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Abstract

The number of scientific publications in the
biomedical domain is continuously increasing
with time. An efficient system for indexing
these publications is required to make the infor-
mation accessible according to the user’s infor-
mation needs. Task 10a of the BioASQ chal-
lenge aims to classify PubMed articles accord-
ing to the MeSH ontology so that new publica-
tions can be grouped with similar preexisting
publications in the field without the assistance
of time-consuming and costly annotations by
human annotators. In this work, we use Graph
Neural Network (GNN) in the link prediction
setting to exploit potential graph-structured in-
formation present in the dataset which could
otherwise be neglected by transformer-based
models. Additionally, we provide error analysis
and a plausible reason for the substandard per-
formance achieved by GNN. The source code
is available on the GitHub.!

1 Introduction

Many scientific publications are available on the
internet, and the number of publications is contin-
vously increasing with time. The digital library
PubMed? currently consists of 33 million citations
and is based on the medical database MEDLINE.
The articles available on PubMed are indexed with
concepts that come from the Medical Subject Head-
ings (MeSH) ontology. The human and financial
effort needed to keep up with the rapid pace of de-
velopment is steadily increasing (You et al., 2020).
There was a 5% increase in the number of citations
in 2018 for MEDLINE. Moreover, these citations
are manually indexed with MeSH headings, which
cost $9.4 per citation on average.

A large-scale biomedical semantic indexing task
(10a) in the BioASQ? challenge is designed to
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help develop systems that can automatically in-
dex PubMed publications using headings from the
MeSH ontology®*. The fact that a publication can
be assigned more than one MeSH heading makes
it a multi-label classification task. Additionally,
there are approximately 30k MeSH headings which
makes it an extreme multi-label classification task.

GNN has been shown to achieve unprecedented
performance on the benchmarks of link prediction
and recommender systems (Ying et al.). A con-
siderable amount of real-world datasets contains
latent graph-structured information that could be
effectively exploited to improve performance by
modeling the task as a graph-related task. The mod-
els proposed in previous versions of the BioASQ
challenge do not formulate the problem as GNN
modeling, which can curtail the performance gain
due to the omission of crucial graph-structured in-
formation present in the dataset.

Task 10a of the BioASQ challenge is to assign
MeSH headings to PubMed articles based on the
title and abstract of each article. In this work, we
work on the following points to solve the problem.

* We formulate the problem as GNN link pre-
diction task to improve the performance by
utilizing the information present in the graph
structure.

* We provide error analysis and highlight limi-
tations of the GNN model in order to under-
stand the potential reasons for its inability to
perform better than the baseline.

2 Literature Review

The methods used for the task in the previous ver-
sions of the BioASQ challenge can be classified
into three categories (You et al., 2020). The first
category named Binary relevance consists of mod-
els such as MetalLabeler (Tsoumakas et al., 2013)
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which uses linear SVMs in a one vs all multi-label
classification setting to select the most probable
MeSH headings. The second category consists
of models like DeepMesh (Peng et al., 2016) and
MeSH Now (Mao and Lu, 2017) which rely on
the widely used Information Retrieval technique
named Learning to Rank in order to obtain the
most relevant MeSH headings. The final category
is based on Deep Learning e.g. MeSHProbeNet
(Xun et al., 2019) and AttentionMeSH (Jin et al.,
2018) which uses RNN and attention mechanism
to get the most probable MeSH headings.

Most teams in the 2021 version of the BioASQ
challenge relied on contextualized language mod-
els, such as BERT (Devlin et al., 2019). The top
performing model BERTMeSH You et al. (2020)
also uses BERT as a foundational model.

3 Methodolgy

Our proposed GNN model is implemented in the
link prediction setting consisting of two modules,
namely, Document Embedding Module and Link
Prediction Module.

