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Abstract

Low-quality data can cause downstream prob-
lems in high-stakes applications. Data-centric
approach emphasizes on improving dataset
quality to enhance model performance. High-
quality datasets are needed for general-purpose
Large Language Models (LLMs) training, as
well as for domain-specific models, which
are usually small in size as it is costly to en-
gage a large number of domain experts for
their creation. Thus, it is vital to ensure
high-quality domain-specific training data. In
this paper, we propose a framework for en-
hancing the data quality of original datasets1.
We applied the proposed framework to four
biomedical datasets and showed relative im-
provement of up to 33%/40% for fine-tuning of
retrieval/reader models on the BioASQ dataset
when using back translation to enhance the orig-
inal dataset quality.

1 Introduction

Data-centric approach emphasizes the collection of
high-quality data as a centrally important step in the
model development (Jarrahi et al., 2022). While
model-centric approaches were more prominent
in the past, recently data-centric approaches are
also gaining importance (Xu et al., 2021; Liu et al.,
2021). This trend was especially emphasized since
2021 when Andrew Ng launched his campaign for
a more data-centric approach to AI by starting the
data-centric competition2, which encouraged par-
ticipants to increase accuracy by solely improving
the datasets while keeping the model fixed.

Large Language Models (LLMs), such as Gen-
erative Pre-trained Transformer 3 (GPT-3) (Floridi
and Chiriatti, 2020), generate text that is grammat-
ically correct, fluent, and informative. However,
there is little to no control over the data that were

1Code and dataset are available at
https://github.com/IvaBojic/framework

2https://https-deeplearning-ai.github.
io/data-centric-comp

used for model training. Consequently, LLMs are
prone to hallucinating and providing untruthful out-
puts (Evans et al., 2021). Ironically, this reflects
LLMs’ ability to be better at learning the training
distribution and consequently follow inverse scal-
ing law (Lin et al., 2021). And while some of the
recent research efforts are focused on providing
explanations of where the LLM’s outputs came
from (Menick et al., 2022), such research is in its
infancy.

In this work, we focus on language models with
a Transformer encoder architecture such as BERT
(Devlin et al., 2018), that extract relevant outputs
from a domain-specific evidence-based text corpus.
Deep neural networks trained on domain-specific
datasets, including those used in Natural Language
Processing (NLP), are most heavily dependent on
the quality of the training dataset, which is usually
small in size (Zarcone et al., 2021) as it is costly
to engage a large number of domain experts for an-
notation. It is thus important to create high-quality
training data for language models to perform bet-
ter. In this paper, we propose a data-centric frame-
work for Machine Reading Comprehension (MRC)
datasets that increases the original dataset quality
by both (i) keeping the size of the original dataset
fixed, and (ii) augmenting the original dataset by
adding new training samples.

MRC is a Natural Language Understanding
(NLU) task. Its goal is to answer questions based
on the information provided in a passage (Zhang
et al., 2020). Training datasets for MRC models
come in the form of triplets: passage (i.e., positive
context), question, and answer. Typically, the MRC
pipeline works in two phases, where a passage re-
triever is followed by a passage reader (Chen et al.,
2017). For a given question, the retriever first ex-
tracts a set of relevant passages from a knowledge
base (i.e., text corpus), and then the reader selects
an answer (e.g., text span) from one of the retrieved
passages (Zhu et al., 2021).
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2 Related Work

Data-centric approaches can be divided into (i) data
quality enhancement methods that keep the original
size of the dataset fixed (e.g., data filtering or label
consistency checking), and (ii) data augmentation
methods that increase the original dataset size (i.e.,
adding more training samples). Results from the lit-
erature on using data-centric approaches to improve
model performance in MRC are inconclusive.

Several studies have reported that data filtering
can lead to significant model improvements (Dou
et al., 2020; Sanyal et al., 2021; Mollá, 2022). How-
ever, this might not hold if data are filtered in a ran-
dom way (Firsanova, 2021). Additionally, while
increasing labelling consistency and excluding or
cleaning noisy data points were shown to improve
model performance on the BioASQ dataset (Yoon
et al., 2022), shortening answers in AASDQA led
to a decrease of F1-score by 4% (Firsanova, 2021).

Adaptation of data augmentation is still compara-
tively less explored in NLP (Feng et al., 2021), with
a body of work presenting positive results (Kaushik
et al., 2019; Khashabi et al., 2020; Qin et al., 2020;
Pappas et al., 2022) as well as papers showing little
or no improvements for the given task (Huang et al.,
2020; Chopard et al., 2021; Okimura et al., 2022).

To the best of our knowledge, this paper is the
first that proposes framework for data quality en-
hancement for improving domain-specific MRC
datasets by (i) keeping the original dataset size of
data the same and (ii) increasing the original dataset
size using augmentation methods. Our framework
includes methods for (i) a better selection of neg-
ative passages for retriever training, and (ii) re-
formulating questions using paraphrasing, word
substitution, and back translation.

Paraphrasing, word substitution, and back trans-
lation were previously used as data augmentation
methods in various NLP tasks (Liu and Hulden,
2021; Pappas et al., 2022; Ishii et al., 2022). How-
ever, those papers did not look at how each of these
methods enhanced the original dataset without in-
creasing its size. Keeping the size of the dataset
fixed is necessary in resources-constrained scenar-
ios, as the resources (e.g., time) needed for fine-
tuning are proportional to the size of training sets.
Moreover, previous studies did not present a cost-
benefit analysis of the resources needed to gener-
ate extended training sets and perform fine-tuning
processes in comparison with the performance in-
crease.

