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Abstract

In recent years, many NLP studies have focused
solely on performance improvement. In this
work, we focus on the linguistic and scientific
aspects of NLP. We use the task of generat-
ing referring expressions in context (REG-in-
context) as a case study and start our analysis
from GREC, a comprehensive set of shared
tasks in English that addressed this topic over
a decade ago. We ask what the performance
of models would be if we assessed them (1)
on more realistic datasets, and (2) using more
advanced methods. We test the models using
different evaluation metrics and feature selec-
tion experiments. We conclude that GREC can
no longer be regarded as offering a reliable as-
sessment of models’ ability to mimic human
reference production, because the results are
highly impacted by the choice of corpus and
evaluation metrics. Our results also suggest
that pre-trained language models are less de-
pendent on the choice of corpus than classic
Machine Learning models, and therefore make
more robust class predictions.

1 Introduction

NLP research can have different aims. Some NLP
research focuses on developing new algorithms
or building practical NLP applications. Another
line of NLP work constructs computational models
that aim to explain human language and language
use; this line of work has been dubbed NLP-as-
Science (van Deemter, 2023). Among other things,
NLP-as-Science demands that we ask ourselves to
what extent NLP research findings generalise along
a range of dimensions.

In addition to the practical applications of Refer-
ring Expression Generation (REG, Reiter, 2017),
REG is also one of the typical tasks in NLP-
as-Science, where REG algorithms are built to
model and explain the reference production of
human beings (Krahmer and van Deemter, 2012;
van Deemter, 2016). In the computational linguis-
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tics and cognitive science community, REG can
be divided into two distinct tasks: one-shot REG,
finding a referring expression (RE) to single out a
referent from a set, and REG-in-context, generating
an RE to refer to a referent at a given point in a
discourse.

In a classic setup, REG-in-context is often ap-
proached in two steps: The first is to decide on the
form of an RE at a given point in the discourse,
and the second is to decide on its content. Many
researchers have been interested in the first sub-
task, referential form selection: the task to decide
which referential form (e.g., pronoun, proper name,
description, etc.) an RE takes (McCoy and Strube,
1999; Henschel et al., 2000; Kibrik et al., 2016).
Nearly 15 years ago, Belz et al. (2008) introduced
the GREC shared tasks and a number of English
REG corpora with two goals: (1) assessing the
performance of computational models of reference
production (Belz et al., 2009), and (2) understand-
ing the contribution of linguistically-inspired fac-
tors to the choice of referential form (Greenbacker
and McCoy, 2009b; Kibrik et al., 2016; Same and
van Deemter, 2020).

15 years have passed since the GREC challenge
was organised, and many new models and corpora
have been proposed in the meantime (e.g., Cas-
tro Ferreira et al. (2018); Cunha et al. (2020), and
Same et al. (2022)). We, therefore, decided that it
was time to ask, in the spirit of NLP-as-Science,
how well the lessons that GREC once taught our
research community hold up when scrutinised in
light of all these developments. In other words, we
will investigate to what extent the findings from
GREC can be generalised to other corpora and
other models.

To this end, we pursue the following objectives:
(1) We extend GREC by testing its REG algorithms
not only on the GREC corpora but also on a cor-
pus that was not originally considered and that has
a different genre, namely the Wall Street Journal
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(WSJ) portion of OntoNotes (Hovy et al., 2006;
Weischedel et al., 2013); (2) We fine-tune pre-
trained language models on the task of REG-in-
context and assess them in the GREC framework.

In Section 2, we detail the GREC shared tasks
and introduce the corpora used in GREC. Section 3
spells out our research questions. In Section 4 and
Section 5, we introduce the algorithms and corpora
that we use. Section 6 reports the performance of
each algorithm on each corpus, followed by analy-
ses in Section 7. Section 8 will discuss our findings
and draw some lessons.

2 The GREC Shared Tasks

In this section, we summarise the GREC task, the
corpora used by GREC, and its conclusions.

2.1 The GREC Task and its Corpora

According to Belz et al., “the GREC tasks are about
how to generate appropriate references to an entity
in the context of a piece of discourse longer than
a sentence" (2009, p. 297). The main task was to
predict the referential form, namely whether to use
a pronoun, proper name, description or an empty
reference at a given point in discourse.

