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Abstract

Collaborative problem solving (CPS) in teams
is tightly coupled with the creation of shared
meaning between participants in a situated,
collaborative task. In this work, we assess
the quality of different utterance segmentation
techniques as an aid in annotating CPS. We
(1) manually transcribe utterances in a dataset
of triads collaboratively solving a problem in-
volving dialogue and physical object manip-
ulation, (2) annotate collaborative moves ac-
cording to these gold-standard transcripts, and
then (3) apply these annotations to utterances
that have been automatically segmented us-
ing toolkits from Google and OpenAI’s Whis-
per. We show that the oracle utterances have
minimal correspondence to automatically seg-
mented speech, and that automatically seg-
mented speech using different segmentation
methods is also inconsistent. We also show that
annotating automatically segmented speech has
distinct implications compared with annotat-
ing oracle utterances—since most annotation
schemes are designed for oracle cases, when an-
notating automatically-segmented utterances,
annotators must invoke other information to
make arbitrary judgments which other anno-
tators may not replicate. We conclude with a
discussion of how future annotation specs can
account for these needs.

1 Introduction
In order for Artificially Intelligent (AI) agents to
interact with with an environment, they must first
accurately perceive that environment. In real-world
contexts, this necessitates automatically preprocess-
ing various modalities for downstream procedures.
For example, an AI agent to modulate classroom
discourse needs to first identify distinct discourse
components, but a single spoken utterance from
a team member could contain multiple discourse
components. The identification of each discourse
component within the utterance could easily spiral

into a doctoral thesis but overly fixating on this
preprocessing step would make it extremely dif-
ficult to make substantive progress on AI agents
themselves.

Typically, researchers default to “oracle” data,
where one assumes the preprocessing step has been
completed with human level accuracy (e.g., human
transcriptions of speech, utterances segmented by
dialogue move). However, in a real-world agent
deployment, preprocessing of data that would be
fed into the automated system will instead be han-
dled by off-the-shelf software. Current practice in
AI assumes the existence of suitable datasets that
contain examples of the information an automated
system is intended to extract. The task of develop-
ing the AI model entails solving for the function
that best maps from the input samples to the de-
sired outputs. If these datasets do not already exist,
then the information that is to be learned must be
annotated by humans.

Consider the scenario we focus on in this paper:
a group collaborating to solve a problem involving
the shared manipulation of physical objects. Multi-
ple modalities are implicated in such a task—group
members speak to each other, but also point or ges-
ture, use body language, and manipulate objects to
communicate meaning and intent. Specs intended
for annotating collaborative problem solving (CPS)
skills on display are intended to be used at the ut-
terance level, and assume that the utterance has
been segmented and transcribed by humans (“ora-
cles”). There are many frameworks for modeling
CPS that have been developed by researchers in
the learning sciences (e.g., Roschelle and Teasley
(1995); Cukurova et al. (2018); Andrews-Todd and
Forsyth (2020); Sun et al. (2020)) and this literature
stresses the multimodal nature of CPS (Dillenbourg
and Traum, 2006). For example, the occurrence
of an interruption or the content of cross-talk may
not be immediately evident from the audio signal
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alone, but watching the speakers interact may make
it clear who is speaking when or what is said. High-
quality annotation of oracle utterances of a mul-
timodal task like CPS therefore relies on annota-
tors attending to the multiple modalities implicated
while making their decisions. If the annotations are
performed without this information, or with this
information scrambled somehow, we should expect
this to affect the quality of the annotation. The
question is, how much?

The development of such annotation schemes
is typically conducted separately from the rapid
preprocessing and scaling that AI practitioners are
likely to encounter when they use such annotated
data for model training. There may be little that AI
practitioners can ask of spec developers given the
risk involved with the development of an annotation
spec (one can imagine the truly unpleasant experi-
ence of developing an annotation spec and finding,
after innumerable modeling and annotation cycles,
that meaning captured in the spec is not linked to
the expected meaningful outcomes). Further, spec
developers may (arguably rightly) say that they
have no expectation that their spec will be used
to train AI models, and that the problems that un-
fold should be solved by AI developers themselves.
These are quite reasonable arguments—and unless
the annotation spec is being explicitly developed
for AI systems, annotators are unlikely to change
(we strongly encourage annotations developed for
AI to think deeply about these problems—but such
thoughts are outside of the scope of this particular
paper). Nonetheless, AI development relies on in-
teroperable annotated data, and as AI practitioners
ourselves, we conclude that AI practitioners must
think deeply about traditional annotation schemes
and how we can best accommodate them.

