years of AI and NLP, with the exception of the
Conceptual Graphs proposed by Sowa (1984).

5.2 Discourse Representation Structures

One of the most elaborated semantic formalisms is
probably Discourse Representation Theory (Kamp,
1984). Proposed in the early 1980s, it has seen
many improvements, extensions, modifications,
and reincarnations (Klein, 1987; Roberts, 1989;
Zeevat, 1991; Van der Sandt, 1992; Kamp and
Reyle, 1993; Asher, 1993; Reyle, 1993; Bos et al.,
1994; Muskens, 1996; Van Eijck and Kamp, 1997;
Frank and Kamp, 1997; Piwek, 2000; Kadmon,

2001; Beaver, 2002; Asher and Lascarides, 2003;
Bos, 2003; Geurts and Maier, 2013; Kamp et al.,
2011; Geurts et al., 2020). A wide range of linguis-
tic phenomena are covered by DRT, among them
conditionals, negation, modals, disjunction, pre-
supposition, plurals, tense, aspect, and quantifier
scope.

The contexts in sequence notation can be com-
pared directly to the DRSs in Discourse Represen-
tation Theory. But sequential meanings discard
representational redundancies: discourse referents
are implicitly introduced by concepts. DRT has
separate types of DRS conditions to model con-
ditionals and disjunction, whereas the sequence
notation only uses negation to cover these.

Standard DRT (Kamp and Reyle, 1993) follows
a Davidsonian event semantics, whereas in this pa-
per a neo-Davidsonian semantics is adopted that
gives us the binary relations that enables simple
graphical visualusation. Several features of DRT
can be transferred to sequential meanings: block-
ing of anaphoric links by inaccessibility, merging
of DRSs (Zeevat, 1991), and presuppositional ac-
commodation (Van der Sandt, 1992).

5.3 Abstract Meaning Representations

The Abstract Meaning Representation formalism
(Langkilde and Knight, 1998) represents meaning
of natural language sentences as rooted, directed
acyclic graphs. It took the clarity of the early se-
mantic networks, and techniques introduced by AI
researchers such as role inversion. Large seman-
tically annotated corpora were developed based
on AMR (Banarescu et al., 2013), encoded by us-
ing the PENMAN notation introduced by Kasper
(1989). These corpora sparked a lot of interest in
computational linguistics, and gave rise to many
new approaches to semantic parsing and generating
text from meaning representations.

Drawing a parallel with the semantic networks
introduced in the 1970s, history repeats itself, when
many scholars realized that AMR has incomplete
inference capabalities for negation (and other logi-
cal devices such as universal quantification). Sev-
eral proposals for extending AMR were published
(Bos, 2016; Stabler, 2017; Pustejovsky et al., 2019;
Bos, 2020; Lai et al., 2020; Stein and Donatelli,
2021). However, none of these proposals were
widely adopted.

Several features of AMR are also present in the
sequence notation: the binary relations that support
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attractive graphical visualisation, the use of role in-
version, and being agnostic to grammar. But there
are also notable differences: the sequence notation
is closer to surface wording because there is not
as much decomposition as in AMR. The sequence
notation supports logical quantification and nega-
tion, which AMR lacks. And the sequence notation
adopts WordNet (Fellbaum, 1998) and VerbNet
(Kipper et al., 2008) to interpret the non-logical
symbols, whereas AMR is based on PropBank
(Palmer et al., 2005), but not all non-logical sym-
bols are interpreted (verb-based symbols are, noun-
based symbols aren’t). This makes AMR partly
specific to English, even though there have been
AMR corpora constructed for other languages.

6 Discussion

6.1 No Overdose of Variables

Variables require some kind of naming convention,
effectively an arbitrary way of blessing entities with
a unique identifier. It is this resort to a naming sys-
tem that makes variables unattractive for applica-
tions such as machine learning and human annota-
tion. Usually, there are some informal conventions
involved in naming variables, such as giving a vari-
able an index that is increased by every new con-
cept introduced in the meaning representation, or
using the next letter of the alphabet. Alternatively,
as is done in AMR, the variable name is based on
the name of the concept that it names (Banarescu
et al., 2013). This works well for short sentences,
but as soon as longer texts need to be taken into
account, the naming system gets cumbersome in
practice.