3.1 Document Embedding Module

We use Sentence-BERT Reimers and Gurevych
(2019) to create embedding for the abstract of an
article (article embedding). Sentence-BERT is used
to make embeddings for the MeSH headings (head-
ing embedding) also by using the “Scope Note”.
An example of the MeSH heading named Adult is
shown in Figure 1. Both article and heading em-
beddings can then be used to initialize the GNN
model nodes in the Link Prediction Module.

Adult MesH Descriptor Data 2022

Detalls  Qualifiers MeSH Tree Structures  Concepts

MeSH Heading
Tree Number(s)
Unique ID

RDF Unique Identifier
Annotation

Scope Note

Adult

M01.060.116

D000328

http:/fid.nim.nih.govimesh/D000328

almost always check tag: NIM no qualifiers; see Manual Chapter 9
A person having attained full growth or maturity. Adults are of 19 through 44 years of age.
available

Adults

66

6

1966/01/01

1999/01/01

2015/06/23

Entry Term(s)
Public MeSH Note
History Note

Date Established
Date of Entry
Revision Date

Figure 1: Metadata for heading Adult

3.2 Link Prediction Module

Each article is annotated with MeSH headings by
the human annotators. The task is to build a model
that can predict MeSH headings for new unanno-
tated articles. We formulate the problem as a link
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prediction between the article and heading nodes
in a graph. A GNN model will be used in an in-
ductive setting Velickovi€ et al. (2018) to predict
existence/non-existence of links between articles
and MeSH headings.

The proposed GNN model consists of an encoder
and a decoder. We use SAGEConv layer of the
GraphSAGE Hamilton et al. (2017) to create our
model. The encoder takes a graph which has two
types of nodes, namely, article nodes and the head-
ing nodes initialized by the corresponding embed-
ding obtained from Document Embedding Module
as described in the previous section. In inductive
learning, we need to have three distinct graphs for
training, validation, and test sets as described in the
section 3.3. The edges in the graph are split into
message-passing and supervision edges. Message-
passing edges are used to update the node’s embed-
ding using neighborhood aggregation, whereas the
existence/non-existence of link should be predicted
for supervision edges. The output of the encoder is
a graph with new low-dimensional embeddings ob-
tained by using neighborhood aggregation based on
message-passing edges. The updated node embed-
ding , for a node i is obtained using neighborhood
aggregation as follows

ey

Where W, and W, are trainable parameters, z;
the current node embedding for node i and N (i)
are neighbors of node 1.

In order to determine if there is a link between
two nodes z; and x; as specified by the supervision
edges, the decoder uses the inner product between
the node’s output embeddings followed by a sig-
moid activation function.
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The result of sigmoid indicates a presence or
absence of a link between two nodes of the super-
vision edges.

3.3 Graphs Construction

We have described the training, validation and test
graphs in Table 1. All graphs have the same number
of headings nodes, but they differ in the number of
article nodes. An edge between the article and the
heading node can be made if the article is annotated
with a particular MeSH heading. The edges which
are present in the graphs are referred to as positive



Graph Edge Type Description
. Message-passing | 60% of positive train edges
Train — — - -
Supervision 40% of positive train edges + negative edges
- Message-passing | “Borrowed graph” edges
Validation Supervision All possible validation edges
Test Message-passing | “Borrowed graph” edges
) Supervision All possible test edges

Table 1: Description of edge types for data splits.

edges. We can split the positive edges into message-
passing and supervision edges according to some
ratio, e.g. 60/40. We split the positive edges for
train graph. However, the test set will not have any
edges which could be split, as there are no links
between articles and MeSH headings. The lack of
message-passing edges is problematic because the
GNN model needs them for neighborhood aggre-
gation. This could be handled by making edges
between all articles and MeSH headings and using
them as message-passing and supervision edges.
However, the fact that the message-passing edges
should be the correct edges and not randomly cre-
ated will result in a nonrobust model. Therefore,
we extract a sub-graph from the train graph named
“borrowed graph” by randomly selecting some ar-
ticles nodes in the train graph. The number of
articles nodes to be extracted is treated like a hyper-
parameter (40k in our case). As the heading nodes
in all the graphs are similar, and we know the cor-
rect edges between article and heading nodes in
“borrowed graph”, we can add it to the test graph so
that we have correct edges from “borrowed graph”
which could be used as message-passing edges.