3 A Data-centric Framework for MRC

In our framework, we first generate new training
sets using four data quality enhancement methods.
We then fine-tune retrieval and reader models on
each new training set individually. Secondly, we
fine-tune retrieval/reader models continually start-
ing from the best individual checkpoint using en-
hanced training sets that showed improvements in
the first step. Finally, we create new augmented
datasets by concatenating all training sets if they
show fine-tuning improvements in the first step.

Labels in MRC datasets are triplets which in-
clude a passage, a question, and an answer. In
MRC datasets, an answer is part of a passage which
is also called a positive context. To fine-tune a
retrieval model as proposed in (Karpukhin et al.,
2020), it is necessary to not only provide a positive
context of passages that contains the answer to a
given question, but also negative contexts. Some
previous work employed a method of randomly se-
lecting negative contexts from a text corpus (Bojic
et al., 2022). Here we propose a method to improve
the random selection of negative contexts.

One of the problems with manually collecting
labels for MRC datasets is that questions are too
similar to their answers (Rajpurkar et al., 2018). To
solve this, we investigate the use of three different
methods applied to the original set of questions:
(i) paraphrasing - we use two different language
models fine-tuned for paraphrasing; (ii) word sub-
stitution - we use two libraries: one to extract a
keyword from a given question and another to ob-
tain a list of synonyms for the chosen keyword;
and (iii) back translation - we use 25 different ma-
chine translation language models to translate a
source text into another language, and back into
the original language.

3.1 Negative Contexts

To enhance the quality of the negative contexts for
each passage, we implemented the following pro-
cedure. For each positive context, passages were
sorted in ascending order of BERTScore (Zhang
et al., 2019) similarity with the positive context,
and the ones with the lowest score were kept to
form negative contexts. A global counting dictio-
nary was maintained to prevent the replication of
negative contexts across different training exam-
ples. This ensured that each negative context did
not exceed the threshold for number of occurrences
in total in the whole dataset.
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3.2 Questions
In this section, we describe the various techniques
used to augment the questions from MRC datasets.

For question paraphrasing, we used two models:
T53 and Pegasus4. To enhance the data quality of
an original dataset, for each original question, we
used the two aforementioned methods to generate
up to five paraphrased questions. Subsequently,
we created five different training sets in which we
grouped the most, second most, up to the least sim-
ilar paraphrases for each original question together.
The word similarity was calculated using a word
vector model from spaCy5. We also generated a
sixth set comprising a randomly-selected question
from the list of five unique paraphrases generated.

In word substitution process, we extracted a
keyword from each question with the help of the
spaCy library and obtained a list of synonyms for
each keyword using Natural Language Tool Kit
(NLTK)’s English dictionary, WordNet6. The top
five synonyms were extracted from this list in de-
scending order of word similarity calculated using
the aforementioned word vector model from spaCy.
We then generated five versions of the training data
for each dataset such that in set 1, the keyword for
each question was replaced by its most similar syn-
onym; in set 2, the keyword for each question was
replaced by its second most similar synonym and
so forth, with set 5 containing the questions with
the least similar synonyms as substitutes. For key-
words with n < 5 synonyms, we kept the question
unchanged in the first (5 - n) versions and used the
synonyms as substitutes in the remaining n versions.
We also created a sixth set in which we randomly
selected one of the top five (or n) synonyms to
substitute the keyword for each question.

We used Hugging Face Helsinki model7 for back
translation. In total, we generated 25 different
training sets based on the number of downloads
for translation from English to the respective lan-
guages, followed by the availability of translation
models from the respective languages to English.
We selected checkpoints based on the number of
downloads, taking the top 25 most downloaded.

3https://huggingface.co/Vamsi/T5_
Paraphrase_Paws

4https://huggingface.co/tuner007/
pegasus_paraphrase

5https://spacy.io/models/en#en_core_
web_lg

6https://www.nltk.org/howto/wordnet.
html

7https://huggingface.co/Helsinki-NLP

To understand how different the resulting ques-
tions obtained from each of the enhancement meth-
ods are, we performed pairwise comparisons be-
tween questions from each method using ROUGE-
1. Results are shown in Appendix B.6. Back-
translation overall yields the questions most dif-
ferent to the baseline and the other enhancement
methods.

3.3 Answers

Since MRC relies on extracting the exact answer
(i.e., text span) from a passage, we could not ap-
ply any of the automatic data quality enhancement
methods that we applied to questions (as explained
in the previous section). However, we created new
training datasets in which we manually shortened
the original answers wherever appropriate. We ex-
plained further in Appendix A.3.

4 Datasets

To test our framework, we made adjustments (see
Appendix A) to four biomedical datasets: BioASQ
(Lamurias et al., 2020), COVID-QA (Möller et al.,
2020), cpgQA (Mahbub et al., 2023) and SleepQA
(Bojic et al., 2022). We refer the reader to Table 1
for statistics on the final version of datasets that we
used in all experiments: original/final size of text
corpus, original/final number of labels and finally,
train/dev/test split.

Original BioASQ dataset contained over 3k
manually-annotated biomedical labels. Questions
in these datasets came in four different flavours:
factoid, list, yes/no, and summary. We extracted
only factoid questions for which the exact answer
can be found in the positive context. Original
COVID-QA dataset was annotated by biomedical
experts and contained 2k labels on COVID-19
pandemic-related topics. Original cpgQA dataset
contained 1k manually annotated labels in the
domain of clinical practice guidelines. Original
SleepQA was a manually annotated dataset in the
sleep domain with 5k labels.

Table 1: Dataset statistics, for original and final ver-
sions.