In this paper, the annotation scheme we use is the
one developed by Sun et al. (2020) but the problem
we address is independent of any particular spec.
Namely, when an annotation spec designed for one
utterance segmentation method is applied to utter-
ances automatically segmented using a different
method, the information retrieved is different from
what the original spec intended to encode.

We annotate utterances for CPS using expert
annotators, and we also have expert annotators la-
bel, as best they can, automatically-segmented ut-
terances. We discuss common strategies to trans-
fer oracle annotations to real-world annotations.
We underscore, exactly, how disconnected the or-

acle utterance labels may be from the labels on
automatically-segmented utterances. Finally, we
discuss how, given even just two automatic ut-
terance segmentation methods, achieving a gold-
standard annotating become quickly intractable if
the specification itself does not contain strategies
for accommodating suboptimal preprocessing.

2 Related Work
The gap between oracle data and real-world data
has been identified previously (Blanchard et al.,
2016). Other works have pointed out the need to
move away from oracle transcriptions in pursuit of
AI applications for real-world use cases (Morbini
et al., 2013; Blanchard et al., 2018). The use of
automatic segmentation of speech for modeling
tasks is becoming increasingly widespread (Brad-
ford et al., 2022a,b; Castillon et al., 2022).

Modeling in general has become more aware
of the needs of real-world systems. For example,
methods for automatically detecting mind wander-
ing have moved from balanced datasets to heavily
imbalanced datasets in acknowledgement of the
need for such models to operate in the context of
real-world distributions (Kuvar et al., 2022).

What is distinct with this work is that here we fo-
cus our analysis on the annotation implications,
rather than on attempts to fix issues that arise
through machine learning directly. For example,
Blanchard et al. (2018) refused to use human tran-
scriptions in a multimodal sentiment challenge be-
cause such transcripts were not true to real-world
contexts; however, they did not comment on how
the labeling of sentiment might change were those
annotations done on automatically extracted data.

Here, we explicitly focus on that challenge. We
explore the implications of segmentation and tran-
scription methods when annotating CPS for groups.
CPS is a critical skill used in many areas of life
(Graesser et al., 2018), and AI agents for group
settings will need some way of representing group
state. Work has been done to model CPS at the
utterance level (Stewart et al., 2021; Bradford et al.,
2023). The framework defined by Sun et al. (2020)
captures CPS at three levels and identifies specific
actions that indicate different types of collaborative
actions and their impact on group state. In particu-
lar, we hope our efforts here facilitate consistency
across future CPS modeling efforts and meaning-
fully contribute to the CPS framework defined by
Sun et al. (2020), and in general, we hope to prompt
thought about annotation spec design and strategy
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in the face of potential uses involving automated
preprocessing.

3 Dataset
Our dataset consists of audiovisual recordings of 10
triads performing a shared collaborative task which
was developed to promote rich collaboration via
multimodal communication. The task is performed
by triads at a round table in a laboratory setting.
The equipment on the table includes 6 blocks (of
varying weight, size, and color), a balance scale,
a worksheet demarcated with spaces to place the
blocks (indicated with weights in grams), and a
laptop on which participants submit their responses
to survey questions throughout the task.

Participants are first given a balance scale to de-
termine the weights of five of the colored wooden
blocks. They are told that one block weighs 10
grams, but that they have to determine the weights
of the rest of the blocks using the balance scale.1

As the weight of each block is determined, partic-
ipants place it on the worksheet next to its corre-
sponding weight. The participants also must submit
their final answer for the weight of each block to
the survey form on the laptop. Once the weights of
all five blocks are solved for, participants are given
the sixth block and must identifying its weight with-
out using the scale (i.e., participants have to deduce
the weight based on the pattern observed in the ini-
tial block weights). Finally, participants are asked
to determine the weight of another mystery block
that is not physically present and explain how they
arrived at the answer. The participants once again
submit their answer as a group in the online survey
and are given two chances (with a hint after the
first guess if it is incorrect).