The GREC challenges use two corpora, both cre-
ated from the introductory sections of Wikipedia
articles: (1) GREC-2.0 (henceforth MSR, as it was
used in the GREC-MSR shared tasks of 2008 and
2009) consists of 1941 introductory sections of the
articles across five domains (people, river, moun-
tain, city, and country); and (2) GREC-People
(henceforth NEG as it was used in the GREC-NEG
shared task in 2009) contains 1000 introductory
sections from Wikipedia articles about composers,
chefs, and inventors. Here is an example from NEG:

(1) David Chang (born 1977) is a noted Amer-
ican chef. He is chef/owner of Momofuku
Noodle Bar, Momofuku Ko and Momofuku
Ssdm Bar in New York City. Chang attended
Trinity College, where he majored in reli-
gious studies. In 2003, Chang opened his
first restaurant, Momofuku Noodle Bar, in the
East Village.

A key difference between MSR and NEG lies in
their RE annotation practices. In MSR, only those
REs that refer to the main topic of the article are
annotated, while in NEG, mentions of all human
referents are annotated. For instance, in a docu-
ment about David Chang, MSR will only annotate

94

Name GREC ST ALG Acc
UDel MSR *09 C5.0 77.71
ICSI MSR 09 CRF 75.16
CNTS MSR 08 MBL  72.61
IS-G MSR 08 MLP  70.78
osu MSR 08 MaxEnt 69.82
JUNLG  MSR 09 Rule 75.40

Table 1: An overview of the algorithms submitted to
GREC. The first column contains the name of the re-
spective algorithm. The column GREC ST presents the
name of the MSR shared task to which the algorithm was
submitted. The third column, ALG, lists the algorithms
used, where abbreviations from top to bottom are C5.0
decision tree, conditional random field, memory-based
learning, multi-layer perceptron, maximum entropy, and
frequency-based rules. The fourth column, Acc, reports
the original accuracy of the algorithms, as reported in
Belz et al. (2009). Note that UDel, ICSI, and JUNLG
were submitted to both the MSR *08 and MSR’09 shared
tasks, and we only present the newest results here.

REs referring to David Chang, while NEG will in-
clude annotations for all human referents, including
David Chang and others.

2.2 REG Algorithms Submitted to GREC

Various REG algorithms were submitted to the
GREC challenges. These consist of feature-based
ML algorithms: CNTS (Hendrickx et al., 2008),
ICSI (Favre and Bohnet, 2009), IS-G (Bohnet,
2008), 0OSU Jamison and Mehay (2008) and
UDel Greenbacker and McCoy (2009a), and an
algorithm that mixes feature-based ML and rules:
JUNLG (Gupta and Bandopadhyay, 2009). Table 1
presents the details of each model, including the
ML method, and the original reported accuracy on
MSR (cf. Belz et al. (2009) for details).

2.3 Feature Selection

The GREC Tasks were designed to find out what
kind of information is useful for making choices
between different kinds of referring expressions in
context (Belz et al., 2009, p. 297). However, the
original paper does not consider the factors that
contributed to the RE choice in the systems submit-
ted to GREC. In a follow-up study, Greenbacker
and McCoy (2009b) conducted a feature selection
study informed by psycholinguistics. They experi-
mented with various feature subsets derived from
their system, known as UDel, which had previ-
ously been submitted to the GREC. Additionally,
they incorporated selected features from another



REG system, CNTS (Hendrickx et al., 2008), into
their study. They show that features motivated by
psycholinguistic studies and certain sentence con-
struction features have a positive impact on the
performance of REG models. Follow-up feature-
selection studies including Kibrik et al. (2016) and
Same and van Deemter (2020) also emphasise the
contribution of factors such as recency and gram-
matical role to the choice of RE form.

3 Research Questions

15 years after the GREC shared tasks, we were
curious to know to what extent the conclusions
from GREC still “stand”. We, therefore, came up
with the following research questions.

In the first place, we are interested in the impact
of the choice of corpus on the performance of REG
algorithms (R1). GREC uses only the introductory
part of Wikipedia articles (see Section 2), which
represents only one genre of human language use.
Considering that a good REG algorithm needs to
model the general use of reference, a better evalua-
tion framework should include texts from multiple
genres. Therefore, we also include the WSJ corpus
in the study (see Section 5 for more details) and
conduct a correlation analysis to quantify how the
choice of corpus impacts the evaluation results.

