
Proceedings of the 15th International Conference on Computational Semantics pages 116–133
June 21–23, 2023. ©2023 Association for Computational Linguistics

116

Semantically Informed Data Augmentation for
Unscoped Episodic Logical Forms

Mandar Juvekar∗
Boston University

Boston, MA, USA 02215
mandarj@bu.edu

Gene Louis Kim
University of South Florida

Tampa, FL, USA 33620
genekim@usf.edu

Lenhart Schubert
University of Rochester

Rochester, NY, USA 14627
schubert@cs.rochester.edu

Abstract

Unscoped Logical Form (ULF) of Episodic
Logic is a meaning representation format that
captures the overall semantic type structure of
natural language while leaving certain finer de-
tails, such as word sense and quantifier scope,
underspecified for ease of parsing and annota-
tion. While a learned parser exists to convert
English to ULF, its performance is severely lim-
ited by the lack of a large dataset to train the sys-
tem. We present a ULF dataset augmentation
method that samples type-coherent ULF expres-
sions using the ULF semantic type system and
filters out samples corresponding to implausi-
ble English sentences using a pretrained lan-
guage model. Our data augmentation method
is configurable with parameters that trade off
between plausibility of samples with sample
novelty and augmentation size. We find that the
best configuration of this augmentation method
substantially improves parser performance be-
yond using the existing unaugmented dataset.1

1 Introduction

Kim and Schubert (2019) introduced Unscoped
Episodic Logical Form (ULF) as a semantic rep-
resentation that captures syntactic type structure
within the Episodic Logic formalism, while staying
close to the surface form for ease of annotation and
parsing. Kim et al. (2021a) presented a learned ap-
proach to parsing English sentences to ULF which
showed promising results. Their parsing efforts,
however, were limited by the size of the training
data available. They released a dataset of 1,738
sentences with corresponding manual ULF annota-
tions alongside their parser which—to the best of
our knowledge—remains the only dataset of ULF
annotations to date. Our work aims to alleviate this
limitation of data sparsity.

∗Work done in part while at the University of Rochester.
1The code is available at https://github.com/

genelkim/subtree-sampled-ulf-data-augmentation.

(|Mary| ((past place.v)
|Glenn|
(under.p (k anesthesia.n))))

Figure 1: An example ULF for the sentence “Mary
placed Glenn under anesthesia.”

In this paper, we present a method of augment-
ing ULF datasets. Our method leverages ULF’s
underlying type structure and works by replacing
subtrees of seed ULFs with other subtrees of the
same semantic type. This, combined with the use
of pretrained language models to prune out the
most incoherent sentences, allows us to expand rel-
atively small datasets of ULF, such as that of Kim
et al. (2021a), into datasets several times larger in
size. We evaluate the efficacy of our system by
looking at the performance of the existing ULF
parser when trained on augmented versions of the
original training set.

The importance of our work, and more generally
of ULF parsing, comes from the role of ULF in the
broader Episodic Logic (EL) framework. Episodic
Logic (EL) is an extended first-order logic designed
to closely match the form and expressivity of nat-
ural language (Schubert, 2000). EL is a powerful
representation with rich model-theoretic semantics
which enable a variety of inferences including de-
ductive inference, uncertain inference, and natural
logic-like inference (Morbini and Schubert, 2009;
Schubert and Hwang, 2000; Schubert, 2014). How-
ever, parsing ordinary English sentences into fully
resolved EL forms is a difficult task.

ULF is an underspecified form of EL designed
to balance encoding adequate semantic information
with ease of parsing. It fully specifies the semantic
type structure of EL by marking the types of the
atoms and of all the predicate-argument relation-
ships while leaving issues such as quantifier scope,
word sense, and anaphora unresolved. ULF is the
critical first step in parsing full-fledged EL formu-

https://github.com/genelkim/subtree-sampled-ulf-data-augmentation
https://github.com/genelkim/subtree-sampled-ulf-data-augmentation

117

las. A detailed description of how ULF fits into
the EL interpretation process is given by Kim and
Schubert (2019). ULF is also a useful interpreta-
tion in its own right. It is capable of generating
inferences based on clause-taking verbs, counter-
factuals, questions, requests, and polarity (Kim
et al., 2019, 2021b,c), and has been an effective
representation in schema-based story understand-
ing (Lawley et al., 2019) and spatial reasoning-
related dialogue (Platonov et al., 2020).

2 Background

ULFs are trees written in parenthesized list form.
The leaves of these trees, which we will refer to as
atoms, can be:

• Surface words marked with suffix tags of their
semantic types (e.g. .v, .n, .pro, .d for verbs,
nouns, pronouns, and determiners, respec-
tively);

• Case-sensitive symbols such as names and
titles marked with pipes (e.g. |Glenn|). Pipe-
marked symbols may be left without a seman-
tic tag, in which case they are interpreted as
having an entity type;

• One of a closed set of logical and macro
symbols (e.g. k and mod-n for denoting kind-
forming and noun modifier-forming operators,
respectively). These symbols have unique
types and are left without suffix tags.

Figure 1 contains an example ULF for the sen-
tence “Mary placed Glenn under anesthesia.” The
different types of atoms described above are all
present here. The names “Mary” and “Glenn” are
enclosed in pipes and the other surface words have
POS-related semantic tags (e.g. place.v). The
type-shifter k is used to turn the nominal predicate
anesthesia.n into a kind, which is an abstract in-
dividual whose instances are entities. The special
operator past is used to specify the tense of the
verb place.v.

As mentioned before, there is a machine
learning-based parser to convert English sen-
tences (Kim et al., 2021a) to ULFs. A brief
description of how the parser works is given
in Appendix A. In the other direction, Kim
et al. (2019) introduced a simple ULF-to-English
translator, ulf2english, which they reported as
achieving 78% grammaticality. Broadly speaking,
ulf2english works by analyzing the ULF type of

each clause, adding morphological details based
on that analysis, removing purely logical opera-
tors, and mapping logical symbols to their corre-
sponding surface forms. A more up-to-date version
(whose performance exceeds the evaluation in that
paper to an unknown degree)2 is used in our sam-
pling system.

2.1 The ULF Type System

The EL/ULF type system is the backbone upon
which our data augmentation system is built. The
semantics of EL are defined over a domain of in-
dividuals denoted by D and a set of truth values
denoted by 2. A set of situations S ⊂ D con-
sisting of first-class individuals provides the ba-
sis for intensionality.3 Since EL is a first-order
logic, the domain D contains all the individuals
that can be spoken about directly. D not only
contains ordinary individuals and situations, but
also collections, kinds of entities, propositions, and
more. Special type-shifting operators are used to
access these other individuals. For example, the
so-called kind operator k can be applied to the
nominal predicate dog.n (i.e. (k dog.n)) to talk
about “dogs” as a whole (as opposed to any par-
ticular dog or collection of dogs). Predicates can
be thought of as true/false-valued functions that
take a certain number of objects from the domain
and a situation as input. Viewing that in a curried
form gives us the type of an arbitrary predicate:
(D → (D → (· · · → (D → (S → 2)) · · ·))). For
convenience, we shorten this to (Dn → (S → 2))
where n is the number of Ds in the previous type.4

For our purposes (where we are mostly concerned
with ULFs) intensionality is not very relevant, and
so henceforth we will abbreviate (S → 2) by 2̂.
Since monadic predicates (type (D → 2̂)) com-
monly occur in the type system, we will use N as
a shorthand for (D → 2̂).

A couple of key differences exist between the
ULF and EL type systems. ULF types may have
syntactic restrictions, denoted by subscripts, e.g., a
verbal monadic predicate is denoted by NV . Deter-
miners are denoted with the type (N → D), which
anticipates their replacement in EL by a variable of
type D bound by a restricted quantifier.

Each ULF atom can be one of a few related
2https://github.com/genelkim/ulf2english
3The description of EL semantics we give is informal and

limited to our purposes. For a more detailed, formal discussion
we recommend reading Schubert and Hwang (2000, pp. 9–14).