Dataset Original
corpus

Final
corpus

Original
labels

Final
labels

Final
train/dev/test

BioASQ 4265 957 5821 957 765/96/96
COVID-QA 2079 1121 1327 1102 896/112/113
cpgQA 190 235 1097 1097 877/110/110
SleepQA 7000 7000 5000 5000 4000/500/500
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5 Evaluation

We evaluated our framework by performing fine-
tuning of retrieval and reader models using Bi-
oLinkBERT (Yasunaga et al., 2022) and BioBERT
BioASQ8 respectively. We used BioLinkBERT for
retrieval model fine-tuning as it was recently shown
to achieve state-of-the-art performance on low-
resource bio-MRC tasks (Mahbub et al., 2023).
BioBERT BioASQ was used for fine-tuning of
reader model as proposed in (Bojic et al., 2022).
Intrinsic evaluation of fine-tuned models was done
using automatic metrics on test sets: recall@1 for
retrieval and Exact Match (EM) for reader models.

5.1 Fine-tuning on Enhanced Training Sets

Table 2 and Table 3 show recall@1/EM scores re-
spectively for fine-tuned retrieval/reader models
after enhancing the method of selecting negative
contexts (i.e., using BertScore) for the retrieval
training datasets, as well as reformulation of ques-
tions using paraphrasing, word substitution, back
translation and answer shortening for the training
datasets of both models. More specifically:

• The first row (baseline) in each table shows
the results of BioLinkBERT/BioBERT BioASQ
models fine-tuned on the original datasets (i.e.,
baselines).

• Each subsequential row shows the best results
for each dataset using the four aforementioned
methods for negative contexts (only for the
retrieval models) and questions (for both mod-
els) enhancement.

• The following row (answer shortening) shows
recall@1/EM scores for fine-tuning of models
on the training datasets in which the original
answers were manually shortened if needed.

• The following row (continual) shows the re-
sults of continual fine-tuning: starting from
the best individual checkpoint, we fine-tune
on the second-best training set, and so on. For
example, for reader fine-tuning on the BioASQ
dataset, we first took the checkpoint of fine-
tuning on the training set created using para-
phrasing and then continued fine-tuning on
training sets created using back translation.
Finally, we took the newest checkpoint and

8https://huggingface.co/gdario/
biobert_bioasq

continued fine-tuning on the training set cre-
ated using word substitution.

• The last row (augmentation) shows re-
call@1/EM scores for fine-tuning of models
on the training datasets created by concate-
nating all data enhanced training sets if they
showed fine-tuning improvements when us-
ing individually (i.e., rows 2-6 for retrieval
models and rows 2-5 for reader models).

For retrieval fine-tuning (Table 2), the most sig-
nificant improvement of +8.3 (+33%) from baseline
was achieved for BioASQ dataset when using back
translation on the Catalan language. The enhanced
methods of selecting negative contexts and word
substitution improved all four datasets, while para-
phrasing and back translation caused a decrease in
recall@1 scores for SleepQA dataset. Continual
retrieval fine-tuning showed improvements when
compared to baselines for all datasets, however,
only for the COVID-QA and cpgQA datasets it was
better than the best results of individual fine-tuning.

Table 2: Evaluation of fine-tuned retrieval models.

Methods BioASQ COVID-QA cpgQA SleepQA
baseline 25.0 42.5 66.4 46.8
negatives 32.3 48.7 67.3 48.4
paraphrasing 31.2 54.0 66.4 46.6
word substitution 30.2 50.4 69.1 48.4
back translation 33.3 49.6 66.4 45.8
answer shortening 29.2 45.1 66.4 44.8
continual 29.2 62.8 70.9 47.2
augmentation 31.2 60.2 65.5 45.0

For fine-tuned reader models (Table 3), the most
significant improvement of 2.1 (+40%) from base-
line was achieved for BioASQ dataset when using
back translation on the Dutch language, as well
as paraphrasing. Continual reader fine-tuning in-
creased the EM score only for cpgQA dataset com-
pared with the corresponding baselines. Lastly,
augmentation was better than the best results of
individual fine-tuning only for the SleepQA dataset
with the total increase of 2.6 (+4%).

Table 3: Evaluation of fine-tuned reader models.

Methods BioASQ COVID-QA cpgQA SleepQA
baseline 5.2 22.1 50.9 58.6
paraphrasing 7.3 23.9 50.9 59.0
word substitution 6.3 22.1 50.9 59.4
back translation 7.3 23.0 46.4 59.4
answer shortening 5.2 23.0 49.1 60.8
continual 5.2 23.9 N/A 58.0
augmentation 5.2 23.9 N/A 61.2
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Greater relative improvements with back-
translation compared to other methods could
be supported by this method creating more di-
verse questions (Appendix B.6). However, back-
translation gains are inconsistent from a dataset to
the other. Moreover, we noticed that translation and
paraphrasing with Pegasus gave questions notice-
ably more difference than the other data enhancing
techniques.

5.2 Cost-benefit Analysis
In total, the data-centric methods that we described
previously enabled us to generate 28 and 24 en-
hanced training sets for retrieval fine-tuning and
reader fine-tuning respectively. Subsequently, we
fine-tuned all retrieval/reader models on a single
NVIDIA-A40 GPU with 46GB of GPU RAM. Ta-
ble 4 and Table 5 shows time spent on fine-tuning.
For example, we used one GPU for five hours
to fine-tune retriever model on BioASQ dataset
to achieve 33% improvement in recall@1 score.
Meanwhile, we used one GPU for 22 hours to fine-
tune retriever model on SleepQA dataset only to
achieve a decrease in recall@1 score of 2%.

The last two rows in tables show the time needed
for continual/augmentation fine-tuning only. How-
ever, in order to determine the order in which to
fine-tune for continual learning, or which datasets
to use for concatenation, all individual checkpoints
need to be created. Hence, to obtain the total time
for continual learning/augmentation, one needs to
add up times from all previous rows as well.