In the test graph, the supervision edges are all
possible edges between the article nodes of test set
and heading nodes. In addition to positive edges
in the train graph, supervision edges also contain
randomly sampled negative edges, i.e. edges which
are not present in the graph. They are included in
order to improve the ability of the model in terms
of preventing false positive predictions.

4 Dataset

The dataset provided by the organizers of the 2022
version of the BioASQ challenge for task 10a is
composed of articles obtained from PubMed. The
training dataset consists of 16,218,838 articles and
29,681 distinct MeSH headings. MeSH headings
are the concepts that are part of the MeSH ontology,
which makes it easy to index and search medical
and health-related information. Each article is as-
signed 12.68 MeSH headings on average. Each
human-annotated MeSH heading has a unique ID
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assigned to it, which needs to be predicted for each
article. An example of the MeSH heading named
Adult is shown in Figure 1 where the heading is
described by “Scope Note”. The test set provided
by the challenge organizers for the first week con-
taining 9659 samples is used for testing.

Glucocorticoids wmesH Descriptor Data 2022

Details Qualifiers MeSH Tree Structures Concepts

Hormones, Hormone Substitutes, and Hormone Antagonists [D06]
Hormones [D06.472]
Adrenal Cortex Hormones [D06.472.040]
17-Ketosteroids [D06.472.040.502] ©
Glucocorticoids [D06.472.040.543]
Hydroxycorticosteroids [D06.472.040.585] ©

Chemical Actions and Uses [D27]
Pharmacologic Actions [D27.505]
Physiological Effects of Drugs [D27.505.696]
Hormones, Hormone Substitutes, and Hormone Antagonists [D27.505.696.399]
Hormones [D27.505.696.399.472]

Anabolic Agents [D27.505.696.399.472.080]
Androgens [D27.505.696.399.472.161]
Cannabinoid Receptor Modulators [D27.505.696.399.472.188] ©
Estrogens [D27.505.696.399.472.277] ©
Glucocorticoids [D27.505.696.399.472.488]
Incretins [D27.505.696.399.472.580]
Mineralocorticoids [D27.505.696.399.472.673]
Progestins [D27.505.696.399.472.858]

Figure 2: MeSH hierarchy for Glucocorticoids

MeSH headings are categorized into 16 cate-
gories, which are further divided into subcategories.
Each subcategory has a hierarchical depth of up to
13 where headings are organized from general to
specific>. One important property of the MeSH
hierarchy is that it is a graph instead of a tree. In
a tree, each node can have only one parent, which
does not hold true in the case of the MeSH hi-
erarchy. Figure 2 shows that the MeSH heading
named Glucocorticoids has 2 parent nodes, namely
Adrenal Cortex Hormones and Hormones.

S Experimental Setup

Taking into consideration the large size of the
dataset, 70k articles are randomly sampled from the
original training set to be used as the training set.
Additionally, the validation set of 10k samples is
sampled from the original training set. The random
sampling of a small subset of articles could lead to
a training dataset that has a considerably different
distribution than the original dataset, resulting in
non-generalizable results. We tried to mitigate that
by sampling the training articles using the MeSH
ontology, which is described further in Appendix
A. However, there was no improvement observed
over the random sampling. Therefore, we report
results on randomly sampled training data to keep
the method intelligible.

SMeSH Tree Structures
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Pmicro Rmicro Flmicro
Val 0.584 0.397 0.473
BERTMeSH 1ost 0628 0399 0.488

Table 2: Results obtained for BERTMeSH

Loss Function Train Valid Test

1018551(T'N)  31449(FP)

45900(FN) 244452(TP)} {

. ~ . 2035800 74610 2033029 77574
Binary Cross Entropy 204 1086 155 942

1041248 8752 2089116 21294 2081154 29449
Focal Loss

116308 174044 551 739 392 705

Table 3: Results reported as confusion matrix for GNN

The best-performing model of the 2021 ver-
sion of BioASQ challenge is used as a base-
line model. The model is trained for 5 epochs
with an initial learning rate of le-5 which is al-
tered using the learning rate scheduling function
get_cosine_schedule_with_warmup from trans-
formers library (Wolf et al., 2020).