The system of indices in sequential meaning
does not suffer from these issues. Furthermore, the
indices are relative—not absolute—capturing local
“distances” between concepts. This enables a gen-
eralisation of catching argument structure, indepen-
dent of sentence or text length. Even for short sen-
tences meaning representations with indices yield
better results in neural parsing than those resorting
to variables (Van Noord et al., 2018). Hence, using
indices rather than variables has the potential to
offer advantages respect to human annotation and
machine learning. And even though in this paper
the sequence notation is used to encode DRS-based
meanings, it can also be used to produce AMRs,
as the AMR in (4) and its translation in sequence
notation (5) show.

(4) (w / want-01 :arg0 (b / boy)
:arg1 (g / go-01 :arg0 b))

(5) boy want-01 :arg0 -1 :arg1 +1
go-01 :arg0 -2

The sequence notation results in shorter and com-
pact meaning representations, because no space is
wasted on brackets and variables.

6.2 Compositionality

I don’t say much about compositionality from the
perspective of the syntax-semantics interface. This
is a deliberate choice. Compositionality—the study
of how meanings of complex expressions are de-
rived from meanings of their parts—is a fascinating
problem in formal and computational semantics
(Montague, 1973; Dowty et al., 1981) in which
many attempts have been formulated and imple-
mented, in particular within the Montagovian tradi-
tion (Bos et al., 1996; Bender et al., 2015).

The assumption in any implementation of com-
positionality is that there are atomic units of ex-
pressions carrying meaning that cannot be further
decomposed. But what these atomic units are is
unclear in general, and can range from simple in-
flectional markers to multi-word expressions. An
extreme direction in this tradition, however never
been explored in computational semantics, is Nat-
ural Semantic Metalanguage, defining a small set
of semantic primes of which meanings can be com-
posed (Wierzbicka, 1996).

A theory of syntax that supports semantic theory
is therefore not sufficient to completely uncover
compositionality, and moreover, makes the formal-
ism language dependent. Arguably, large semantic
annotation efforts have been shipwrecked exactly
on the dependence of a computational grammar
(Bos et al., 2017; Abzianidze et al., 2017).

Instead, sequential meanings do not require a
lexical theory of meaning, such that one could, for
instance, give an interpretation for a preposition,
article or adverb in isolation. It assumes the expres-
sions that it maps meanings to are complete utter-
ances. Giving up strong compositionality is, from
one perspective, certainly attractive, as it makes
the formalism language-neutral and opens the door
for multi-lingual computational semantics. Having
said this, there are natural ways to break down se-
quantial meanings into smaller pieces (concepts,
hooked/anchored concepts, contexts, and so on).
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7 Conclusion

The meaning represention that I proposed has much
in common with AMR (Banarescu et al., 2013)
and DRS (Kamp and Reyle, 1993). But there are
notable differences. Like AMR but unlike DRS,
sequential meanings are agnostic to any method or
theory of syntax. Like AMR, but unlike DRS, se-
quential meanings can be viewed as simple graphs.
Like DRS, but unlike AMR, there is an explicit
way of assigning scope to logical operators. Unlike
AMR and DRS, there are no variables in sequential
meanings.

The quote “make everything as simple as pos-
sible, but not simpler”, often attributed to Albert
Einstein, is perhaps what summarises the sequence
notation. It provides a language that I think cannot
be simpler than it is, at the same time making it
possible to describe complex meaning representa-
tions (including negation, disjunction, quantifica-
tion, and discourse structure) with a formal inter-
pretation. As there are only binary relations, and
the binary relations can be inverted, a sequential
meaning can be visualised as a directed acyclic
graph, resulting in graphs that are simpler than
those previously proposed for Discourse Represen-
tation Theory (Basile and Bos, 2013; Abzianidze
et al., 2020). The sequence notation therefore of-
fers a visual aid for verification of meanings.

I think the sequence notation is also a convenient
way of annotating text with meaning representa-
tions. The notation is simple, no logical variables
are needed, meanings can be manually entered and
corrected in a standard text editor. The sequence
notation supports the alignment between meaning
representations and corresponding linguistic reali-
sation in an approximate manner, where at least the
order of the concepts corresponds with the order
as they are introduced in the text by nouns, verbs,
adjectives and adverbs. Yet I understand that not
everyone is convinced that annotation with the se-
quence notation would be simpler than say AMR
or DRS. This paper has no evidence for this claim
and is solely based on personal experience. Addi-
tionally, I have observed that researchers with logic
background have become accustomed to the use of
variables, making it considerably challenging for
them to abandon the familiarity of such notation.