Table 4: Total time spent (in hours) vs. maximum im-
provements of retrieval fine-tuning.

Methods BioASQ COVID-QA cpgQA SleepQA
baseline 0.2 0.2 0.2 0.9
negatives 0.9 (29%) 1.1 (15%) 1.0 (1%) 9.9 (3%)
paraphrasing 4.3 (25%) 3.7 (27%) 3.6 (0%) 25.4 (1%)
substitution 2.5 (21%) 1.4 (19%) 1.8 (4%) 6.1 (3%)
translation 4.9 (33%) 6.3 (17%) 4.9 (0%) 22.0 (2%)
answer shortening 0.4 (17%) 0.4 (6%) 0.4 (0%) 1.6 (4%)
continual 1.6 (17%) 1.7 (48%) 0.7 (7%) 1.1 (1%)
augmentation 0.9 (25%) 1.0 (42%) 0.6 (1%) 2.6 (4%)

Table 5: Total time spent (in hours) vs. maximum im-
provements of reader fine-tuning.

Methods BioASQ COVID-QA cpgQA SleepQA
baseline 0.1 0.1 0.1 0.3
paraphrasing 1.0 (40%) 0.9 (8%) 0.9 (0%) 5.0 (1%)
substitution 0.3 (21%) 0.5 (0%) 0.3 (0%) 1.1 (1%)
translation 1.0 (40%) 1.2 (4%) 1.7 (9%) 4.0 (1%)
answer shortening 0.1 (0%) 0.1 (4%) 0.1 (4%) 0.2 (4%)
continual 0.2 (0%) 0.3 (8%) N/A 1.4 (1%)
augmentation 0.1 (0%) 0.1 (8%) N/A 0.5 (4%)

6 Discussion and Conclusions

It is estimated that over 92% of data scientists who
work in the Artificial Intelligence field encountered
the “data cascades” phenomenon, which denotes
downstream problems resulting from low-quality
data (Sambasivan et al., 2021). One way to im-
prove the original dataset quality is data-centric
approach. In this paper, we showed that by enhanc-
ing the quality of original datasets, one can achieve
model fine-tuning performance improvements for
small datasets (e.g., biomedical datasets). However,
the results suggest that the effects of data quality
enhancement methods on performance improve-
ments are small, and the performance of the test
data deteriorates in many cases.

Despite the inconsistency of data-centric meth-
ods used in this paper in yielding improvement,
two positive conclusions can be drawn. First, when
taking into consideration the time needed to cre-
ate data enhanced training sets as well as perfor-
mance improvements in fine-tuning, word substitu-
tion method is the best, supporting previous find-
ings (Feng et al., 2019; Pappas et al., 2022). Un-
like other methods, word substitution is not model-
based and thus is run for a few minutes, rather than
a few hours like back translation and paraphras-
ing. Second, the best relative improvements were
achieved for the BioASQ dataset with the smallest
number of labels, a similar finding presented in
(Okimura et al., 2022).

In addition to the data-centric methods discussed
in this work, there are other techniques such as
pseudo-labelling (Abney, 2007; Ruder and Plank,
2018; Cui and Bollegala, 2019; Zhu and Goldberg,
2022), data selection (Axelrod et al., 2011; Plank
and Van Noord, 2011; Ruder and Plank, 2017), and
pre-training methods (Han and Eisenstein, 2019;
Guo et al., 2020). In future work, we will in-
vestigate whether those techniques would produce
more reliable and consistent results across differ-
ent datasets. Moreover, we will also consider ap-
proaches that incorporate aspects of multiple tech-
niques, resulting in hybrid data-centric techniques
as proposed in (Ramponi and Plank, 2020).
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A Datasets

A.1 Dataset Construction
In this subsection, we describe how we built the
final version of datasets from Table 1. Where nec-
essary, we divided passages from the original text
corpus into one or more parts, so their length was
less than 300 words. This step was done so that all
passages were of a similar length across different
datasets and that the same model hyperparameters
can be used for fine-tuning retrieval and reader
models. We then removed those labels for which
the answer could not be found in the corresponding
positive context. Finally, we divided each original
dataset into three parts (in the ratio of 80:10:10) to
create training, development, and test sets. Table 1
shows the original number of passages in each text
corpora, the original number of labels, and the fi-
nal numbers after the aforementioned adjustments
were done.

A.2 Data Cleaning
BioASQ: The original dataset did not include pos-
itive passages, but instead contained links to the
journal articles where the answers can be found.
To obtain positive passages, we first retrieved them
from the individual links provided in the dataset,
and then divided them into passages of no longer
than 300 words. Only triplets that contain the exact
answers in the retrieved passages were included
in the final dataset. We encountered a challenge
that, of the 5,821 triplets of the factoid type identi-
fied, only 16% had the exact answers that could be
found in the provided passages.

COVID-QA: We first divided the original corpus
into passages containing no more than 300 words.
We also removed redundant keywords, such as
’introduction:’, ’introductions:’, ’objective:’, ’ob-
jectives:’, ’conclusion:’, ’conclusions:’, ’method:’,
’methods:’, ’background:’, ’backgrounds:’, ’re-
sult:’, ’results:’, ’result(s):’, and ’aim:’. Addition-
ally, we eliminated leading and trailing spaces and
changed all letters to lowercase. To ensure dataset
accuracy, further manual cleaning was carried out.
This includes filling in incomplete words, remov-
ing medical abbreviations, and correcting missing
brackets such as "()" and "[]".

cpgQA: To prepare the text corpus, we parti-
tioned passages into segments of no more than
300 words, resulting in a corpus of 235 passages.