Unlike BERTMeSH, the results on validation
and test datasets for GNN are based on only the
first 100 articles of both datasets, for computational
resource reasons (test graphs for the remaining ar-
ticles can be made for evaluation as explained in
section 3.3). The architecture of GNN is composed
of 2 SAGEConv layers where the input, hidden and
output dimensions are 768, 256, 128 respectively.
GNN is trained with a learning rate of 0.005 and
Adam optimizer Kingma and Ba (2015) with the de-
fault hyperparameters. Two models are trained us-
ing different loss functions, namely, Binary Cross
Entropy and Focal Loss. The hyperparameters used
for Focal Loss are @ = 0.2 and v = 0.2.

6 Results

Table 2 shows the results obtained for BERTMEsH
on micro-averaged precision, recall, and f1 score.
The model was able to score 0.488 f1 score. The
results for GNN are reported as a confusion matrix
in Table 3 because the fl score is very low and
is, therefore, not helpful in understanding the re-
sults. When Binary Cross Entropy is used as a loss
criterion, the number of FN predictions (155) is
considerably low as desired. However, the number
of FP predictions is large. In the case of Focal loss,
the loss criterion helps to reduce the number of
FP predictions from 77574 to 29449 for the test
dataset. However, the number of FN predictions
increased from 155 to 392 accordingly.

78

7 Error Analysis

The results obtained using the focal loss indicate
that the number of False Positive predictions can
be improved using methods that give more impor-
tance to hard negatives. The negative edges which
are difficult to discern from the positive edges are
called hard negatives. Therefore, we assumed that
the creation of hard negative samples improves the
FP results and used Dynamic Random Sampling
Zhang et al. (2013) and mixup Zhang et al. (2018)
to add hard negatives during the training process
instead of randomly sampling negative edges.

O Article embeddings
® Hard negatives

@ Heading embeddings

Figure 3: Hard negatives created using Dynamic nega-
tive sampling

For Dynamic Random Sampling, we start adding
the hard negatives after second epoch. For each
article, 5 random negatives and up to 10 hard nega-
tives are added. Negative edges for which the dot
product is too high (FP) are ignored in order to
avoid the hardest negatives. To this end, negative
edges which have dot product between 0.6 and 0.95
are considered hard negatives. The 2-dimensional
representation of the embeddings obtained at the
output layer of GNN model is shown in Figure 3.
It can be observed that the hard negatives are closer
to article embeddings in vector space as compared
to the embeddings of remaining headings. To em-
pirically verify our observation, we calculated the
cosine similarity between the mean of article em-
beddings and the mean of hard negatives, which
turns out to be -0.14. Similarly, a cosine similarity
of -0.75 was obtained between the mean of article
embeddings and heading embeddings. Although
the model correctly selects the hard negatives as
indicated by cosine similarity, the results obtained
on the evaluation metrics do not surpass the results
obtained using Focal Loss only.

The second approach mixup uses a linear inter-
polation of the positive and negative samples to



create hard negatives. The following equation is
used to linearly interpolate article embedding e,
and heading embedding e,, to create hard negative

€p.

en =Aep+ (1= Nep 3)

We set A equal to 0.9 for the experimentation.
This approach also yields no improvements over
the results obtained using Focal Loss only.