4For technical reasons, EL supplies the situations last.

https://github.com/genelkim/ulf2english

118

2̂

(Dn → 2̂)V

D

(Dn+1 → 2̂)V

go.v)))

(NV → D)

(to

(Dn+1 → 2̂)V

(Dn+1 → 2̂)V

want.v)

ignored

((past

D

NN

boy.n)

(NN → D)

((The.d

Figure 2: An example of how atomic ULF types combine to give the type of the ULF.

semantic types. Logical operators have a unique
semantic type, whereas suffix-tagged atoms are
restricted by the semantic types that correspond
to their tags. A detailed correspondence between
ULF atoms and their semantic types is given by
Kim (2022, pp. 34–40). The types of atoms can
combine (or compose) via function application to
give the type of the ULF composed of those atoms.
For example, a.d which has type (N → D), and
dog.n which has typeN can compose to give (a.d
dog.n), with type D. Such ULFs can further com-
pose to give types for more complex ULFs. Fig-
ure 2 gives an example of such a type composition.
Here, the entire ULF has type 2̂, the type for a
complete sentence. Notice that want.v has type
(Dn+1 → 2̂)V . The variable n (taken to be a non-
negative integer) is used to account for the fact that
we do not have prior knowledge of how many ar-
guments the verb takes. It is treated as an integer
variable until the last step, where we instantiate it to
1 so that (Dn → 2̂)V can combine with D to give
2̂. Such treatment is typical for verbs and other
types that can take a variable number of arguments.
We will call trees similar to the one in Figure 2
without the actual ULF atoms type derivation trees.
A type derivation tree shows one way the types at
the leaves can combine to give the type at the root.

All properly annotated ULFs, including ULFs
that do not correspond to complete sentences,
should have a valid type that can be found by com-
posing the types of its atoms. This fact is what we
use to build our ULF sampler. Our method of sam-
pling ULFs produces new ULFs from a seed ULF
by picking a random subtree of the seed, finding the
semantic type of that subtree, and then replacing
the subtree with another ULF of the same type. In
our experiments, these seed ULFs are ULFs in the
training set of the manually annotated ULF dataset

released by Kim et al. (2021a). The type structure
helps ensure that the result is a valid ULF where
at least the composition of semantic types is co-
herent, and limiting our sampler to small subtrees
makes sampling meaningful sentences significantly
more likely than generating entire sentences from
scratch.

3 System Description

Our system can be broadly broken into two parts: a
sampler that takes a single seed ULF as input and
generates one new ULF-English pair, and a handler
which uses the sampler repeatedly to augment a
given dataset. Pseudocode for the salient parts of
this process is given in Appendix E.

3.1 The Sampler

The sampler goes through four phases: (1) picking
a random subtree, (2) finding its type, (3) sampling
a ULF of that type, and (4) replacing the original
subtree in-place. In this subsection we describe
that process, illustrating it by walking through the
process with the seed ULF (|Abe| ((pres see.v)
(a.d carp.n)) (see Figure 3 for an overview).

3.1.1 Picking a random subtree
This phase involves two parameters that can be
tweaked: a maximum size M for the subtree
picked, and a “recursion probability” p. Given
these parameters and an input ULF, our algorithm
first descends the ULF (viewed as a tree) top-down
by picking uniformly random children at each level
until it reaches a subtree with size (number of
leaves) less than or equal to M . Then at each step
where it is not at a leaf node it descends another
level (by picking a random child) with probability
p, and returns the subtree with the current node at
its root with probability 1−p. If the algorithm ever

119

(|Abe| ((pres see.v)
(a.d carp.n)))

(a) The original ULF with the selected sub-
tree highlighted. The subtree has type D.

(|Abe| ((pres see.v)
(many.d (plur plant.n)))

(c) The final sampled ULF with the replaced
subtree highlighted.

=⇒

⇐=

D

NN

NN

plant.n))

(NN → NN)

(plur

(NN → D)

(many.d

(b) The derivation tree sampled for D with sampled
atoms for the leaf nodes.

Figure 3: The sampling process illustrated.

reaches a leaf node it simply returns it. Pseudocode
for this procedure is given in Algorithm 1 in Ap-
pendix E. In our running example (in Figure 3a)
the recursion goes down the right side of the tree
and stops with the subtree (a.d carp.n).

3.1.2 Computing the subtree’s type
The selected subtree’s type is computed using
ULF’s type composition rules. We use a pre-
existing ULF type system implementation5 which
finds the semantic type of a given ULF fragment by
recursively composing types from the atoms in a
bottom-up fashion. Due to the presence of variables
in some types of leaf nodes (for example for verbs
which can have multiple arities), the type system
can return a list of possible types corresponding to
different values of the variables. In such a case, we
pick a random type from this list. Since variables in
ULF type compositions rarely take high values (for
example, verbs do not frequently take more than
three arguments), we pick types corresponding to
smaller values of the variable with higher proba-
bility. Specifically, if the number of options is less
than 4, we pick uniformly. If the number of op-
tions is 4 or more, we pick uniformly from the first
three options with probability 3/4, and uniformly
from all the options with probability 1/4. Picking
from multiple possible types in a more principled
manner (for example by looking at the type com-
position tree of the seed ULF) could be an avenue
for future work in improving our sampler.

Using this process, we find that the chosen sub-
tree in the running example has type D.

3.1.3 Sampling a ULF with a given type
This phase involves one parameter: the maximum
size M ′ for the sampled ULF fragment; and takes
one argument: τroot, the desired ULF type (in our

5https://github.com/genelkim/ulf-lib

running example this is D). To sample a ULF with
the given type, we first sample a type derivation
tree with τroot at the root. Then, for each leaf type
in the derivation tree, we sample a ULF atom with
that type. Combining those atoms with the tree
structure of the derivation tree gives us a ULF with
the desired type.

Sampling a type derivation tree. Sampling a
derivation tree is done via three functions: SAM-
PLETYPEDERIVATION, SAMPLETYPESOURCE,
and SAMPLEARGDERIVATIONS. The top-level
function is SAMPLETYPEDERIVATION which, as
the name suggests, generates a type derivation tree
with type τroot. To do so it first uses SAMPLETYPE-
SOURCE to sample a source type, τsrc, which is a
type which can give τroot when supplied 0 or more
arguments and which is known to be the type of
an atomic ULF. It then calls SAMPLEARGDERIVA-
TIONS which takes τroot and τsrc and returns a list
of derivation trees for the argument types that need
to be supplied to τsrc to obtain τroot. Finally, SAM-
PLETYPEDERIVATION combines the source and
argument into a derivation tree for τroot which it
returns.

SAMPLETYPESOURCE takes one argument, τ0,
and returns a type that can be combined with 0 or
more arguments to obtain τ0 and which can be the
type of an atomic ULF. Let T be the set of all types
that can be taken by atomic ULFs, and let µT be a
distribution over T . We take µT to be the uniform
distribution in our implementation. We leave the
selection of a more informed distribution for future
work.6 SAMPLETYPESOURCE iteratively finds all
the types in T that can combine with 0 or more
arguments to give τ0 and adds them to a set T ′.

6For example, while a four-argument verb is possible (e.g.
in “I sold my car to John for $400.”), it is far less likely than
a one- or two-argument verb. A good choice for µT might
account for that.

https://github.com/genelkim/ulf-lib

120

Glenn eats an apple.

Glenn eats an apple daily .

Glenn eats 33 apples daily.Monsoon rains eat an apple daily.

Glenn eats a pear .

Adelina’s cat eats a pear.Glenn does not throw a pear.

Figure 4: An example of what a tree of sentences (ULFs omitted for brevity) generated from the seed “Glenn eats
an apple” with depth of 2 and branching factor of 2 might look like. Newly sampled text segments are highlighted.
The corresponding replaced text segment in the parent (if any) is underlined with the same color.

It then returns a sample from T ′ with distribution
weights from µT .Details on how exactly T ′ is com-
puted are provided in Algorithm 2 in Appendix E.