Unfortunately, this division caused some answers
to be separated from their corresponding positive
contexts due to issues such as inaccurate sentence
tokenization and answer fragmentation between
two adjacent passages. These discrepancies were
addressed through manual intervention. It should
be noted that no labels were excluded from the orig-
inal dataset as a result of this cleaning procedure.

SleepQA The original dataset already contained
passages shorter than 300 words, and all answers
were found in their provided passages. We elimi-
nated leading and trailing spaces and changed all
letters to lowercase.

A.3 Shortening Answers
BioASQ: The original answers varied from two to
more than 120 words in length. Our focus was
on shortening the answers which were excessively
long, and thus all answers longer than 30 words
were manually reviewed. The primary adjustments
made to the answers involved isolating the main
response to the corresponding question, thereby
truncating lengthy sentences into shorter phrases.
This approach effectively reduced answer length
for both the test and training sets by a significant
degree. The mean answer length for the training set
decreased from 30.9 to 17.6 words (Figure 1), while
the mean answer length for the test set decreased
from 26.1 to 18.4 words (Figure 2).
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Figure 1: Answer length (in number of words) before
and after shortening answers for BioASQ training set.
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Figure 2: Answer length (number of words) before and
after shortening answers for the BioASQ test set.

COVID-QA: In the original dataset, the length of
the answers was not more than 120 words. How-
ever, some answers contained incomplete words at
the beginning and/or end of sentences. To improve
the dataset’s accuracy, these words were either man-
ually removed or completed. Moreover, scientific
abbreviations were eliminated manually to improve
the accuracy of exact matches. Unfortunately, this
had no significant effect on the mean length of an-
swers for both the training and test sets. This result
can be attributed to the training set’s prevalence of
sentences with only one or two abbreviations. In
other cases, completing the incomplete words also
had no effect on the mean word count.
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Figure 3: Answer length (in number of words) before
and after shortening answers for COVID-QA training
set.

cpgQA: In both the training and test sets, answers
were shortened manually by removing extraneous
phrases and articles (such as "a/an/the") from the
beginning of the responses. After shortening, the
mean answer length in the training set reduced
from 12.7 words to 12.4 words, whereas for the
test set, the mean answer length reduced from 12.1
words to 11.6 words. The minimal difference in
the mean number of words is due to the fact that
most answers in the original dataset were clear and
concise.
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Figure 4: Answer length (in number of words) before
and after shortening answers for COVID-QA test set.
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Figure 5: Answer length (in number of words) before
and after shortening answers for cpgQA training set.
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Figure 6: Answer length (in number of words) before
and after shortening answers for cpgQA test set.

sleepQA: The initial average answer lengths for
the sleepQA dataset are 10.15 and 9.13 for the
train and test set respectively, making it the dataset
with the shortest average answer length among all
datasets studied. We focused on cutting down an-
swers more than 15 words long, which range up
to 40 words long. The was done by extracting the
main phrases of the answers that directly respond
to the associated questions. The resulting cleaned
answers are in the form of shorter, more concise
phrases instead of wordy full sentences. The final
average answer lengths after the cleaning process
are 9.11 and 8.01 for the train and test set respec-
tively.
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Figure 7: Answer length (in number of words) before
and after shortening answers for SleepQA training set.
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Figure 8: Answer length (in number of words) before
and after shortening answers for SleepQA test set.

B Evaluation

B.1 Model Hyperparameters
Hyperparameters of retrieval models fine-tuning
are shown in Table 6, and of reader models in Ta-
ble 7. When fine-tuning retrieval models on train-
ing sets in which method of selecting the nega-
tive contexts for each passage was enhanced, we
changed other negatives hyperparameters to reflect
the number of negative contexts in the correspond-
ing training set (e.g., 1 to 5). Additionally, when
fine-tuning reader models on different datasets, we
set eval step to 50 for BioASQ, COVID-QA and
cpgQA datasets and 500 for the SleepQA dataset.
The reason behind this is because the SleepQA
dataset has 4,000 labels in the train set, while the
other datasets have less than 1,000 labels. For con-
tinual retrieval fine-tuning, we set the num train
epochs to 60, and for reader to 30. Other parame-
ters were left the same.

B.2 Negative Contexts
Using the enhanced method of selecting negative
contexts, we produced five different training sets
for each dataset (see Table 8). Although generally,
this method produced enhanced training sets for
each dataset, it is not possible to conclude which
number of negatives improved the fine-tuning pro-
cess the best, as this is very much dataset-specific.
The last row in Table 8 shows the time (in hours)
needed to generate all five training sets for each
dataset using A100 GPU 40GB. While for most
of the datasets, the generation process took around
one hour, for SleepQA it took more than one day.
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Table 6: Hyperparameters of retrieval model fine-tuning.

Hyperparameter Value

batch size 32
dev batch size 32
adam eps 1e− 8
adam betas (0.9, 0.999)
max grad norm 1.0
log batch step 100
train rolling loss step 100
weight decay 0.0
learning rate 1e− 5
warmup steps 100
gradient accumulation steps 1
num train epochs 30/60*
eval per epoch 1
hard negatives 0
other negatives 1(2,3,4,5)*
val av rank hard neg 0
val av rank other neg 10
val av rank bsz 128
val av rank max qs 10000

Table 7: Hyperparameters of reader model fine-tuning.

Hyperparameter Value

eval step 50/500*
batch size 32
dev batch size 32
adam eps 1e− 8
adam betas (0.9, 0.999)
max grad norm 1.0
log batch step 100
train rolling loss step 100
weight decay 0.0
learning rate 1e− 5
warmup steps 0
gradient accumulation steps 1
num train epochs 10/30*

Table 8: Automatic evaluation of fine-tuned retrieval
models using recall@1 scores when using the enhanced
method of selecting negative contexts.