Second, previous studies suggested that classic
machine learning (ML) based REG algorithms per-
form on par with most recent neural methods (Same
et al., 2022). However, their study has three lim-
itations: (1) they did not incorporate pre-trained
language models (PLMs); (2) they focused on the
surface forms of REs, which partly depend on the
performance of surface realisation; (3) they did
not assess the models based on the intuition that a
model with good explanatory power should be less
influenced by the choice of corpus. Therefore, we
adopt PLMs to the task of REG-in-context (see Sec-
tion 4 for more details) and investigate how good is
the explanatory power of PLM-based REG models
compared to classic ML-based models (R2) using
the enhanced GREC framework.

Finally, as previously mentioned, one of the pri-
mary theoretical objectives of GREC was to com-
putationally explore the contribution of factors that
originate from linguistic studies to the choice of
referential forms. It is reasonable to expect that
such contributions may change depending on the
choice of corpus. In this study, we conduct an im-
portance analysis to investigate whether the impor-
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Figure 1: Illustration of the PLM-based REG Algo-
rithm.

tance ranking of linguistic factors changes when
we use different corpora (R3).

4 REG Algorithms

In what follows, we introduce the REG algorithms
that are considered in this study.

4.1 ML-based REG

For this study, we have narrowed our focus to
feature-based ML algorithms that predict the type
of RE. Consequently, we reconstruct five ML-
based REG algorithms, namely UDel, ICSI, CNTS,
IS-G, and OSU, along with their respective fea-
ture sets, while excluding JUNLG. Note that we im-
plement CNTS slightly differently from Hendrickx
et al. (2008). Concretely, Hendrickx et al. (2008)
have mentioned that they have used the TIMBL
package (Daelemans et al., 2007) for implement-
ing the Memory Based Learning algorithm. In-
stead, we implemented the k-Nearest Neighbors
algorithm. According to Daelemans et al. (2007),
Memory Based Learning is the direct descendant
of k-Nearest Neighbors. More information on the
implementation of these models can be found in
Appendix B.

4.2 PLM-based REG

Deep learning approaches have been used in many
previous works on REG (Castro Ferreira et al.,
2019; Cao and Cheung, 2019; Cunha et al., 2020;
Chen et al., 2021). Different from previous work!,

"Note that Chen et al. (2021, 2023) also leveraged a PLM,
but did not fine-tune it. Instead, they used the word represen-
tations from the PLM as static inputs to an RNN and made
predictions using the RNN.



we fine-tune PLMs on REG corpora in this study.
To fine-tune PLMs on REG corpora, we be-
gan by pre-processing each corpus using the same
paradigm as described by Cunha et al. (2020).
More precisely, each referent in a given document
was replaced with its corresponding proper name.
For example, all underlined REs in Example (1)
were replaced by “David Chang”. Subsequently, as
depicted in Figure 1, we fed the data into a PLM,
and, for each referent (e.g., “David Chang” ), we
extracted the representations of its first token and
its last token and summed them. The final represen-
tations were then sent to a fully connected layer for
predicting the RE forms. In this study, we use BERT
and RoBERTa (see section 6.1 for more details).

5 REG Corpora

In the following, we explain the corpora used in this
work. These corpora are English-language corpora.

5.1 The MSR and NEG Corpora

In the current study, we only use the articles from
the training sets of these corpora (see the number
of documents in Table 2). Following the same ap-
proach as Castro Ferreira et al. (2018), we created
a version of the GREC corpora for the End-to-end
(E2E) REG modelling. For the classic ML models,
we reproduced the models using the feature sets
from the studies mentioned in Section 2.2.

5.2 The wsJ Corpus

As mentioned earlier, the WSJ portion of the
OntoNotes corpus (Weischedel et al., 2013) is our
third data source.” We use the version of the corpus
that Same et al. (2022) developed for E2E REG
modeling.? Since empty pronouns are not anno-
tated in WSJ, we decided to also exclude them from
the two GREC corpora and focus on a 3-label clas-
sification task. The labels considered in this study
are pronoun, description, and proper name. Table
2 presents a detailed overview of these corpora.

Data Splits. We have made a document-wise
split of the data. We split the WSJ data in accor-
dance with the CoNLL 2012 Shared Task (Pradhan
et al., 2012). Our WSJ training, development, and
test sets contain 20275, 2831, and 2294 samples,

We used Ontonotes 5.0 licensed by the Linguis-
tic Data Consortium (LDC) https://catalog.ldc.upenn.
edu/LDC2013T19.