SAMPLEARGDERIVATIONS takes parameters
τcur and τsrc, and computes a list of derivation
trees for types that can be composed with τsrc to
get τcur. This starts with τcur and “grows” outward
to get τsrc. It begins by finding the first type τnext
that needs to be prepended to τcur to get τsrc. For
instance, if τsrc = (A → (B → (S → 2))) and
τcur = (S → 2), then τnext = B. On finding
τnext, the algorithm makes a mutually recursive
call to SAMPLETYPEDERIVATION to compute a
derivation tree Dnext for τnext. It then recurses
with τcur = (τnext → τcur) and the same τsrc to
obtain a list of derivations, ℓD. The algorithm re-
turns [Dnext] + ℓD. Algorithm 2 in Appendix E
contains pseudocode for the entire derivation tree
sampling process.

Example. In our running example (Figure 3),
the top-level function call is SAMPLETYPED-
ERIVATION(D). That function calls SAMPLE-
TYPESOURCE(D), which returns the source type
(NN → D). This is a valid source type since
it can combine with one or more type to give
D, and since there are atoms (e.g. the.d) which
have type (NN → D). The top level function
then calls SAMPLEARGDERIVATIONS(τcur = D,
τsrc = (NN → D)). That function identifies that
NN can be combined with (NN → D) to get D,
and thus calls SAMPLETYPEDERIVATION(NN).

In turn, that call does the same process as above,
but with NN as the root. It samples a source
which, let us say, turns out to be (NN → NN).
It then calls SAMPLEARGDERIVATIONS(τcur =
NN , τsrc = (NN → NN)), which deduces that
the required argument type is NN and calls SAM-
PLETYPEDERIVATION(NN) to find a derivation
tree for the argument. In our example, the mutual
recursion will end here: the call just mentioned will
sample NN as the source, which needs no further

arguments to get to NN .
Putting everything together, this process leads to

the derivation tree in Figure 3b.

Sampling ULF atoms. After generating a type
derivation tree, we sample ULF atoms that have
the types at the leaves of the derivation tree. Those
atoms are then put in the structure induced by the
derivation tree to obtain the ULF sampled. Sam-
pling atoms with given types is done using the
ULF lexicon used by Kim et al. (2021a). The sam-
pling is weighted by probabilities computed by nor-
malizing unigram counts from the Google n-gram
dataset (Franz and Brants, 2006). In our example
there are three leaf nodes with types (NN → D),
(NN → NN), and NN . Suppose they are instanti-
ated to the atoms many.d, plur, and plant.n.

3.1.4 Replacing in place
The final sampled ULF is obtained from the input
ULF by replacing the random subtree picked in
the first phase with the ULF fragment sampled in
the previous phase. This is done using simple tree
operations. In our example, this leads to the final
sampled ULF, (|Abe| ((pres see.v) (many.d
(plur plant.n)))).

3.2 The Handler
The sampling handler takes three inputs: the dataset
that is to be augmented, a depth d, and a branching
factor b. For each ULF U in the dataset, the handler
performs the following steps:

1. Use the sampler b times on input ULF U to
get b different samples from the seed U .

2. On each new ULF U ′ sampled in the previous
step, use the sampler b times.

3. Repeat step 2 d times, thus obtaining a tree of
ULFs with depth d and branching factor b. In
this tree, each node is obtained from its parent
via an application of the sampler. Figure 4
shows an example of such a tree.

121

4. Collect all the ULFs in this tree along with
their English translations (which are found
using the ULF-to-English library) into a set.

Combining all the sets obtained from the above
process gives us a raw augmented dataset.

After generating a raw augmented dataset we
assign a quality score using language model per-
plexity. The final dataset consists of the top F ∗N
ULF-English pairs according to the quality score,
where N is total number of samples and F is a
preset constant proportion (0 ≤ F ≤ 1). We use
the GPT-2 language model (Radford et al., 2019)
in our implementation. This last pruning step is
done in order to remove highly incoherent results.
Algorithm 3 contains pseudocode for the handler.

The reason we branch out from the seed instead
of repeatedly modifying in a linear fashion is that
in a linear design, if the sampler ever returns an
incoherent result, every sentence generated from
then onwards is likely to be incoherent too. This
leads to a lot of “wasted” seeds leading to a smaller
yield of good ULF-English pairs. In our branching-
based design, even if one sample ends up being
incoherent, the other branches of the algorithm still
remain viable.

3.3 ULF Macros

One notable limitation of our sampler is that it does
not support most ULF macros. ULF macros per-
form unique transformations over their arguments
to handle complex but regular mappings from syn-
tax to semantic structure (e.g., topicalization, post-
nominal modification, etc.) and do not fit directly
into the type-compositional system.

4 Experiments

We evaluate our sampler on the hand-annotated
ULF 1.0 dataset by Kim et al. (2021a), the only
dataset of gold ULF annotations that we are aware
of. This dataset has 1,378, 180, and 180 sentences
of ULF-English pairs in the training, development,
and test sets, respectively.

Metrics. Following prior work on this dataset,
we use SEMBLEU as the primary evaluation met-
ric and use EL-SMATCH secondarily for analysis,
since it is broken down into F1, precision, and
recall components. The SEMBLEU score better
reflects the the parser’s ability to generate coherent
ULFs because it takes into account chains of mul-
tiple nodes and edges that EL-SMATCH does not.

d b M M ′ p N

1 3 5 5 0.5 5,035
2 3 5 5 0.5 14,503
3 1 5 5 0.5 4,777
3 2 5 5 0.5 16,050
3 3 5 5 0.5 40,708
3 4 5 5 0.5 83,383
4 3 5 5 0.5 116,112

Table 1: Sampling parameters and the resulting dataset
sizes. The table uses the same variable conventions as
Section 3 for sampling parameters and dataset size.

Thus, SEMBLEU is used as the primary evaluation
metric for ULF parsing. Kim and Schubert (2016)
describes EL-SMATCH in detail, which includes
a method for representing ULFs as a set of triples
similar to AMRs. When SEMBLEU is run on ULF,
the same set-of-triples representation is used for
ULFs so that the metric designed for AMR can be
run on ULF.

4.1 Settings
Model. In order to isolate the benefits of the data
augmentation method, we use the current state-
of-the-art ULF parsing model (Kim et al., 2021a).
This parser is described in detail in Appendix A.
While Kim et al. (2021a) released the code for their
model, it runs on PyTorch 1.2 with Python 3.6
which are incompatible with the drivers in some
of our more up-to-date computing machines. We
updated the code to use PyTorch 1.11 and Python
3.10. This initially led to a reduction in parser per-
formance, but we found that we could replicate
the original parser performance by reducing the
step size by a factor 0.25 and doubling the num-
ber of training epochs. We detail the replication
experiment in Appendix D, including the model hy-
perparameters. We use the model that successfully
replicated the original results in our experiments.

Sampled Datasets. The sampling parameter
combinations we test are listed in Table 1 along
with the number of unique examples that result
from this sampling process. We vary the handler
parameters: depth and branching factors, which
largely determine the number of samples. We fix
the subtree sampling parameters: maximum sample
size to 5, maximum replacement size to 5, and re-
cursion probability to 0.5. During the development
process, we found this to lead to the best balance of
quality and speed. We remove duplicated samples

122

d b SEMBLEU EL-SMATCH
F1 Precision Recall

Reported 47.4 59.8 60.7 59.0
Replicated 47.1 58.7 60.6 56.9
1 3 48.2 59.5 61.6 57.6
2 3 46.0 58.2 59.5 57.0
3 1 47.9 59.0 61.8 56.5
3 2 46.1 57.9 59.8 56.1
3 3 48.3 59.8 61.5 57.8
3 4 47.8 58.1 60.1 56.3
4 3 49.0 59.3 60.9 57.8

Table 2: Test set parser performance for augmented
training on various sampling parameters and no
filtering—the average of 5 runs with different random
seeds.

to reduce unintended bias towards these sentences.

LM Filtering. To evaluate the trade-off between
sample quality and quantity, we vary the num-
ber of LM-filtered samples in our final augmented
datasets. For each sampled dataset, we retain the
following proportions of samples: 0.1, 0.25, 0.5,
and 1.0. We limit our filtering experiments to the
three largest sampled sets. This ensures that suffi-
cient samples remain even after aggressive filtering.