The total dataset consists of 10 videos, contain-
ing 3 participants each, for a total of 170 minutes
of video. Participants ranged from 19–35 years old,
recruited from a university population. 20% were
female while 80% were male. 60% were Caucasian
non-Hispanic, 10% were Hispanic/Latino, and 30%
were Asian. All volunteers spoke English through
the task but spoke a variety of native languages.

Although this data was collected in a lab, the
complexity of human-human interaction is appro-
priately captured in these recordings — participants
talk over each other, they speak with disfluencies,
they interrupt each other, they engage in long run-
on sentences punctuated by only a single em-dash,

1The pattern to the weights of the blocks is based on the
Fibonacci sequence.

and they pause in the middle of sentences before
resuming their thought. All of these complications
make utterance segmentation quite difficult, and of-
ten these ambiguities are only resolved by human
annotators with recourse to the visual modality.

4 Preprocessing
4.1 Automatic Segmentation of Speech
Automatic Speech Recognition, or ASR, ap-
proaches, must necessarily determine the bound-
aries of utterances. Each ASR model segments
audio in unique ways. This can be either through
waiting for any pause in the audio, or waiting until
a break of a certain length is encountered. ASR
allows for AI to break apart the speech for the
listener to in principle break down the amount of
empty noise within audio recordings, and differ-
ent systems using the same ASR component are
interoperable on this level.

4.2 Whisper
Whisper (Radford et al., 2022) is a speech recogni-
tion system developed by OpenAI that was trained
on 680,000 hours of audio to accurately determine
and transcribe speech across many different lan-
guages. Whisper takes audio files and will listen
to the first 30 seconds, or less depending on the
length of the file, to determine the language of the
speech. It will then segment the audio into full sec-
ond segments, and will rarely cut off before a single
or multiple full seconds have passed. Whisper is
also optimized to segment audio into full sentences
instead of simply looking for a break in the audio.
In principle, this allows for transcription of long
audio segments (e.g., lectures or speeches) with a
fidelity closer to human transcription.

4.3 Google ASR
Google ASR (Velikovich et al., 2018) is a speech
recognition system released by Google, Inc.
Google ASR listens for what it assumes to be hu-
man speech and attempts to transcribe what it hears.
Google also will attempt to segment audio wher-
ever it finds a break in speech. If a word is not
picked up by the microphone correctly or is slightly
inaudible, then Google will cut off the word and
move on with the next segmentation. This could
mean cutting off a thought mid-sentence, or remov-
ing words entirely from what someone is saying.

5 Annotation Methodology
Videos were first hand-transcribed to ensure the
accuracy of the transcriptions. These hand, or ora-
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cle transcriptions, were then measured against the
transcriptions from both Google ASR and Whisper.

5.1 Annotation Procedure
When annotating the oracle files, speech start and
end times would be marked down to the hundredth
of a second. Each audio file would then be seg-
mented into proper sentences or thoughts if the sen-
tences were not completed. If people within the au-
dio recording spoke over each other, each person’s
sentence was recorded as closely as possible, each
with its own beginning and ending timestamp. This
was done for each audio file from the 10 separate
groups. Each segmented utterance was then coded
by expert annotators using an updated version of
the framework developed by Sun et al. (2020). The
annotators initially annotated all 10 videos sepa-
rately, to get familiar with the framework, then
were trained by experts in the framework on one
video, while discussing how each CPS indicator
would align with the weights task. The experts
then annotated another video with a Fleiss’ kappa
score of 0.62 (agreement over 96% of the number
of subjects to be coded).

6 Transferring Annotations from Oracle
to Automatically-Segmented Utterances

Once oracle utterances are labeled, we map those
labels to the automatically segmented utterances.
The approach for that mapping depends on the task
at hand and the type of labels we see. In the case of
labeling collaborative problem solving (CPS), the
multiclass binary labels can be inherited from the
oracle segments to the automatic segments using
overlap in timestamps. This is because the labels
all still exist during that period. However, we lose
label accuracy when we lose the exact timestamp
where the label occurred. Another option is to only
apply labels that occur in every oracle included in
the segment; however, with CPS, this would rarely
occur and we would lose most of our labels.

7 Effects of Oracle vs. Automatic
Utterance Segmentation

Count of utterances Table 1 shows the differ-
ent number of utterances segmented out by each
method for each group.