Currently the sequence meaning notation has
been put in practice in the Parallel Meaning Bank
(Abzianidze et al., 2017). In future work the idea
is to take advantage of the sequence notation and

annotate larger (multi-sentence) multi-lingual doc-
uments with meaning representations that include
rhetorical structure.
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Johan Bos, Björn Gambäck, Christian Lieske, Yoshiki
Mori, Manfred Pinkal, and Karsten Worm. 1996.
Compositional Semantics in Verbmobil. In The 16th
International Conference on Computational Linguis-
tics, pages 131–136, Copenhagen, Denmark.

Johan Bos, Elsbeth Mastenbroek, Scott McGlashan,
Sebastian Millies, and Manfred Pinkal. 1994. A
Compositional DRS-Based Formalism for NLP-
Applications. In International Workshop on Com-
putational Semantics. University of Tilburg, The
Netherlands.

Nicolaas Govert de Bruijn. 1972. Lambda calculus
notation with nameless dummies, a tool for auto-
matic formula manipulation, with application to the
Church-Rosser theorem. In Indagationes Mathemat-
icae (Proceedings), volume 75, pages 381–392. El-
sevier.

https://doi.org/10.18653/v1/2020.conll-shared.2
https://doi.org/10.18653/v1/2020.conll-shared.2
https://www.aclweb.org/anthology/W15-0128
https://www.aclweb.org/anthology/W15-0128
https://www.aclweb.org/anthology/W15-0128
https://aclanthology.org/2020.dmr-1.2
https://aclanthology.org/2020.dmr-1.2


205

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-
X shared task on multilingual dependency parsing.
In Proceedings of the Tenth Conference on Com-
putational Natural Language Learning (CoNLL-X),
pages 149–164, New York City. Association for
Computational Linguistics.

Shu Cai and Kevin Knight. 2013. Smatch: an evalua-
tion metric for semantic feature structures. In Pro-
ceedings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 748–752, Sofia, Bulgaria. Associa-
tion for Computational Linguistics.

Gennaro Chierchia. 1992. Anaphora and dynamic
binding. Linguistics & Philosophy, 15:111–183.

Ann Copestake, Dan Flickinger, Ivan Sag, and Carl Pol-
lard. 2005. Minimal recursion semantics: An in-
troduction. Journal of Research on Language and
Computation, 3(2–3):281–332.

David R. Dowty, Robert E. Wall, and Stanley Peters.
1981. Introduction to Montague Semantics. Studies
in Linguistics and Philosophy. D. Reidel Publishing
Company.

Christiane Fellbaum, editor. 1998. WordNet. An Elec-
tronic Lexical Database. The MIT Press.

Anette Frank and Hans Kamp. 1997. On context de-
pendence in modal constructions. In Proceedings of
the 7th Semantics and Linguistic Theory Conference,
pages 151–168.

Bart Geurts, David I. Beaver, and Emar Maier. 2020.
Discourse Representation Theory. In Edward N.
Zalta, editor, The Stanford Encyclopedia of Philoso-
phy, spring 2020 edition. Metaphysics Research Lab,
Stanford University.

Bart Geurts and Emar Maier. 2013. Layered dis-
course representation theory. In Alessandro Capone,
Franco Lo Piparo, and Marco Carapezza, editors,
Perspectives on Linguistic Pragmatics, Perspectives
in Pragmatics, Philosophy & Psychology, pages
311–327. Springer.

Jeroen Groenendijk and Martin Stokhof. 1990. Dy-
namic Montague Grammar. In Papers from the Sec-
ond Symposium on Logic and Language, pages 3–
48.

Irene Heim. 1982. The Semantics of Definite and In-
definite Noun Phrases. Ph.D. thesis, University of
Massachusetts.

Gary G. Hendrix. 1975. Expanding the utility of se-
mantic networks through partitioning. In Proceed-
ings of IJCAI, pages 115–121.

Nirit Kadmon. 2001. Formal Pragmatics. Blackwell.

Hans Kamp. 1984. A Theory of Truth and Semantic
Representation. In Jeroen Groenendijk, Theo M.V.
Janssen, and Martin Stokhof, editors, Truth, Inter-
pretation and Information, pages 1–41. FORIS, Dor-
drecht – Holland/Cinnaminson – U.S.A.

Hans Kamp, Josef van Genabith, and Uwe Reyle. 2011.
Discourse Representation Theory. In Dov M. Gab-
bay and Franz Guenthner, editors, Handbook of
Philosophical Logic, volume 15, pages 125–394. El-
sevier, MIT.