Methods BioASQ COVID-QA cpgQA SleepQA
baseline 25.0 42.5 66.4 46.8
BertScore (1 neg) 31.2 41.6 66.4 47.2
BertScore (2 neg) 28.1 48.7 67.3 45.8
BertScore (3 neg) 32.3 45.1 67.3 47.4
BertScore (4 neg) 29.2 45.1 63.6 46.6
BertScore (5 neg) 30.2 48.7 61.8 48.4
generation time 1.3 1.3 0.7 28.3

B.3 Paraphrasing
For question paraphrasing, we used T5 and Pega-
sus as they are based on Transformer architecture
and utilize transfer learning, in which resource-rich
sources can be efficiently adapted for resource-poor
target fields, such as the domain-specific datasets
(Yu et al., 2018).

Table 9: Average similarity index of each training set
for each dataset, calculated using a word vector model
from spaCy for paraphrasing.

Methods set 1 set 2 set 3 set 4 set 5 set 6
BioASQ (T5) 0.997 0.991 0.979 0.962 0.927 0.970
BioASQ (Pegasus) 0.953 0.932 0.917 0.886 0.846 0.903
COVID-QA (T5) 0.996 0.987 0.970 0.949 0.904 0.959
COVID-QA (Pegasus) 0.959 0.940 0.918 0.890 0.849 0.909
cpgQA (T5) 0.995 0.987 0.973 0.954 0.920 0.967
cpgQA (Pegasus) 0.960 0.946 0.930 0.910 0.883 0.925
SleepQA (T5) 0.996 0.985 0.969 0.947 0.906 0.960
SleepQA (Pegasus) 0.974 0.957 0.938 0.915 0.880 0.933

Previous research showed that the Pegasus
method produces paraphrases that are semantically
more different, while the T5 method is found to
keep more of the original meaning (Martín Galván
et al., 2023). We found that the Pegasus consis-
tently produces the same set of paraphrased ques-
tions, regardless of the number generated. For
T5, we generated paraphrased questions up to 50
times, after which we took the first five unique para-
phrases. For several questions (between 3% for
cpgQA dataset and 12% for COVID-QA dataset),
T5 failed to produce the required number of unique
paraphrases, for which cases we added the original
question to the set of five paraphrased questions.
Although we used two different libraries, question
paraphrasing failed to enhance training set quality
for cpgQA dataset altogether. Generating training
sets took around 15 hours for SleepQA dataset and
3 hours for other datasets on one NVIDIA TESLA
P100 GPU 16GB (Kaggle).

Table 10: Automatic evaluation of fine-tuned retrieval
models using recall@1 scores for paraphrasing. Base-
line recall@1 scores for BioASQ, COVID-QA, cpgQA
and SleepQA datasets are: 25.0, 42.5, 66.4, and 46.8.

Methods set 1 set 2 set 3 set 4 set 5 set 6
BioASQ (T5) 25.0 29.2 26.0 26.0 24.0 24.0
BioASQ (Pegasus) 28.1 31.2 31.2 29.2 31.2 30.2
COVID-QA (T5) 49.6 48.7 44.2 47.8 46.0 54.0
COVID-QA (Pegasus) 45.1 44.2 43.4 43.4 46.9 46.9
cpgQA (T5) 65.5 65.5 65.5 66.4 65.5 66.4
cpgQA (Pegasus) 63.6 62.7 60.0 62.7 65.5 69.0
SleepQA (T5) 43.6 46.6 42.4 46.4 44.2 43.6
SleepQA (Pegasus) 43.2 39.8 45.0 39.0 38.0 41.0
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Table 11: Automatic evaluation of fine-tuned reader
models using EM scores for paraphrasing. Baseline EM
scores for BioASQ, COVID-QA, cpgQA and SleepQA
datasets are: 5.2, 22.1, 50.9, and 58.6.

Methods set 1 set 2 set 3 set 4 set 5 set 6
BioASQ (T5) 4.2 6.2 4.2 3.1 6.2 4.2
BioASQ (Pegasus) 6.2 7.3 7.3 6.2 6.2 6.2
COVID-QA (T5) 21.2 19.5 20.4 23.9 20.4 19.5
COVID-QA (Pegasus) 22.1 18.6 18.6 20.4 23.0 19.5
cpgQA (T5) 50.9 49.1 48.2 50.9 48.2 50.0
cpgQA (Pegasus) 46.4 46.4 47.3 44.5 46.4 49.1
SleepQA (T5) 57.4 57.6 58.2 58.4 58.8 58.2
SleepQA (Pegasus) 58.2 57.8 58.0 58.2 57.2 59.0

B.4 Word Substitution
Word substitution is the process of substituting sim-
ilar words (such as synonyms or words with sim-
ilar embeddings) from the original data (Pappas
et al., 2022). This method for enhancing the origi-
nal training sets increased almost all recall@1/EM
scores for all datasets for both retrieval/reader fine-
tuning, except for the reader models for cpgQA and
COVID-QA datasets. In cases where applying word
substitution on the original dataset did not increase
the EM scores for the reader fine-tuning, the scores
stayed the same as the corresponding baselines (i.e.,
this method did not worsen them). Moreover, the
generation of training sets took only 11 minutes for
SleepQA dataset and around two minutes for other
datasets on one NVIDIA TESLA P100 GPU 16GB
(Kaggle).

Table 12: Average similarity index of each training set
for each dataset, calculated using a word vector model
from spaCy for word substitution.