4.2 Training & Hyperparameters

We modify the training process of the baseline
model to include some number of epochs where
the model trains on both the manually annotated
ULF examples and the type-sampled dataset. After
that, the remaining epochs are trained using only
the manually annotated ULF examples. Other than
this new hyperparameter, the only hyperparameter
that is changed from the original model is the total
number of epochs. We reduce the number of total
epochs trained since the model begins to overfit
earlier when a larger sampled dataset is added.

We estimated the number of epochs at which the
model begins to overfit with sample augmentation
using d = 3 and b = 3 at 1.0, 0.5, 0.25, and 0.1
filtering proportions. For these parameters, we set
the augmented training epochs to 1 greater than
where we consistently saw overfitting.7 We then
generalize this to other experiments under the as-
sumption that similarly sized datasets will begin to
overfit at similar numbers of epochs. The training
epoch specifics are provided in Appendix B.

4.3 Results

In this section, we report only the average test set
metrics. Appendix B reports the full results in-
cluding the development set metrics and standard
deviations for both test and development sets.

Handler Parameters. We first compare the per-
formance of the baseline model when augmented
with the unfiltered samples from the sampler with
sampling parameters specified in Table 1. These re-
sults are reported in Table 2. The model augmented
with d = 4 and b = 3 has the best performance,
with a SEMBLEU score that is 1.6 points over the
reported baseline and 1.9 points over the replicated
baseline. Augmenting the training with sampled
pairs improves SEMBLEU scores for most sam-
pler parameters. Under closer inspection, we find
a curious pattern in these results. When we fix b
to 3 and vary d from 1 to 4, we see a U-shaped
SEMBLEU performance curve. Similarly, when
we fix d to 3 and vary b from 1 to 4, we see a similar
pattern, though the performance drops a bit again
when b = 4.

The rise in SEMBLEU scores with data aug-
mentation is not reflected as strongly in the EL-
SMATCH scores. The EL-SMATCH F1 scores are
typically slightly higher than the replicated base-
line, but still under the score reported by Kim et al.
(2021a). This suggests that the augmented samples
push the model towards overall parse coherence
without much changing the expected performance
on a particular node or edge.8

LM Filtering. Table 3 shows the parser perfor-
mance when the augmented dataset is filtered at
different levels based on LM perplexity. Moderate
filtering (0.5) tends to result in a small improve-
ment, leading to the best SEMBLEU results in this
paper of 49.1 on the d = 3, b = 3 dataset. Curi-
ously, moderate filtering seems to push the model
toward higher EL-SMATCH recall over precision.

Aggressive filtering (0.1) consistently degrades
performance, even relative to the baseline model.
This does not seem to be due to dataset size, since
similarly sized augmented datasets in Table 2 (d =
1, b = 3 and d = 3, b = 1) still improve over the
baseline. This suggests that aggressive LM filtering

7We consider an increase in development set perplexity to
be an overfit model.

8EL-SMATCH scores are based on overlaps of individual
nodes and edges whereas SEMBLEU scores are based on
chains of node-edge-node links.

123

d b Filter SEMBLEU EL-SMATCH
F1 Precision Recall

Reported 47.4 59.8 60.7 59.0
Replicated 47.1 58.7 60.6 56.9
3 3 1.00 48.3 59.8 61.5 57.8

0.50 49.1 59.8 61.0 58.6
0.25 46.6 58.3 59.3 57.4
0.10 46.9 59.7 60.8 58.7

3 4 1.00 47.8 58.1 60.1 56.3
0.50 47.9 59.0 60.4 57.5
0.25 47.5 59.0 60.1 57.9
0.10 46.6 58.4 59.8 56.4

4 3 1.00 49.0 59.3 60.9 57.8
0.50 48.1 59.5 60.2 58.9
0.25 48.1 59.0 60.0 58.1
0.10 45.3 57.9 58.9 56.9

Table 3: Test set parser performance for LM-filtered
augmented data for larger type sampling parameters—
the average of 5 runs with different random seeds.

removes useful variance in the samples and leads
to overfitting to low-perplexity sentences.

4.4 Qualitative Evaluation

We performed a qualitative analysis of the sam-
pled sentences in an early version of the sampler9

to evaluate the syntactic and semantic coherence
of the generated samples. This experiment used
d = 3, b = 2 sampling parameters and LM filtering
to a dataset size of 5,000 samples. 400 randomly
selected examples from this set were scored by
human evaluators for both syntactic and semantic
coherence, each on a 5-point scale. This resulted in
a mean syntax score of 3.87 and a mean semantics
score of 3.96, showing that the sampler typically
succeeds in generating ULFs corresponding to well-
formed and understandable text. Appendix C pro-
vides exact prompts given to human evaluators and
more details of the results.

5 Related Work

Gibson and Lawley (2022) fine-tune GPT2-large
on the ULF 1.0 dataset to learn both an English to
ULF parser and a ULF to English generator. Their
ULF parser underperforms Kim et al.’s (2021a) on
the primary SEMBLEU metric but achieves the
state-of-the-art on the EL-SMATCH metric. Their
ULF to English generator matches or outperforms
the ulf2english system on automatic machine
translation metrics, BLEU (Papineni et al., 2002),
chrF++ (Popović, 2017), and METEOR (Banerjee

9This version failed to properly propagate certain syntactic
restrictions leading to sampling failures, in which case we
repeated the sampling process.

and Lavie, 2005) but uses more compute resources.
Data augmentation is far from a new idea for

training neural networks. Data augmentation in
computer vision is common via translation, rota-
tion, cropping, flipping, noise injection, and color
space transformations (Shorten and Khoshgoftaar,
2019). NLP has its own suite of data augmenta-
tion techniques that have been explored with token-
level perturbations (Wei and Zou, 2019), graph-
level perturbations (Şahin and Steedman, 2018),
example interpolation (Zhang et al., 2018; Verma
et al., 2019; Faramarzi et al., 2022), and distribu-
tional model-based synthetic sampling (Sennrich
et al., 2016; Yang et al., 2020; Kobayashi, 2018)
covering the major common approaches. Feng et al.
(2021) provide a comprehensive survey of the NLP
data augmentation approaches.

Focusing in on semantic parsing, Jia and Liang
(2016) and Yu et al. (2021) learn synchronous
context-free grammars using available data from
which new examples are sampled. Andreas (2020)
infers shared lexical environments and performs
substitutions of words between them to encourage
compositionality in semantic parsers. van Noord
and Bos (2017) cross-reference two independent
AMR parsers to automatically generate likely-high-
quality examples which led to major parsing per-
formance gains. None of these methods are able
to exploit the knowledge that we have about ULF
types and the rules that mediate their composition.
Some of the approaches described in this section,
such as van Noord and Bos’ (2017), could be used
in conjunction with our approach.

6 Conclusions

We presented a data augmentation method for
ULFs that leverages ULF’s underlying semantic
type structure. This method helps alleviate the data
sparsity problem that currently exists for ULF pars-
ing, leading to a new state-of-the-art in this task
without any change in the parsing model. Though
we tested our data augmentation method on ULFs,
this technique is applicable to any semantic parsing
task with an underlying tree-structured composi-
tional type system. For example, parsing in com-
binatory categorical grammar (Steedman, 2000)
is another appropriate candidate for this sampling
technique. Some details of the sampling procedure
can also be improved in obvious, but not trivial
ways. For example, our ULF atom sampling pro-
cedure uses word frequencies without ULF type

124

information.This leads to an over-representation of
type-ambiguous words in our generated samples.

We think that type system-driven data augmen-
tation for ULF is a promising way to further im-
prove ULF parser performance. We expect further
parsing improvements through refinement of the
sampling parameters and expansion of the sam-
pler to include macros. The additional data pro-
vided by such augmentation would support more
general neural network-based semantic parsers as
have been successful in other semantic represen-
tations (van Noord et al., 2018; Liu et al., 2018;
Buys and Blunsom, 2017; Konstas et al., 2017).
We are hopeful to see an improved semantic parser
find utility in ULF-related tasks such as those men-
tioned at the end of section 1.

Acknowledgements

This work was supported in part by NSF grant
IIS-1940981. We thank Omar Abdelrahman for
assisting in the replication of the ULF parser per-
formance for the newer Python version. We are
grateful to the anonymous reviewers for their help-
ful feedback.