Hans Kamp and Uwe Reyle. 1993. From Discourse
to Logic; An Introduction to Modeltheoretic Seman-
tics of Natural Language, Formal Logic and DRT.
Kluwer, Dordrecht.

Ronald M. Kaplan and Joan Bresnan. 1982. Lexical-
Functional Grammar: A formal system for grammat-
ical representation. In Joan Bresnan, editor, The
Mental Representation of Grammatical Relations,
pages 173–281. The MIT Press, Cambridge, MA.
Reprinted in Mary Dalrymple, Ronald M. Kaplan,
John Maxwell, and Annie Zaenen, eds., Formal Is-
sues in Lexical-Functional Grammar, 29–130. Stan-
ford: Center for the Study of Language and Informa-
tion. 1995.

Robert T. Kasper. 1989. A flexible interface for link-
ing applications to penman’s sentence generator. In
Proceedings of the DARPA Speech and Natural Lan-
guage Workshop, pages 153–158, Philadelphia.

Karin Kipper, Anna Korhonen, Neville Ryant, and
Martha Palmer. 2008. A large-scale classification of
English verbs. Language Resources and Evaluation,
42(1):21–40.

Ewan Klein. 1987. VP Ellipsis in DR Theory. In
Jeroen Groenendijk et al., editors, Studies in Dis-
course Representation Theory and the Theory of
Generalised Quantifiers, volume 8, pages 161–187.
FLORIS, Dordrecht.

Kenneth Lai, Lucia Donatelli, and James Pustejovsky.
2020. A continuation semantics for abstract mean-
ing representation. In The Second International
Workshop on Designing Meaning Representations
(DMR 2020), Barcelona, Spain.

Irene Langkilde and Kevin Knight. 1998. Gener-
ation that exploits corpus-based statistical knowl-
edge. In COLING 1998 Volume 1: The 17th Inter-
national Conference on Computational Linguistics,
pages 704–710.

Yijia Liu, Wanxiang Che, Bo Zheng, Bing Qin,
and Ting Liu. 2018. An AMR aligner tuned by
transition-based parser. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2422–2430, Brussels, Bel-
gium. Association for Computational Linguistics.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of English: The Penn Treebank. Computa-
tional Linguistics, 19(2):313–330.

Abelardo Carlos Martı́nez Lorenzo, Marco Maru, and
Roberto Navigli. 2022. Fully-Semantic Parsing and
Generation: the BabelNet Meaning Representation.
In Proceedings of the 60th Annual Meeting of the

https://doi.org/10.18653/v1/2022.acl-long.121
https://doi.org/10.18653/v1/2022.acl-long.121


206

Association for Computational Linguistics (Volume
1: Long Papers), pages 1727–1741, Dublin, Ireland.
Association for Computational Linguistics.

Richard Montague. 1973. The proper treatment of
quantification in ordinary English. In J. Hintikka,
J. Moravcsik, and P. Suppes, editors, Approaches
to Natural Language, pages 221–242. Reidel, Dor-
drecht.

Reinhard Muskens. 1996. Combining Montague Se-
mantics and Discourse Representation. Linguistics
and Philosophy, 19:143–186.

Roberto Navigli and Simone Paolo Ponzetto. 2012. Ba-
belNet: The automatic construction, evaluation and
application of a wide-coverage multilingual seman-
tic network. Artificial Intelligence, 193:217–250.

Martha Palmer, Paul Kingsbury, and Daniel Gildea.
2005. The proposition bank: An annotated cor-
pus of semantic roles. Computational Linguistics,
31(1):71–106.

Paul Piwek. 2000. A formal semantics for generat-
ing and editing plurals. In COLING 2000 Volume
2: The 18th International Conference on Computa-
tional Linguistics.

Wessel Poelman, Rik van Noord, and Johan Bos. 2022.
Transparent semantic parsing with Universal Depen-
dencies using graph transformations. In Proceed-
ings of the 29th International Conference on Com-
putational Linguistics, pages 4186–4192, Gyeongju,
Republic of Korea.

Nima Pourdamghani, Yang Gao, Ulf Hermjakob, and
Kevin Knight. 2014. Aligning English strings
with Abstract Meaning Representation graphs. In
Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 425–429, Doha, Qatar. Association for Com-
putational Linguistics.

R. Power. 1999. Controlling logical scope in text gener-
ation. In Proceedings of the 7th European Workshop
on Natural Language Generation, Toulouse, France.