Datasets set 1 set 2 set 3 set 4 set 5 set 6
BioASQ 0.999 0.998 0.997 0.996 0.994 0.997
COVID-QA 0.997 0.996 0.995 0.993 0.988 0.993
cpgQA 0.998 0.997 0.996 0.994 0.989 0.995
SleepQA 0.996 0.993 0.992 0.990 0.986 0.991

Table 13: Automatic evaluation of fine-tuned retrieval
models using recall@1 for word substitution. Baseline
recall@1 scores for BioASQ, COVID-QA, cpgQA and
SleepQA datasets are: 25.0, 42.5, 66.4, and 46.8.

Datasets set 1 set 2 set 3 set 4 set 5 set 6
BioASQ 28.1 24.0 28.1 27.1 30.2 21.9
COVID-QA 49.6 49.6 50.4 46.9 48.7 48.7
cpgQA 63.6 68.2 67.3 69.1 67.3 66.4
SleepQA 45.8 48.4 46.4 46.8 43.0 46.0

B.5 Back Translation
The main idea behind back translation method
is to use machine translation from a source to a
pivot language and back, obtaining paraphrases. In
total, we generated 25 different training sets for
Spanish (es), French (fr), German (de), Russian
(ru), Chinese (zh), Arabic (ar), Dutch (nl), Finnish
(fi), Hungarian (hu), Multiple Languages (mul),
Ukrainian (uk), Hindi (hi), Danish (da), Czech (cs),
Romance Languages (roa), Bulgarian (bg), Cata-
lan (ca), Afrikaans (af), Estonian (et), Turkic Lan-
guages (trk), Slavik Languages (sla), Indonesian
(id), Slovak (sk), Tagalog (tl), and Kinyarwanda
(rw) pivot languages. Back translation has been
used as a data augmentation method for several dif-
ferent NLP tasks (Feng et al., 2021; Shorten et al.,
2021). Generally, it produced the best results for
BioASQ dataset. The generation of training sets
took 10 hours for SleepQA dataset and around two
hours for other datasets on one NVIDIA TESLA
P100 GPU 16GB (Kaggle). Results are in Table 15
and Table 16.

Table 14: Automatic evaluation of fine-tuned reader
models using EM scores for word substitution. Base-
line EM for BioASQ, COVID-QA, cpgQA and SleepQA
datasets are: 5.2, 22.1, 50.9, and 58.6.

Datasets set 1 set 2 set 3 set 4 set 5 set 6
BioASQ 5.2 6.2 5.2 5.2 6.2 6.2
COVID-QA 21.2 21.2 21.2 22.1 21.2 19.5
cpgQA 50.0 50.0 50.9 50.0 50.9 50.9
SleepQA 57.8 58.6 58.8 59.4 58.0 58.0
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Table 15: Automatic evaluation of fine-tuned retrieval
models using recall@1 for back translation. Baseline
recall@1 scores for BioASQ, COVID-QA, cpgQA and
SleepQA datasets are: 25.0, 42.5, 66.4, and 46.8.

Methods BioASQ COVID-QA cpgQA SleepQA
en-es-en 31.2 48.7 62.7 45.4
en-fr-en 29.2 47.8 60.9 44.8
en-de-en 27.1 45.1 61.8 41.6
en-ru-en 31.2 40.7 54.5 39.8
en-zh-en 30.2 46.9 61.8 42.2
en-ar-en 30.2 49.6 56.4 41.2
en-nl-en 31.2 40.7 64.5 44.8
en-fi-en 27.1 48.7 61.8 40.6
en-hu-en 29.2 49.6 66.4 41.6
en-mul-en 25.0 43.4 57.3 39.4
en-uk-en 28.1 45.1 64.5 40.8
en-hi-en 27.1 44.2 59.1 38.4
en-da-en 29.2 44.2 60.0 43.8
en-cs-en 27.1 43.4 63.6 45.8
en-roa-en 29.2 47.8 60.9 42.0
en-bg-en 29.2 43.4 58.2 40.0
en-ca-en 33.3 41.6 60.0 41.2
en-af-en 30.2 46.9 61.8 37.2
en-et-en 29.2 46.0 58.2 40.2
en-trk-en 18.8 23.9 35.5 19.6
en-sla-en 25.0 45.1 63.6 43.6
en-id-en 30.2 47.8 63.6 40.4
en-sk-en 30.2 48.7 57.3 44.2
en-tl-en 30.2 41.6 64.5 40.8
en-rw-en 28.1 29.2 50.0 34.4

Table 16: Automatic evaluation of fine-tuned reader
models using EM scores for back translation. Base-
line EM scores for BioASQ, COVID-QA, cpgQA and
SleepQA datasets are: 5.2, 22.1, 50.9, and 58.6.

Methods BioASQ COVID-QA cpgQA SleepQA
en-es-en 4.2 21.2 40.0 58.2
en-fr-en 6.2 20.4 45.5 58.4
en-de-en 7.3 21.2 46.4 57.4
en-ru-en 3.1 18.6 45.5 58.4
en-zh-en 6.2 21.2 43.6 58.8
en-ar-en 5.2 23.0 44.5 58.2
en-nl-en 7.3 21.2 45.5 57.6
en-fi-en 6.2 20.4 44.5 58.0
en-hu-en 6.2 19.5 43.6 58.2
en-mul-en 3.1 19.5 43.6 57.0
en-uk-en 6.2 18.6 40.9 59.4
en-hi-en 5.2 20.4 40.9 57.4
en-da-en 6.2 23.0 43.6 59.4
en-cs-en 4.2 19.5 43.6 58.0
en-roa-en 6.2 18.6 43.6 57.6
en-bg-en 6.2 21.2 43.6 59.2
en-ca-en 5.2 18.6 43.6 58.2
en-af-en 7.3 20.4 44.5 59.0
en-et-en 6.2 20.4 43.6 58.0
en-trk-en 4.2 15.9 39.1 56.4
en-sla-en 6.2 18.6 44.5 57.6
en-id-en 3.1 17.7 44.5 57.2
en-sk-en 5.2 21.2 44.5 58.6
en-tl-en 4.2 22.1 46.4 58.4
en-rw-en 5.2 17.7 40.0 56.2

B.6 Mean and Standard Deviation
Table 17 shows the mean and standard deviation
for different data quality enhancement methods for
retrieval fine-tuning. Table 18 shows the mean
and standard deviation for different data quality
enhancement methods for reader fine-tuning.