Almost uniformly, Whisper segments more in-
dividual utterances than occur in the oracle tran-
scripts, due to breaking up single oracle utterances
into multiples (exceptions are groups 7 and 10).
Across all groups, Google segmentation creates
fewer (sometimes far fewer) utterances than exist

Group 1 2 3 4 5 6 7 8 9 10

Whisper 297 201 391 293 406 278 311 354 136 346

Google 139 151 254 128 146 153 380 235 90 146

Oracle 229 207 337 195 237 227 590 338 134 379

Table 1: # of utterances per group determined by each
segmentation method. Totals: Whisper - 3,013 utter-
ances; Google - 1,822 utterances; Oracle - 2,873.

in the oracle, due to dropping utterances entirely
or mistaking speech for background noise. Google
ASR does perform very well removing empty space
from audio files compared to Whisper.

Intrinsic ASR metrics Evaluation of the auto-
matic speech transcription itself after automatic
segmentation can be used as a proxy for informa-
tion lost in part due to the segmentation process.
Since error rates must be calculated with respect
to the same set of utterances in order to be directly
comparable, we focused this analysis on the tran-
scription of Google-segmented utterances. Given
an oracle transcript with assumed insertion, dele-
tion, substitution, and total word error rates of 0, we
observe that while overall word error rate (WER) is
similar using Google and Whisper (Google: 0.573;
Whisper: 0.542), Google has higher rates of substi-
tutions (words in the oracle swapped for a different
word) and deletions (words in the oracle removed
by automated transcription), while Whisper has a
significantly higher rate of insertions (words in the
automated transcript not in the oracle). See Table 2.

We investigated why Whisper had far more in-
sertions and found it was linked to Google utter-
ances that did not contain any speech. Occasionally,
when listening to the audio files Google will hear
empty noise as speech and create a segment for
it. When feeding Whisper an audio segment con-
taining only background noise, it would generate
its own sentence to fill the void, and would occa-
sionally choose a random language to generate the
utterance in as well. This does not pose an issue
in most situations, since the main purpose of ASR
and transcription software would be to transcribe
and recognize actual speech in audio files. Thus,
the WER of Whisper seems to be partially be a
product of our decision to use Google utterances.
An appropriate method to filter out such segments,
or, the use of Whisper’s own segmentation would
likely substantially lower the WER of whisper.

We also noticed Whisper would insert words
when there was no speech recognized in the audio
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Google Whisper

Group WER Sub. rate Del. rate Ins. rate WER Sub. rate Del. rate Ins. rate

1 0.571 0.252 0.113 0.206 0.534 0.193 0.045 0.296

2 0.459 0.211 0.128 0.120 0.416 0.177 0.040 0.200

3 0.539 0.236 0.117 0.186 0.527 0.177 0.047 0.303

4 0.529 0.267 0.154 0.170 0.572 0.201 0.040 0.332

5 0.631 0.262 0.173 0.195 0.581 0.175 0.060 0.346

6 0.581 0.252 0.077 0.252 0.525 0.191 0.041 0.293

7 0.610 0.260 0.155 0.196 0.650 0.209 0.064 0.377

8 0.532 0.259 0.137 0.137 0.486 0.200 0.048 0.238

9 0.571 0.274 0.180 0.118 0.514 0.229 0.084 0.202

10 0.645 0.306 0.087 0.252 0.612 0.202 0.054 0.356

Average 0.573 0.259 0.132 0.183 0.542 0.195 0.052 0.294

Table 2: WER, substitution rate, deletion rate, and insertion rate by group.

clip. Typically words that had been previously
transcribed would be repeated during void sections,
and only one word or phrase would be repeated.
This word or phrase would also be repeated for
each second during the break, which created a large
amount of insertions and threw off some data while
testing. Finally, we found Google ASR would also
hear words incorrectly and misinterpret what the
speaker was saying, replacing the intended words
with homonyms or phonological near-neighbors.

Difference in resulting annotation labels The
difference in labels when going from automatic
segments to oracle segments can be significant. A
particular case is the annotation of interruptions,
one of the CPS indicators in question. Relying on
the automatic segments only may split or lump ut-
terances separated by an interruption, which may
cause annotators to miss the interruption entirely
(because they are only coding utterance by auto-
matically segmented utterance), or lumping an “in-
terruption” annotation with annotations of other
meaningful indicators in a single, multi-speaker
“utterance.” For tasks like this, each utterance is
important as it can be the one where the correct so-
lution has been proposed. Interestingly, Bradford
et al. (2023) found that prosodic features were es-
sential for identifying interruptions when using au-
tomatically segmented utterances, indicating there
may be times automatic segmentation methods cap-
ture information not present in oracle contexts.