James Pustejovsky, Nianwen Xue, and Kenneth Lai.
2019. Modeling quantification and scope in abstract
meaning representations. In Proceedings of the First
International Workshop on Designing Meaning Rep-
resentations, pages 28–33, Florence, Italy. Associa-
tion for Computational Linguistics.

Uwe Reyle. 1993. Dealing with Ambiguities by Un-
derspecification: Construction, Representation and
Deduction. Journal of Semantics, 10:123–179.

Craige Roberts. 1989. Modal subordination and
pronominal anaphora in discourse. Linguistics and
Philosophy, 12(6):683–721.

Rob A. Van der Sandt. 1992. Presupposition Projec-
tion as Anaphora Resolution. Journal of Semantics,
9:333–377.

Lenhart K. Schubert. 2015. Semantic representation.
In AAAI Conference on Artificial Intelligence.

L.K. Schubert. 1976. Extending the expressive power
of semantic networks. Artificial Intelligence, 7:163–
198.

R.F. Simmons. 1973. Semantic networks: Their
computation and use for understanding english sen-
tences. In R. Schank and K. Colby, editors, Com-
puter Models of Thought and Language, pages 63–
113. W.H. Freeman & Co.

Linfeng Song and Daniel Gildea. 2019. SemBleu: A
robust metric for AMR parsing evaluation. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4547–
4552, Florence, Italy. Association for Computational
Linguistics.

John F. Sowa. 1984. Conceptual Structures: Informa-
tion Processing in Mind and Machine. Addison-
Wesley.

John F. Sowa. 1995. Syntax, semantics, and pragmatics
of contexts. In ICCS, pages 1–15.

Ed Stabler. 2017. Reforming AMR. In Formal Gram-
mar 2017. Lecture Notes in Computer Science, vol-
ume 10686, pages 72–87. Springer.

Katharina Stein and Lucia Donatelli. 2021. Represent-
ing implicit positive meaning of negated statements
in AMR. In Proceedings of The Joint 15th Linguis-
tic Annotation Workshop (LAW) and 3rd Designing
Meaning Representations (DMR) Workshop, pages
23–35, Punta Cana, Dominican Republic. Associa-
tion for Computational Linguistics.

Richmond Thomason. 1974. Formal Philosophy. Se-
lected Papers of Richard Montague. Yale University
Press, New Haven.

Jan Van Eijck and Hans Kamp. 1997. Representing
discourse in context. In J. van Benthem and A. ter
Meulen, editors, Handbook of Logic and Language,
pages 179–237. Elsevier.

Rik Van Noord, Lasha Abzianidze, Antonio Toral, and
Johan Bos. 2018. Exploring neural methods for
parsing discourse representation structures. Trans-
actions of the Association for Computational Lin-
guistics, 6:619–633.

Anna Wierzbicka. 1996. Semantics: Primes and Uni-
versals. Oxford Universiy Press.

Hendrik Willem Zeevat. 1991. Aspects of Discourse
Semantics and Unification Grammar. Ph.D. thesis,
University of Amsterdam.

https://aclanthology.org/C00-2088
https://aclanthology.org/C00-2088
https://aclanthology.org/2022.coling-1.367
https://aclanthology.org/2022.coling-1.367
https://doi.org/10.3115/v1/D14-1048
https://doi.org/10.3115/v1/D14-1048
https://www.aclweb.org/anthology/W19-3303
https://www.aclweb.org/anthology/W19-3303
https://doi.org/10.18653/v1/2021.law-1.3
https://doi.org/10.18653/v1/2021.law-1.3
https://doi.org/10.18653/v1/2021.law-1.3


207

A Translation to DRS

Here I sketch a translation from sequential mean-
ing notation to DRT’s Discourse Representation
Structure (DRS). Although the sequential mean-
ing system presented here bears strong similarities
with Discourse Representation Theory (Kamp and
Reyle, 1993), it is significantly different from it:

1. Events are represented in a neo-Davidsonian
way whereas in DRT a Davidsonian way is
assumed (i.e., without adopting an inventory
of thematic roles);

2. All non-logical synbols are interpreted using
WordNet as supporting ontology, whereas in
DRT these remain uninterpreted;

3. A single NEGATION relation is used to cap-
ture negation, disjunction and conditionals,
whereas DRT has special complex conditions
for them in the DRS language;

4. There is no syntactic check for free and bound
variables, whereas the geometrical structure
of DRS immediately shows accessibility of
referents.