References
Jacob Andreas. 2020. Good-enough compositional data

augmentation. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 7556–7566, Online. Association for
Computational Linguistics.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
An automatic metric for MT evaluation with im-
proved correlation with human judgments. In Pro-
ceedings of the ACL Workshop on Intrinsic and Ex-
trinsic Evaluation Measures for Machine Transla-
tion and/or Summarization, pages 65–72, Ann Arbor,
Michigan. Association for Computational Linguis-
tics.

Jan Buys and Phil Blunsom. 2017. Robust incremen-
tal neural semantic graph parsing. In Proceedings
of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1215–1226, Vancouver, Canada. Association
for Computational Linguistics.

Mojtaba Faramarzi, Mohammad Amini, Akilesh Badri-
naaraayanan, Vikas Verma, and Sarath Chandar. 2022.
Patchup: A feature-space block-level regularization
technique for convolutional neural networks. Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, 36(1):589–597.

Steven Y. Feng, Varun Gangal, Jason Wei, Sarath Chan-
dar, Soroush Vosoughi, Teruko Mitamura, and Ed-

uard Hovy. 2021. A survey of data augmentation
approaches for NLP. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 968–988, Online. Association for Computa-
tional Linguistics.

Alex Franz and Thorsten Brants. 2006. All our n-gram
are belong to you. https://ai.googleblog.com/
2006/08/all-our-n-gram-are-belong-to-you.html.
Google AI Blog.

Erin Gibson and Lane Lawley. 2022. Language-model-
based parsing and english generation for unscoped
episodic logical forms. The International FLAIRS
Conference Proceedings, 35.

Daniel Gildea, Giorgio Satta, and Xiaochang Peng.
2018. Cache transition systems for graph parsing.
Computational Linguistics, 44(1):85–118.

Robin Jia and Percy Liang. 2016. Data recombination
for neural semantic parsing. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
12–22, Berlin, Germany. Association for Computa-
tional Linguistics.

Gene Kim, Viet Duong, Xin Lu, and Lenhart Schu-
bert. 2021a. A transition-based parser for unscoped
episodic logical forms. In Proceedings of the 14th In-
ternational Conference on Computational Semantics
(IWCS), pages 184–201, Groningen, The Netherlands
(online). Association for Computational Linguistics.

Gene Kim, Mandar Juvekar, Junis Ekmekciu, Viet
Duong, and Lenhart Schubert. 2021b. A (mostly)
symbolic system for monotonic inference with un-
scoped episodic logical forms. In Proceedings of the
1st and 2nd Workshops on Natural Logic Meets Ma-
chine Learning (NALOMA), pages 71–80, Groningen,
the Netherlands (online). Association for Computa-
tional Linguistics.

Gene Kim, Mandar Juvekar, and Lenhart Schubert.
2021c. Monotonic inference for underspecified
episodic logic. In Proceedings of the 1st and 2nd
Workshops on Natural Logic Meets Machine Learn-
ing (NALOMA), pages 26–40, Groningen, the Nether-
lands (online). Association for Computational Lin-
guistics.

Gene Kim, Benjamin Kane, Viet Duong, Muskaan
Mendiratta, Graeme McGuire, Sophie Sackstein,
Georgiy Platonov, and Lenhart Schubert. 2019. Gen-
erating discourse inferences from unscoped episodic
logical formulas. In Proceedings of the First Interna-
tional Workshop on Designing Meaning Representa-
tions, pages 56–65, Florence, Italy. Association for
Computational Linguistics.

Gene Kim and Lenhart Schubert. 2016. High-fidelity
lexical axiom construction from verb glosses. In
Proceedings of the Fifth Joint Conference on Lexical
and Computational Semantics, pages 34–44, Berlin,
Germany. Association for Computational Linguistics.

https://doi.org/10.18653/v1/2020.acl-main.676
https://doi.org/10.18653/v1/2020.acl-main.676
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://doi.org/10.18653/v1/P17-1112
https://doi.org/10.18653/v1/P17-1112
https://doi.org/10.1609/aaai.v36i1.19938
https://doi.org/10.1609/aaai.v36i1.19938
https://doi.org/10.18653/v1/2021.findings-acl.84
https://doi.org/10.18653/v1/2021.findings-acl.84
https://ai.googleblog.com/2006/08/all-our-n-gram-are-belong-to-you.html
https://ai.googleblog.com/2006/08/all-our-n-gram-are-belong-to-you.html
https://doi.org/10.32473/flairs.v35i.130703
https://doi.org/10.32473/flairs.v35i.130703
https://doi.org/10.32473/flairs.v35i.130703
https://doi.org/10.1162/COLI_a_00308
https://doi.org/10.18653/v1/P16-1002
https://doi.org/10.18653/v1/P16-1002
https://aclanthology.org/2021.iwcs-1.18
https://aclanthology.org/2021.iwcs-1.18
https://aclanthology.org/2021.naloma-1.9
https://aclanthology.org/2021.naloma-1.9
https://aclanthology.org/2021.naloma-1.9
https://aclanthology.org/2021.naloma-1.5
https://aclanthology.org/2021.naloma-1.5
https://doi.org/10.18653/v1/W19-3306
https://doi.org/10.18653/v1/W19-3306
https://doi.org/10.18653/v1/W19-3306
https://doi.org/10.18653/v1/S16-2004
https://doi.org/10.18653/v1/S16-2004

125

Gene Louis Kim. 2022. Corpus annotation, pars-
ing, and inference for Episodic Logic type structure.
Ph.D. thesis, University of Rochester.

Gene Louis Kim and Lenhart Schubert. 2019. A type-
coherent, expressive representation as an initial step
to language understanding. In Proceedings of the
13th International Conference on Computational Se-
mantics - Long Papers, pages 13–30, Gothenburg,
Sweden. Association for Computational Linguistics.

Sosuke Kobayashi. 2018. Contextual augmentation:
Data augmentation by words with paradigmatic re-
lations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 452–457,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Ioannis Konstas, Srinivasan Iyer, Mark Yatskar, Yejin
Choi, and Luke Zettlemoyer. 2017. Neural AMR:
Sequence-to-sequence models for parsing and gener-
ation. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 146–157, Vancouver,
Canada. Association for Computational Linguistics.

Lane Lawley, Gene Louis Kim, and Lenhart Schubert.
2019. Towards natural language story understand-
ing with rich logical schemas. In Proceedings of
the Sixth Workshop on Natural Language and Com-
puter Science, pages 11–22, Gothenburg, Sweden.
Association for Computational Linguistics.

Jiangming Liu, Shay B. Cohen, and Mirella Lapata.
2018. Discourse representation structure parsing.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 429–439, Melbourne, Australia.
Association for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Fabrizio Morbini and Lenhart Schubert. 2009. Evalua-
tion of EPILOG: a reasoner for Episodic Logic. In
Proceedings of the Ninth International Symposium on
Logical Formalizations of Commonsense Reasoning,
Toronto, Canada.

Rik van Noord, Lasha Abzianidze, Antonio Toral, and
Johan Bos. 2018. Exploring neural methods for pars-
ing discourse representation structures. Transactions
of the Association for Computational Linguistics,
6:619–633.

Rik van Noord and Johan Bos. 2017. Neural semantic
parsing by character-based translation: Experiments
with abstract meaning representations. Computa-
tional Linguistics in the Netherlands, 7.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Xiaochang Peng, Linfeng Song, Daniel Gildea, and
Giorgio Satta. 2018. Sequence-to-sequence models
for cache transition systems. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1842–1852, Melbourne, Australia. Association for
Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1532–1543, Doha, Qatar.
Association for Computational Linguistics.

Georgiy Platonov, Lenhart Schubert, Benjamin Kane,
and Aaron Gindi. 2020. A spoken dialogue system
for spatial question answering in a physical blocks
world. In Proceedings of the 21th Annual Meeting
of the Special Interest Group on Discourse and Dia-
logue, pages 128–131, 1st virtual meeting. Associa-
tion for Computational Linguistics.