3Note that wsJ was used in Same et al. (2022), but no
corpus analysis or comparison was provided.
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MSR NEG WSJ
number of documents 1655 808 582
word/doc (mean) 148 129 530
sent/doc (mean) 7.1 5.8 25
par/doc (mean) 23 22 10.8
referent/doc (mean) 1 2.6 15
number of RE 11705 8378 25400
description % 13.84% 4% 38.29%
proper name % 38.09% 40.79%  34.57%
pronoun % 41.79%  48.75% 27.14%
empty % 6.28% 6.47% -

Table 2: Comparison of the MSR, NEG, and WSJ corpora
in terms of their length-related characteristics and distri-
bution of REs. Doc, sent and par stands for documents,
sentences and paragraphs.

respectively. We did an 85-5-10 split of the GREC
datasets in accordance with Belz et al. (2009). Af-
ter excluding empty pronouns, the MSR training,
development, and test sets contain 9413, 519, 1038
instances, and the NEG training, development, and
test sets contain 6681, 259, 896 instances.

Proportion of Referring Expressions As shown
in Table 2, pronouns and proper names make up
80% and 89.5% of the referential instances in MSR
and NEG, respectively. This implies that the other
two referential forms, namely descriptions and
empty references, account for approximately 20%
of the cases in MSR and about 10% in NEG. Given
this imbalance in the frequency of different forms
within the two corpora, we question its potential
effect on algorithm performance. Specifically, we
are wondering if forms with lower frequencies are
accurately predicted by the algorithms.

6 Evaluation

In this section, we introduce the evaluation protocol
and report the performance of the models.

6.1 Implementation Details

For BERT and RoBERTa, we used bert-base-cased
and roberta-base, both from Hugging Face. For
fine-tuning, we set the batch size to 16, the learning
rate to le-3, the dropout rate to 0.5, and the size of
the output layer to 256. We ran each model for 20
epochs and used the one that achieved the highest
F1 score on the development set. The implementa-
tion details of the classic ML-based models can be
found in Appendix B.

6.2 Evaluation Protocol

The main evaluation metric in the GREC-MSR
shared tasks was accuracy. In addition to accuracy,
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MSR NEG WSJ
Acc. F1 wF1 Acc. F1 wF1 Acc. F1 wF1
UDel 66.86 56.76 643 80.80 5545 779 63.74 6423 632
ICSI 71.19 6473 704 8036 6453 786 64.62 64.15 634
CNTS 68.59 61.39 672 78.68 61.62 768 6431 6459 644
osu 68.02 60.28 66.6 79.24 5704 765 6920 69.63 68.9
IS-G 67.05 58.83 653 7734 5952 756 69.15 6935 692
BERT 71.68 66.70 714 77.79 72.87 777 8095 8093 809
RoBERTa 7091 67.53 70.7 80.80 77.29 80.7 82.61 82.70 82.6
Average 69.19 62.32 6799 7929 64.05 77.69 70.65 70.80 70.37

Table 3: Overall accuracy (Acc.), macro-averaged F1 (F1), and weighted-macro F1 (wF1) scores of the algorithms
depicted in Section 4. For instance, MSR-UDel refers to a C5.0 classifier trained on the MSR corpus, using the feature

set mentioned in Greenbacker and McCoy (2009a).

we also report macro-F1 and weighted-macro F1.
We argue that different metrics evaluate algorithms
from different perspectives and provide us with dif-
ferent meaningful insights. For pragmatic tasks
like REG, it makes sense to ask how well an algo-
rithm performs on naturally distributed data which
is often imbalanced. For these cases, reporting ac-
curacy and weighted F1 are logical. Furthermore,
analogous to other classification tasks, minority
categories should not be overlooked. Take as an
example the class description in the NEG corpus,
which occurs only 4%. If a model fails to produce
this class, the produced document might sound un-
natural. Therefore, it is important to ensure that
an algorithm is not over- or under-generating cer-
tain classes. Looking into accuracy and macro-F1
together provides insights into such cases.

6.3 Performance of the Models

The overall accuracy of the models, their macro
F1, and their weighted-macro F1 are presented in
Table 3. We also present the ranking of the models
based on these scores in Appendix A.