5. There is no support for generalised quantifiers
unlike DRT that has duplex conditions to
accommodate them. If one were to incorpo-
rate generalised quantifiers into sequential
meanings one would likely resort to adding
new separators to the inventory. For instance,
for “A guitar has six strings”, we would arrive
at something like GENERALISATION <1
guitar.n.01 MOST < have.v.02
Pivot -1 Theme +1 string.n.03
Quantity 6. These two separators would
need to be coordinated though: one cannot
exist without the other.

6. There is no different in representation of sin-
gular and plural noun phrases—the model the-
ory behind sequential meanings allows enti-
ties in the domain to range over plural noun
phrases as well.

Despite these differences, the similarities with
DRT become immediately clear when one sketches
the translation from sequential meanings to DRS
(Kamp and Reyle, 1993). Only closed sequential
meanings can be translated to DRS, so each index

needs to have an antecedent context, each connec-
tor needs to link to an existing context, and in the
resulting DRS no free variables should occur.

The easiest way to explain the translation from
sequential meanings to DRS is to take the corre-
sponding rooted directed acyclic graphs as starting
point. The root node is always a context. The trans-
lation to DRS starts with this context, initiated as an
empty DRS. Recall that a DRS consists of a domain
(a set of discourse referent) and a set of (basic and
complex) DRS-conditions. All entities with con-
cept C that are members of this context are added
to the domain of the DRS with a fresh discourse ref-
erent. The concept is translated as unary predicate
applied to this discourse referent and added to the
conditions of the DRS. All hooks and anchors of
this concept are added to the conditions as binary
predicates, where the internal argument is the same
as the discourse referent.

Once this is completed for all members of a con-
text, the process is recursively repeated for contexts
that are connected to the current context. There are
two main cases here: (1) NEGATION adds a com-
plex unary condition ¬B to the DRS, where B will
be the result of the translation of the context as-
sociated to the negation; and (2) CONJUNCTION
does not start a new DRS, but instead continues
adding information to the current DRS. The other
separators build up a structure as in SDRT (Asher,
1993). To illustrate the procedure, I show in Fig-
ure 9 the DRSs that are the result of translating two
sequential meanings presented earlier in this paper.

x

person.n.01

¬

y z

book.n.02(y)
buy.v.01(z)
Agent(z,x)
Theme(z,y)

x

female.n.02(x)

¬
y

rich.a.01(y)
AttributeOf(y,x)

¬
z

famous.a.01(z)
AttributeOf(z,x)

Figure 9: DRS equivalents of the sequential meanings
shown in Figure 3 and Figure 4.

B Semantic Annotation Example

Figure 10 shows an elaborated example in sequence
notation aligned with its textual input. Figure 11
visualises the corresponding graph.
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male.n.02 Name "Pierre Vinken" % Pierre Vinken,
APPOSITION <1

quantity.n.01 EQU 61 % 61
measure.n.02 Quantity -1 Unit "year" % years
old.a.01 AttributeOf -3 Value -2 % old,

CONJUNCTION <2
time.n.08 TSU now % will
join.v.01 Theme -5 CoTheme +1 Role +3 Time -1 % join
board.n.01 % the board
nonexecutive.a.01 % as nonexecutive
director.n.02 Attribute -1 % director
time.n.08 MonthOfYear 11 DayOfMonth 29 TOV -5 % Nov. 29.

ELABORATION <1
male.n.02 Title "Mister" Name "Vinken" EQU -10 % Mr. Vinken
be.v.03 Theme -1 Co-Theme +2 Time +1 % is
time.n.08 EQU now
chairman.n.01 Of +1 % chairman of
company.n.01 Name "Elsevier N.V." % Elsevier N.V.,

APPOSITION <1
country.n.02 Name "The Netherlands" % the Dutch
publishing_group.n.01 Source -1 EQU -2 % publishing group.

Figure 10: Meaning in sequence notation aligned for the first text of the Wall Street Journal corpus (Marcus et al.,
1993). The text is here included as comments on each line following a percentage sign, and is not part of the actual
meaning representation. Three different comparison operators are used here: EQU (equality), TSU (temporally
succeeds), and TOV (temporally overlaps). The resulting graph is shown in Figure 11.

Figure 11: Graph visualisation of the WSJ corpus text “Pierre Vinken, 61 years old, will join the board as a
nonexecutive director Nov. 29. Mr. Vinken is chairman of Elsevier N.V., the Dutch publishing group.”