Maja Popović. 2017. chrF++: words helping charac-
ter n-grams. In Proceedings of the Second Confer-
ence on Machine Translation, pages 612–618, Copen-
hagen, Denmark. Association for Computational Lin-
guistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
blog.

Gözde Gül Şahin and Mark Steedman. 2018. Data
augmentation via dependency tree morphing for low-
resource languages. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 5004–5009, Brussels, Belgium.
Association for Computational Linguistics.

Lenhart Schubert. 2014. From treebank parses to
episodic logic and commonsense inference. In Pro-
ceedings of the ACL 2014 Workshop on Semantic
Parsing, pages 55–60, Baltimore, MD. Association
for Computational Linguistics.

Lenhart K. Schubert. 2000. The situations we talk about.
In Jack Minker, editor, Logic-based Artificial Intelli-
gence, pages 407–439. Kluwer Academic Publishers,
Norwell, MA, USA.

Lenhart K. Schubert and Chung Hee Hwang. 2000.
Episodic Logic meets Little Red Riding Hood: A
comprehensive natural representation for language
understanding. In Lucja M. Iwańska and Stuart C.
Shapiro, editors, Natural Language Processing and

https://doi.org/10.18653/v1/W19-0402
https://doi.org/10.18653/v1/W19-0402
https://doi.org/10.18653/v1/W19-0402
https://doi.org/10.18653/v1/N18-2072
https://doi.org/10.18653/v1/N18-2072
https://doi.org/10.18653/v1/N18-2072
https://doi.org/10.18653/v1/P17-1014
https://doi.org/10.18653/v1/P17-1014
https://doi.org/10.18653/v1/P17-1014
https://doi.org/10.18653/v1/W19-1102
https://doi.org/10.18653/v1/W19-1102
https://doi.org/10.18653/v1/P18-1040
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.1162/tacl_a_00241
https://doi.org/10.1162/tacl_a_00241
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/P18-1171
https://doi.org/10.18653/v1/P18-1171
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://aclanthology.org/2020.sigdial-1.16
https://aclanthology.org/2020.sigdial-1.16
https://aclanthology.org/2020.sigdial-1.16
https://doi.org/10.18653/v1/W17-4770
https://doi.org/10.18653/v1/W17-4770
https://doi.org/10.18653/v1/D18-1545
https://doi.org/10.18653/v1/D18-1545
https://doi.org/10.18653/v1/D18-1545
https://doi.org/10.3115/v1/W14-2411
https://doi.org/10.3115/v1/W14-2411

126

Knowledge Representation, pages 111–174. MIT
Press, Cambridge, MA, USA.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation models
with monolingual data. In Proceedings of the 54th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 86–96,
Berlin, Germany. Association for Computational Lin-
guistics.

Connor Shorten and Taghi M. Khoshgoftaar. 2019. A
survey on image data augmentation for deep learning.
Journal of Big Data, 6(60).

Mark Steedman. 2000. The Syntactic Process, vol-
ume 24. MIT press, Cambridge, MA.

Vikas Verma, Alex Lamb, Christopher Beckham, Amir
Najafi, Ioannis Mitliagkas, David Lopez-Paz, and
Yoshua Bengio. 2019. Manifold mixup: Better rep-
resentations by interpolating hidden states. In Pro-
ceedings of the 36th International Conference on
Machine Learning, volume 97 of Proceedings of Ma-
chine Learning Research, pages 6438–6447. PMLR.

Jason Wei and Kai Zou. 2019. EDA: Easy data augmen-
tation techniques for boosting performance on text
classification tasks. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 6382–6388, Hong Kong, China. As-
sociation for Computational Linguistics.

Yiben Yang, Chaitanya Malaviya, Jared Fernandez,
Swabha Swayamdipta, Ronan Le Bras, Ji-Ping Wang,
Chandra Bhagavatula, Yejin Choi, and Doug Downey.
2020. Generative data augmentation for common-
sense reasoning. In Findings of the Association for
Computational Linguistics: EMNLP 2020, pages
1008–1025, Online. Association for Computational
Linguistics.

Tao Yu, Chien-Sheng Wu, Xi Victoria Lin, Bailin Wang,
Yi Chern Tan, Xinyi Yang, Dragomir R. Radev,
Richard Socher, and Caiming Xiong. 2021. Grappa:
Grammar-augmented pre-training for table semantic
parsing. In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net.

Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and
David Lopez-Paz. 2018. mixup: Beyond empirical
risk minimization. In 6th International Conference
on Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings. OpenReview.net.

https://doi.org/10.18653/v1/P16-1009
https://doi.org/10.18653/v1/P16-1009
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1186/s40537-019-0197-0
https://proceedings.mlr.press/v97/verma19a.html
https://proceedings.mlr.press/v97/verma19a.html
https://doi.org/10.18653/v1/D19-1670
https://doi.org/10.18653/v1/D19-1670
https://doi.org/10.18653/v1/D19-1670
https://doi.org/10.18653/v1/2020.findings-emnlp.90
https://doi.org/10.18653/v1/2020.findings-emnlp.90
https://openreview.net/forum?id=kyaIeYj4zZ
https://openreview.net/forum?id=kyaIeYj4zZ
https://openreview.net/forum?id=kyaIeYj4zZ
https://openreview.net/forum?id=r1Ddp1-Rb
https://openreview.net/forum?id=r1Ddp1-Rb

127

A Baseline ULF Parser Description

Kim et al.’s (2021a) ULF parser is a transition
system-based parser where the transition actions
are selected using an LSTM. This parser modifies
the cache transition parser (Gildea et al., 2018)
to better model ULFs. At a high level, the mod-
ification introduces methods of generating ULF
symbols on the fly from input words, rather than
assuming a sequence of symbols as input. These
symbol generation methods are further designed
to reflect the relationship between ULF symbols
and their corresponding words rather than assum-
ing that an arbitrary mapping can exist between
them. The cache transition system oracle, which is
needed for training, is similarly modified to support
these changes in the possible actions.

The LSTM is then trained to take a concatenation
of the relevant input word, the relevant ULF sym-
bol, and the current transition system state features
as input and predicts the next action for the tran-
sition system. The transition system is inspected
to determine which word is relevant, this is called
hard attention (Peng et al., 2018). The relevant
ULF symbol is similarly inferred from the transi-
tion system state and action history. Either we find
which symbol we generated based on the current
word, or if it has not been generated yet, the most
recently generated symbol. The word features in-
clude the RoBERTa (Liu et al., 2019) embedding,
GloVe embedding (Pennington et al., 2014), and
learned embeddings of the lemma, POS tag, and
NER tag. The symbol tokens are learned. The
transition state features further includes informa-
tion about the dependency tree distances of relevant
words and the transition system phase. We refer
you to Kim et al.’s (2021a) paper for further details
of the parser.

B Additional Experiment Details

B.1 Augmented Epoch Determination

Filtering N overfit epoch
1.00 40,708 2
0.50 20,354 4
0.25 10,177 9

Table 4: Epochs values at which the model begins to
overfit when trained with an augmented dataset using
d = 3 and b = 3 parameters at various GPT-2 filtering
levels.

d b N F Aug. Total
1 3 5,035 1.00 25 45
2 3 14,503 1.00 10 30
3 1 4,777 1.00 25 45
3 2 16,050 1.00 10 30
3 3 40,708 1.00 2 20
3 3 20,354 0.50 5 25
3 3 10,177 0.25 10 30
3 3 5,083 0.10 25 45
3 4 83,383 1.00 2 20
3 4 41,691 0.50 2 20
3 4 20,845 0.25 5 25
3 4 10,422 0.10 10 30
4 3 116,112 1.00 2 20
4 3 58,056 0.50 2 20
4 3 29,028 0.25 5 25
4 3 14,514 0.10 10 30

Table 5: Number of epochs trained on the augmented
dataset and in total for each sampling and filtering con-
figuration. “Aug." is the number of augmented epochs.
“Total" is the total number of epochs trained. Includes
the total size of each sampling configuration results to
help interpret the motivation behind the epoch values.