Table 17: Mean and standard deviation of different data
quality enhancement methods for retrieval fine-tuning.

Methods BioASQ COVID-QA cpgQA SleepQA
negatives 30.2± 1.7 45.8± 3.0 66.0± 2.4 47.1± 1.0

paraphrasing (T5) 25.7± 1.9 48.4± 3.4 65.8± 0.5 44.5± 1.7
paraphrasing (Pegasus) 30.2± 1.3 45.0± 1.6 64.0± 3.1 41.0± 2.7

substitution 26.6± 3.1 49.0± 1.2 67.0± 1.9 46.1± 1.8

translation 28.7± 2.8 44.0± 6.0 59.6± 6.2 40.6± 5.1

Table 18: Mean and standard deviation of different data
quality enhancement methods for reader fine-tuning.

Methods BioASQ COVID-QA cpgQA SleepQA
paraphrasing (T5) 4.7± 1.3 20.8± 1.6 49.6± 1.2 58.1± 0.6
paraphrasing (Pegasus) 6.6± 0.5 20.4± 1.8 46.7± 1.5 58.1± 0.6

substitution 5.7± 0.5 21.1± 0.8 50.5± 0.5 58.4± 0.6

translation 5.4± 1.3 20.0± 1.7 43.6± 2.0 58.0± 0.8

B.7 Similarity Between Enhancement
Methods

In the following tables, we show the average
similarity computed with ROUGE-1 metric be-
tween questions generated through each of the
enhancement techniques, over all four datasets
{BioASQ,CovidQA,cpgQA,SleepQA}, with Re-
trieval (first four tables) then Reader (next four).

Table 19: Average ROUGE-1 score between pairs
of questions from different enhancement methods on
BioASQ retrieval datasets. Base. stands for baseline,
Para/PG for paraphrasing with PEGASUS, Para/T5
for paraphrasing with T5, Subst. for substitution and
Transl. for translation.

Base. Para/PG Para/T5 Subst. Transl.

Base. 100.0

Para/PG 80.44 100.0

Para/T5 91.49 76.73 100.0

Subst. 95.11 76.25 86.98 100.0

Transl. 57.68 51.10 56.98 55.01 100.0
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Table 20: Average ROUGE-1 score between pairs
of questions from different enhancement methods on
CovidQA retrieval datasets.

Base. Para/PG Para/T5 Subst. Transl.

Base. 100.0

Para/PG 74.63 100.0

Para/T5 83.33 66.06 100.0

Subst. 95.33 70.89 79.73 100.0

Transl. 76.44 62.60 69.50 72.97 100.0

Table 21: Average ROUGE-1 score between pairs
of questions from different enhancement methods on
cpgQA retrieval datasets.

Base. Para/PG Para/T5 Subst. Transl.

Base. 100.0

Para/PG 71.08 100.0

Para/T5 80.96 62.79 100.0

Subst. 94.62 67.01 76.93 100.0

Transl. 71.06 58.85 64.82 67.36 100.0

Table 22: Average ROUGE-1 score between pairs
of questions from different enhancement methods on
SleepQA retrieval datasets.

Base. Para/PG Para/T5 Subst. Transl.

Base. 100.0

Para/PG 77.43 100.0

Para/T5 86.30 70.98 100.0

Subst. 92.95 71.09 79.79 100.0

Transl. 79.05 65.98 73.53 73.20 100.0

Table 23: Average ROUGE-1 score between pairs
of questions from different enhancement methods on
BioASQ reader datasets.

Base. Para/PG Para/T5 Subst. Transl.

Base. 100.0

Para/PG 80.44 100.0

Para/T5 91.49 76.73 100.0

Subst. 97.71 78.51 89.46 100.0

Transl. 86.72 72.32 82.66 84.86 100.0

Table 24: Average ROUGE-1 score between pairs
of questions from different enhancement methods on
CovidQA reader datasets.

Base. Para/PG Para/T5 Subst. Transl.

Base. 100.0

Para/PG 72.11 100.0

Para/T5 83.33 64.65 100.0

Subst. 93.84 67.50 78.59 100.0

Transl. 66.01 54.99 60.87 61.55 100.0

Table 25: Average ROUGE-1 score between pairs
of questions from different enhancement methods on
cpgQA reader datasets.

Base. Para/PG Para/T5 Subst. Transl.

Base. 100.0

Para/PG 79.46 100.0

Para/T5 86.09 72.62 100.0

Subst. 95.58 75.34 82.15 100.0

Transl. 80.67 68.91 75.40 77.41 100.0

Table 26: Average ROUGE-1 score between pairs
of questions from different enhancement methods on
SleepQA reader datasets.

Base. Para/PG Para/T5 Subst. Transl.

Base. 100.0

Para/PG 68.15 100.0

Para/T5 85.57 62.76 100.0

Subst. 90.92 61.59 77.38 100.0

Transl. 63.06 51.40 59.00 57.15 100.0
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