8 GNN Limitations

Although GNN has improved performance on
many tasks which benefit from graph-structured
data, the architecture of GNN has some inherent
limitations. One of the problems that Neural Net-
works has is that the performance is decreased as
the number of layers is increased. The vanishing
gradient coerces us to limit the number of layers,
resulting in a shallow network that is not able to
generalize. In addition to the vanishing gradient
problem, the GNN model is limited to a small num-
ber of layers due to over-smoothing. Li et al. (2018)
have shown that the convolution operation of GNN
is the source of its predictive power, but is also the
cause of its limitation. They proved that the con-
volution operation of GNN is a kind of Laplacian
smoothing, which helps to learn new embedding
from the neighboring nodes. However, the repeated
application of Laplacian smoothing results in the
features of all nodes being identical, which deteri-
orates the predictive power of the model. As the
number of layers increased, the nodes in the graph
increasingly have similar neighbors to update their
embeddings, resulting in identical nodes.

The architecture of GNN has another limitation,
named over-squashing. GNN is less effective on
tasks that benefit from long-distance interactions.
Equation 1 shows a node update using neighbor-
hood aggregation for a particular layer. It can be
seen that as the number of layers increases, the
receptive field also grows exponentially. There-
fore, the need for the model to encode information
from long-distance neighbors creates a bottleneck
because the model tries to cram too much informa-
tion into a single vector. Alon and Yahav (2021)
has shown that the information from exponentially
growing k-hop neighbors for a k-layer GNN can
not be crammed into a single vector representa-
tion, which results in low performance for tasks
that require long-distance information. Figure 4
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illustrates the bottleneck while updating a node’s
feature representation based on its 3-hop neighbors.

Bottleneck

Figure 4: GNN Bottleneck (adapted from Alon and Ya-
hav (2021)). Dots represent arbitrary number of nodes.

Additionally, the degree distribution of our bi-
partite graph follows a power law and is potentially
scale-free graph (Broido and Clauset, 2019). This
also forces us to cram a lot of information into
high-degree nodes.

Over-smoothing and negative sampling does not
seem to be the main cause of low performance in
our case. The potential reason for the superior per-
formance of transformer-based models than GNN
is the mitigation of the over-squashing problem.
BERTMeSH avoids over-squashing by making a
unique representation for each label using Multi-
label attention instead of making a single vector
representation as described in the paper. This al-
lows the model to avoid over-squashing, which
leads to improved performance.

9 Conclusion

Taking into consideration, the need for an efficient
system to automatically classify MeSH headings,
we implemented GNN in the link prediction setting.
The use of advanced negative sampling strategies
did not yield improved results. We highlighted the
limitations of GNN and hypothesized that GNN is
not able to generalize due to the over-squashing.
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A Data Preprocessing

Taking into consideration the large size of the
dataset, we randomly filtered articles to train the
models efficiently. However, random sampling
could result in a dataset subset that has a consider-
ably different distribution than the original dataset.
Therefore, we also used the hierarchical structure
of MeSH ontology to reduce the number of training
articles.

Groups of articles are made by putting the arti-
cles into 6749 groups, where 6749 is the number
of MeSH headings at depth 3 of the MeSH ontol-
ogy. Some of the groups along with the number
of articles they contain are shown in the table 4.
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Groups No. of articles
Adult 161367
Adolescent_Adult 43519
Treatment Outcome 19234
Adolescent_Adult_Child 17284

Table 4: Groups based on MeSH ontology

As there are numerous shared MeSH headings be-
tween articles, the groups overlap with each other.
The groups which are made by the combination of
two or more MeSH headings have an underscore
in their name, e.g. “Adolescent_Adult” is a group
that contains articles that are labeled with MeSH
labels “Adolescent” and “Adult”. The number of
articles in the groups follows the distribution of
Zipf’s law, where a lot of groups have less than 10
articles. Therefore, different percentages of articles
are sampled from different groups that are based
on the number of articles they contain. For the
groups containing articles between 10 and 200. 0.1
percent of the articles are filtered from each group.
If a group contains more than 200 articles, then
0.05 percent of the articles are filtered. Finally, 50k
groups are randomly sampled from the groups that
have less than 10 articles. The number of filtered
articles obtained after applying the previously de-
scribed filtering is 400k articles. Finally, we used
the training set to train the model as explained in
Section 5.
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