Table 4 shows when the model would begin to
overfit at various augmented dataset levels. Specifi-
cally, we use the augmented dataset with d = 3 and
b = 3, filtered with GPT-2 at various proportions.
We use this to determine the number of epochs
that we should train the model with sampling aug-
mented data before only training on the manually
annotated dataset. The procedure we use here is to
add 1 to the results from Table 4. We do not add
1 to the full d = 3 and b = 3 dataset. Due to the
size of the dataset, 1 additional epoch would likely
severely overfit the model. For filtering at a 0.1
level, we extrapolate from the 0.5 and 0.25 levels,
assuming a linear relationship between the number
of augmenting examples and epochs.

We then generalize these results to other sam-
pling settings under the assumption that similarly
sized datasets will begin to overfit at similar num-
bers of epochs. We select the filtering level for the
d = 3, b = 3 dataset whose N value is the closest
lower value to the augmenting dataset in question.
Table 5 lists the number of epochs that we trained
each model on the augmented set and in total.

As with the rest of the parser details, we fol-
low Kim et al.’s (2021a) approach to selecting the
test model. After all training epochs, we select

128

Model SEMBLEU EL-SMATCH
d b F1 Precision Recall

Dev (±σ) Test (±σ) Dev (±σ) Test (±σ) Dev (±σ) Test (±σ) Dev (±σ) Test (±σ)
Reported 46.4± 1.4 47.4± 1.3 58.4± 0.7 59.8± 1.0 59.1± 1.1 60.7± 1.5 57.8± 0.5 59.0± 0.7
Replicated 46.4± 2.7 47.1± 1.4 56.9± 1.9† 58.7± 1.4 59.5± 1.8† 60.6± 1.7 54.6± 2.2† 56.9± 1.3
1 3 48.7± 1.6 48.2± 1.2 58.4± 0.7 59.5± 0.7 61.3± 1.5 61.6± 1.3 55.7± 0.9 57.6± 0.6
2 3 46.9± 1.9 46.0± 1.6 56.9± 1.7 58.2± 1.0 59.6± 1.6 59.5± 1.1 54.4± 1.9 57.0± 1.7
3 1 49.2± 1.1 47.9± 1.5 58.4± 1.0 59.0± 0.8 61.9± 0.6 61.8± 0.9 55.3± 1.5 56.5± 1.2
3 2 48.0± 3.3 46.1± 3.3 57.5± 2.0 57.9± 1.7 60.7± 2.2 59.8± 1.8 54.7± 2.3 56.1± 2.4
3 3 49.6± 1.6 48.3± 1.7 59.2± 1.5 59.8± 1.4 62.1± 1.7 61.5± 1.4 56.7± 1.6 57.8± 2.2
3 4 49.3± 3.8 47.8± 4.0 58.3± 2.2 58.1± 2.4 61.1± 1.8 60.1± 2.0 55.7± 2.6 56.3± 3.2
4 3 50.4± 0.8 49.0± 1.0 58.7± 1.1 59.3± 1.7 61.2± 1.0 60.9± 1.2 56.5± 1.3 57.8± 2.5

Table 6: Detailed parser performance for augmented training on various sampling parameters and no filtering—the
average & standard deviation of 5 runs. See the caption for Table 10 regarding the meaning of the † superscript.

Model SEMBLEU EL-SMATCH
d b F F1 Precision Recall

Dev (±σ) Test (±σ) Dev (±σ) Test (±σ) Dev (±σ) Test (±σ) Dev (±σ) Test (±σ)
Reported 46.4± 1.4 47.4± 1.3 58.4± 0.7 59.8± 1.0 59.1± 1.1 60.7± 1.5 57.8± 0.5 59.0± 0.7
Replicated 46.4± 2.7 47.1± 1.4 56.9± 1.9† 58.7± 1.4 59.5± 1.8† 60.6± 1.7 54.6± 2.2† 56.9± 1.3
3 3 1.00 49.6± 1.6 48.3± 1.7 59.2± 1.5 59.8± 1.4 62.1± 1.7 61.5± 1.4 56.7± 1.6 57.8± 2.2

0.50 49.5± 0.8 49.1± 1.7 58.7± 0.5 59.8± 1.0 61.2± 0.9 61.0± 1.5 56.4± 0.5 58.6± 0.8
0.25 47.6± 1.8 46.6± 1.8 57.4± 1.3 58.3± 1.4 59.8± 1.3 59.3± 1.9 55.3± 1.4 57.4± 1.3
0.10 47.2± 1.5 46.9± 1.5 57.9± 0.6 59.7± 0.8 59.7± 1.8 60.8± 1.5 56.2± 0.7 58.7± 0.9

3 4 1.00 49.3± 3.8 47.8± 4.0 58.3± 2.2 58.1± 2.4 61.1± 1.8 60.1± 2.0 55.7± 2.6 56.3± 3.2
0.50 48.6± 1.1 47.9± 1.4 58.4± 1.0 59.0± 0.9 61.1± 0.8 60.4± 1.2 55.8± 1.4 57.5± 0.9
0.25 47.3± 2.7 47.5± 2.4 57.4± 1.6 59.0± 2.2 59.8± 2.5 60.1± 2.7 55.1± 0.8 57.9± 1.9
0.10 46.7± 2.4 46.6± 2.2 57.2± 2.0 58.4± 2.4 60.1± 1.8 59.8± 1.7 54.7± 2.4 56.4± 3.3

4 3 1.00 50.4± 0.8 49.0± 1.0 58.7± 1.1 59.3± 1.7 61.2± 1.0 60.9± 1.2 56.5± 1.3 57.8± 2.5
0.50 49.0± 3.1 48.1± 3.6 59.2± 1.8 59.5± 2.1 60.9± 2.2 60.2± 2.4 57.7± 1.5 58.9± 1.9
0.25 48.3± 1.3 48.1± 1.7 57.8± 0.8 59.0± 0.8 60.0± 0.9 60.0± 1.4 55.7± 0.8 58.1± 0.6
0.10 45.5± 2.7 45.4± 2.7 56.9± 2.2 57.9± 2.1 58.9± 2.3 58.9± 1.8 55.1± 2.3 56.9± 1.8

Table 7: Detailed parser performance for LM-filtered augmented data for larger type sampling parameters—the
average & standard deviation of 5 runs.

the epoch at which the model has the best develop-
ment set SEMBLEU performance and restore that
checkpoint for testing.

B.2 Detailed Parser Results

Table 6 shows the full detailed parsing results with
full augmented datasets, no filtering. These results
include the development set results and standard
deviations. These details should help in check-
ing replication. It also shows that adding the aug-
mented data tends to lead to more overfitting of the
model. That is, the development set performance
is relatively higher compared to the test set perfor-
mance when using data augmentation. Still, the
average test set performance is only a point or two
below the average development set performance
so the overfitting does not tend to be very severe.
The standard deviations also show that certain sam-
pling configurations lead to very unstable training.
d = 3, b = 4 for example has a 4-point standard
deviation in SEMBLEU scores. Table 7 shows sim-

ilarly detailed results for the filtering experiments.

B.3 Hyperparameters
Model hyperparameters are listed in Table 8. All of
them except for the learning rate are grandfathered
in from Kim et al.’s (2021a) parser.

C Qualitative Evaluation Details

For the qualitative analysis, we sampled an aug-
mented dataset using the following parameters
d = 5, b = 2,M = 5,M ′ = 5, p = 0.5. This
earlier version of the parser performed filtering
based on a maximum augmented size, including
the seed examples, rather than filtering proportional
to only the sampled set. We set the maximum size
to 5,000. Excluding the 1,378 seed sentences (the
training set of ULF 1.0), this results in 3,622 new
samples. Of these, we uniformly randomly select
400 and had human evaluators rank the English
translations (using ulf2english) for both syntac-
tic and semantic coherence. Each example was

129

GloVe.840B.300d
dim 300
RoBERTa embeddings
source RoBERTa-Base
dim 768
POS tag embeddings
dim 100
Lemma embeddings
dim 100
CharCNN
num_filters 100
ngram_filter_sizes [3]
Action embeddings
dim 100
Transition system feature embeddings
dim 25
Word encoder
hidden_size 256
num_layers 3
Symbol encoder
hidden_size 128
num_layers 2
Action decoder
hidden_size 256
num_layers 2
MLP decoder
hidden_size 256
activation_function ReLU
num_layers 1
Optimizer
type ADAM
learning_rate 0.0025
max_grad_norm 5.0
dropout 0.33
num_epochs 25
Beam size 3
Vocabulary
word vocab size 9200
symbol vocab size 7300
Batch size 32

Table 8: Model hyperparameters. The learning rate,
which differs from Kim et al.’s (2021a) parser, is bolded.

ranked. The samples were distributed among three
in-person human volunteers for ranking. Volun-
teers were given descriptions for the meaning of
each score value. These are provided in Table 9.