One example of label difference can be seen in
the utterances shown in Fig. 1, with the different
segmentations provided by oracle and automatic
segmentation. The utterances “Weren’t those both

Figure 1: Overlap between oracle (top), Google (mid-
dle), and Whisper (bottom) segments. Right column
shows the CPS indicator annotated for each utterance.

thirty or no only one of them twenty and thirty”,
“No this is twenty you’re off the team” and “Twenty
and then” (which were each spoken by a different
person), are combined into one segment by Google
voice activity detection (VAD). The first utterance
should have the label confirms understanding, the
second utterance should have the labels interrupts
and initiates off-topic conversation, and the third ut-
terance should have no label. However, when these
are combined, all of the labels are inherited and the
distinction between the different content supplied
by each utterance is lost. Whisper segments split
up continuous utterances by a single person, and
thus person 2’s interrupts and initiates off-topic
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conversation indicators are applied to two separate
segments. Both of these cases can cause confusion
in downstream semantic classification tasks like
classifying CPS indicators from linguistic features,
as in Bradford et al. (2023), if the target label for
training is not clear.

In some instances, the participant pauses mid-
sentence and the true utterance gets split into two,
but for lack of context only one gets assigned a CPS
indicator. For example, a participant says “Think it
just feels like it’s,” pauses for 0.3 seconds, and says,
“A lot heavier because it’s denser and like just car-
rying that.”, the whole sentence should get coded
as discussing results, but since the automatic seg-
mentation splits the sentence into two utterances,
only the second utterance would be coded as such.

8 Discussion, Recommendations, and
Conclusion

One important point to emphasize is the manual
cost of annotating for collaborative problem solv-
ing (CPS). CPS is a difficult annotation scheme
to master (training can last as long as 6 months,
depending on how much time a coder is putting
toward learning). Although this paper largely fo-
cuses on the automated processes of segmenting
audio, annotations themselves require complete
multimodal context including viewing of video,
listening to intonation, and the inclusion of tempo-
ral context. If these annotations, performed with
access to multimodal information, are subsequently
applied to automatically-segmented audio, then the
information lost can be expected to impact down-
stream tasks trained or evaluated over the annotated
data, thus potentially wasting the time taken to train
annotators properly.

While automatic segmentation of utterances for
various semantic annotation tasks certainly saves
time and annotator effort, it comes at a potentially
significant cost to the quality of annotations for
downstream tasks. Particularly, automatic segmen-
tation and transcription methods certainly segment
utterances differently from a human oracle tran-
scriber, and different ASR methods perform seg-
mentation drastically differently with profoundly
divergent results. This may result in utterances
being missed by the automatic segmenter or in-
vented out of whole cloth, which would cause an-
notators annotating at the automatically-segmented
utterance level to likewise omit annotations, or to
encounter “hallucinated” segments that are either
un-annotatable or, if annotated, introduce seman-

tic noise into the data. Beyond the obvious, we
have shown that annotating at the oracle utterance
level but then transferring those utterances to the
automatically-segmented utterance level may ob-
scure the semantic information originally captured
at the oracle utterance level. Even taking the more
labor-intensive step of generating oracle transcrip-
tions before annotating is less useful if annotation
is not performed at the same level. This backs up
previous conclusions in semantic annotation over
text-only corpora, such as the need for annotators
to come to consensus on both spans and annota-
tions (Pustejovsky and Stubbs, 2012), and shows
that they also apply to multimodal use cases.

However, as multimodal AI develops and be-
comes more integrated with everyday life, infer-
ence will necessarily be performed over automati-
cally segmented and transcribed inputs. Therefore,
future models will benefit from annotation specs
themselves that are task-aware and can take into
account potential noise introduced by imperfect au-
tomated transcription and adjust accordingly. For
instance, if multiple labels are not allowed, should
certain labels “dominate” others in case multiple
labels are squeezed into the same segment? Fu-
ture semantic annotation schemes, specifications,
and languages, particularly over multimodal data,
will need to take into account these requirements
to more effectively use automated techniques like
ASR as part of larger annotation and inference
pipelines.
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