PLM-based Models. The best-performing mod-
els across all corpora and metrics are PLM-based
models. In six out of nine rankings, BERT and
RoBERTa are ranked as the top two models. The
sole exception is NEG, where BERT is the second
worst model. The benefit of using PLMs is the
largest on the WSJ corpus. For example, RoBERTa
improves the macro F1 score from 69.63 (i.e., the
performance of the best ML-based model) to 82.70.

ML-based Models. In contrast to the robust per-
formance of the PLM models, the performance of
the classic ML models is more corpus-dependent.
In the case of MSR and NEG, ICSI is the best-
performing model, while in the case of wWSJ, it
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is at the bottom section of the rankings. Another
interesting observation is the performance of the
UDel models. In terms of accuracy, UDel has the
highest performance in NEG, while it has the low-
est performance in both MSR and WSJ. In terms of
macro-F1 rankings, the NEG UDel model dropped
from first to last place, whereas BERT improved
from penultimate place to second place. In general,
our ML models yielded lower scores than the orig-
inal models used in the GREC study (Belz et al.,
2009). This could be attributed to a variety of fac-
tors, including differences in feature engineering
and model parameters.

Comparing Different Metrics. Upon comparing
average scores across the three metrics, we observe
that for MSR and NEG, PLMs are clear winners only
when macro-F1 is the metric in question. However,
for wsi, PLMs are winners on all three metrics.
This may be because the distribution of categories
in WSJ is much more balanced than in the other
two corpora.

7 Analysis

To further compare the different models and inves-
tigate the impact of the choice of corpus, we con-
duct (1) a Bayes Factor (BF) analysis to determine
whether the accuracy rates reported in Section 6
come from similar or different distributions, (2) a
per-class evaluation of predictions to assess the suc-
cess of each model in predicting individual classes,
(3) a correlation analysis to quantify how the evalu-
ation results change with respect to the choice of a
corpus, and (4) a feature selection study to check
how the importance of each feature changes as a
function of the choice of corpus.



MSR NEG WSJ
Model Category P R F P R F P R F
description  55.36  19.38 28.71 0.00 0.00 0.00 6029 6295 61.59
Udel name 7239 6221 66.92 76.65 80.32 7844 60.42 4944 54.38
pronoun 64.53 88.51 7464 84.06 92.14 8791 71.00 83.44 76.72
description  51.69 38.12 43.88 100.00 17.74 30.13 81.92 40.53 54.22
ICSI name 80.33 66.82 7295 81.85 73.14 7725 55.12 8640 6737
pronoun 6941 8739 7737 79.05 9476 86.19 72.17 69.61 70.86
description  53.68 31.88 40.00 75.00 1452 2433 6431 63.67 63.30
CNTS name 76.79 6175 6845 7784 7287 7527 60.34 66.75 63.38
pronoun 66.16 88.51 7572 7932 9214 8525 7190 6254 66.89
description  53.57 28.12 36.88 100.00 4.84 923 7270 5691 63.84
osu name 69.39 6843 6891 79.01 72.07 7538 63.56 7330 68.08
pronoun 69.20 8198 75.05 7927 9520 86.51 7343 80.87 76.97
description 57.97 25.00 3493 77.78 11.29 19.72 73.88 63.41 68.25
ISG name 7146 6521 68.19 71.77 79.79 7557 62.19 76.64 68.66
pronoun 65.10 84.01 7336 8230 84.28 8328 7536 6736 71.14
description  52.86 4625 49.33  62.71 59.68 61.16 82.63 79.37 80.97
BERT name 7435 7281 7357 7732 7527 7628 79.64 82.69 81.14
pronoun 74.84 7973 7721 80.04 8231 81.16 80.48 80.87 80.67
description  56.33 55.62 5597 7647 6290 69.02 86.19 7740 81.56
RoBERTa name 76.50 6452 70.00 78.70 80.59 79.63 7722 89.25 82.80
pronoun 7140 82.66 76.62 83.04 83.41 8322 8647 81.19 83.75

Table 4: Per-class precision, recall and F1 score of each label. The results report on training seven different
algorithms on three corpora for predicting three labels, namely description, name, and pronoun.