Figure 5: Frequencies for each score value reported by
scorers. Score frequencies for syntax are in blue, those
for meaning are in orange.

They were also asked to treat syntax and meaning
as orthogonal properties as far as possible.

Figure 5 plots the frequencies for the qualita-
tive scores. The mean syntax score was 3.87 with
a standard deviation of 0.97. The mean meaning
score was 3.96 with a standard deviation of 1.15.
The medians for both scores were 4. About 65.7%
of examples scored 4s and 5s on syntax, and about
69.2% scored 4s and 5s on meaning. Very few (less
than 40 each) scored 1s and 2s on either categories.
According to the descriptions given to the volun-
teers, this means that the average sentence was
somewhere between “some syntactic inaccuracies,
but overall not bad” (a score of 3) and “minor syn-
tax errors” (a score of 4) leaning heavily towards
the latter, and was just a little below “meaning is
clear but a little strange for the average ear” (a score
of 4) for meaning.

D Baseline Replication

The results for the baseline replication experiments
are presented in Table 10. These results are based
on 5 random runs, however, due to technical chal-
lenges, a few results are based on 4 random runs.
This was the first experiment run for this paper so
the infrastructure was still brittle. We did not redo
these failed runs since a single additional run would
not affect our conclusions in this circumstance.

When we run the unmodified parameters with
our code updated to newer Python and PyTorch
releases, we see that our SEMBLEU performance
drops by 4.5 points. However, when we reduce the
learning rate from 0.001 to 0.00025 and increase
the total epochs from 25 to 60, the performance dif-
ference is only 0.3. Considering that the standard
deviations of the SEMBLEU scores are 1.3 and

130

Score Description
1 Completely garbled
2 Garbled up but there are sizable chunks that are coherent
3 Some inaccuracies in grammar, but overall not bad
4 Minor syntax errors
5 Grammatical

Score Description
1 This doesn’t mean anything
2 You could speculate what it means, but it isn’t very coherent
3 Either somewhat clear but still unclear, or quite implausible
4 Meaning is clear but a little strange for the average ear
5 Makes sense, is plausible

Table 9: Descriptions of scores given to volunteers. The first table corresponds to syntax scores and the second
corresponds to scores for meaning.

1.4 for the reported and our modified runs, respec-
tively, 0.3 is within the range of sample variance.
EL-SMATCH results are similar, though our repli-
cated runs are relatively stronger on precision over
recall.

E Pseudocode for Algorithms

Algorithms 1 to 3 are the pseudocode algorithms
for the PICKRANDOMSUBTREE, SAMPLETYPED-
ERIVATION, and AUGMENTDATASET, respectively,
which are described in Section 3.

Algorithm 2, however, elides some implementa-
tional caveats. First, in practice, we add a global
parameter M ′ that imposes a maximum on the num-
ber of leaves in the sampled tree. This is imple-
mented by limiting the amount of mutual recursion
that happens between SAMPLETYPEDERIVATION

and SAMPLEARGDERIVATIONS. Second, while
the pseudocode uses simple equality to compare
types, in practice we use a TYPEMATCH function
which takes two types τ and τ ′ and returns true
if and only if τ ′ is the same as τ , except possi-
bly with additional syntactic restrictions. Third, in
practice SAMPLETYPESOURCE can return some
non-atomic ULF types which are known to be types
of atomic ULFs when operated on with specific op-
erators. This is to account for operators (such as
sentential operators) which are ignored during type
composition. An example of this is that SAMPLE-
TYPESOURCE can returned a “tensed verb” type
which can be instantiated in the next step to a tense
operator operating on a verb (e.g. (pres eat.v)).

131

Model SEMBLEU EL-SMATCH
F1 Precision Recall

Dev (±σ) Test (±σ) Dev (±σ) Test (±σ) Dev (±σ) Test (±σ) Dev (±σ) Test (±σ)
Reported 46.4± 1.4 47.4± 1.3 58.4± 0.7 59.8± 1.0 59.1± 1.1 60.7± 1.5 57.8± 0.5 59.0± 0.7

Unmod.† 44.2± 1.7 42.9± 2.5 56.2± 0.4 56.7± 0.6 58.7± 1.9 58.3± 1.7 53.9± 1.2 55.3± 1.2
Modified 46.4± 2.7 47.1± 1.4 56.9± 1.9† 58.7± 1.4 59.5± 1.8† 60.6± 1.7 54.6± 2.2† 56.9± 1.3

Table 10: Results for the baseline replication experiments. Results are based on 5 random runs. A “†" superscript
indicates results based on 4 runs due to a system failure on one of the runs. The “Unmod.” row contains the results
of running our code updated to PyTorch 1.11 and Python 3.10 using the exact same parameters as the original. The
“Modified” row contains the results where the learning rate is lowered four-fold and total epochs are increased from
25 to 60.

Algorithm 1 Picking a random subtree of a ULF.

global parameters: M ∈ N, the maximum size of the subtree picked; p ∈ (0, 1), a probability.
function PICKRANDOMSUBTREE(U)

input: U , a ULF.
if SIZE(U) > M then

U ′ ← (uniformly) random child of U .
return PICKRANDOMSUBTREE(U ′).

else if U is atomic then
return U .

else
U ′ ← (uniformly) random child of U .

return


PICKRANDOMSUBTREE(U ′)

with probability p;

U otherwise.
end if

end function

132

Algorithm 2 Sampling a type derivation tree for a given type. This pseudocode ignores some implementa-
tion details. Those details are explained in the text description of this algorithm.

function SAMPLETYPEDERIVATION(τroot)
τsrc ← SAMPLETYPESOURCE(τroot)−−→τargs ← SAMPLEARGDERIVATIONS(τroot, τsrc)
return (τsrc,

−−→τargs)
end function
function SAMPLETYPESOURCE(τ0)

global parameters: T , the set of possible types of ULF atoms; µT , a distribution over T .
T ′ ← ∅
for τa ∈ T do

τtmp ← τ0
while τtmp ̸= NIL do

if τa = τtmp then
T ′.append(τa)

end if
if τtmp ∈ {D,S,2} then

τtmp ← NIL
else

τtmp ← CODOMAIN(τtmp)
end if

end while
end for
return τsrc ∼ µT (T

′)
end function
function SAMPLEARGDERIVATIONS(τcur, τsrc)

if τsrc = τcur then
return []

end if
τarg ← NEXTARGTYPE(τcur, τsrc)
Darg ← SAMPLETYPEDERIVATION(τarg)
τnext ← (τarg → τcur)
return [Darg] + SAMPLEARGDERIVATIONS(τnext, τsrc)

end function

133

Algorithm 3 The handler. We assume that the function SAMPLEFROMSEED is the top-level function for
the sampler. It takes a ULF as input and runs the sampler to produce a single new (ULF, English) pair.

function AUGMENTDATASET(D , d, b, F)
input: D , a set of (ULF, English) pairs; d, the branching depth; b, the branching factor;
F , top fraction of augmented set to keep.
D ′ ← D
for (U,E) ∈ D do

S ← [U]
for i ∈ {1, 2, . . . , d} do

S′ ← ∅
for U ∈ S do

U ′ ← POPFIRST(S)
for j ∈ {1, 2, . . . , b} do

(U ′′, E′′)← SAMPLEFROMSEED(U ′)
D ′.append((U ′′, E′′))
S′.append(U ′)

end for
end for
S ← S′

end for
end for
ORDERBYLANGUAGEMODELSCORE(D ′)
return first F ∗ |D | elements of D ′

end function