7.1 Bayes Factor Analysis

Given that the accuracy scores are provided for all
GREC systems in Belz et al. (2009), we chose to
focus our analysis on the raw distributions of these
scores. Our aim is to determine if there are signifi-
cant differences between the accuracies of our mod-
els by comparing these distributions. We conduct
a Bayes Factor analysis with a beta distribution of
0.01 (henceforth: the threshold). This analysis aims
to assess, for each pair of accuracies, how strong
the evidence is that they come from a common
distribution, or from different ones. A difference
below the threshold indicates that accuracy rates
come from similar distributions; whereas, a differ-
ence above the threshold indicates that they come
from different distributions, thus signalling that
they differ evidentially. We interpret the strength of
the evidence in favour of/against similar/different
distributions according to Kass and Raftery (1995).
Therefore, based on this approach, we expect that
the raw accuracy distributions of the best- and
worst-performing models for each corpus differ
evidentially.

For MSR, the comparison between the best- and
worst-performing models, namely BERT and UDel,
provides no evidence that their accuracy rates are

evidentially different from each other (BF = 1.4).
The same holds for NEG, where the comparison of
the best (UDel and RoBERTa) and worst (IS-G) mod-
els appear to have similar probability distributions;
therefore, these models are not evidentially differ-
ent from each other. Conversely, in the case of WSJ,
the BF analysis provides strong evidence that the
accuracy distributions of the top-performing mod-
els, BERT and RoBERTa, are different from those of
the classic ML models.

To summarise, we only observed significant dif-
ferences in the wWsJ-based models; the GREC mod-
els show more or less the same accuracy distri-
butions. A reason might be that the aggregated
calculation of accuracy loses the specificity of the
classes being calculated.

7.2 Per-class Evaluation

As mentioned earlier, the NEG models demonstrate
high accuracy (e.g. the highest average accuracy),
but we observe a sharp decline in their macro-F1
values. In this analysis, we want to investigate
whether the accuracy scores reported in Table 3
truly reflect the success of these algorithms or if
they are merely the by-product of over-generating
the dominant label or under-generating the less
frequent label. Table 4 presents the per-class preci-
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sion, recall, and F1 scores of these models.

Upon comparing the F1 scores for the class de-
scription across the three corpora, we observe that
the WSJ models consistently achieve the highest
scores, with all algorithms exceeding an F1 score
of 50. In contrast, the F1 scores for both MSR and
NEG are considerably lower than those of wWsJ. The
F1 scores for NEG are particularly low, with two
notable instances, UDel and OSU, scoring 0 and be-
low 10 respectively. The poor prediction of the
class description by the classic ML NEG models is
likely due to an insufficient number of instances in
the training dataset, thereby hindering the proper
training of the algorithms. In contrast, the two
PLM models demonstrate acceptable performance
in predicting the class description (BERT = 61.16
& RoBERTa = 69.02). This could indicate that pre-
trained language models are advantageous where
there is a class imbalance.

Another interesting observation concerns the
high recall of the “pronoun” prediction in the NEG
models. Four of the classic models have a recall
of over 92. In the case of 0SU, for example, the
recall is 95, which means that of all the cases that
are pronouns, 95% are labelled correctly. This
is possibly an indication that pronouns have been
over-generated in this system. In the PLM models,
the recall is below 84.

In sum, the results of our per-class evaluation
show the difficulties that the classic ML-based NEG
models had in predicting the class description. The
MSR models also had poor performance in pre-
dicting descriptions, yet they were more success-
ful than NEG. These results tentatively suggest
that feature-based classification models need to be
trained on an adequate and relatively balanced num-
ber of instances to reliably predict all classes. The
results of this study suggest that the PLM models
are less dependent on the choice of corpus, and
therefore predict classes more robustly.

7.3 Correlation Analysis

To quantify how the evaluation results change with
respect to corpora, we compute the Spearman cor-
relation coefficient between every pair of corpora,
indicating how the rank of the models changes. Ta-
ble 5 shows the computed coefficients along with
the p-values of the tests. It is noteworthy that
only the results evaluated by the macro-weighted
F1 on MSR and NEG are significantly correlated
(p < .001).
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acc F1 wF1

vsp/npg  Te 0-10810.9643  0.4643
p 0.8175 0.0005 0.2939
vsg/wsy Te 02857 0.5357  0.4643
p 05345 02152 0.2939
NEG/wsy s 0126105000 -0.0357
p 0.7876 0.2532 0.9394

Table 5: Spearman correlation coefficient ¢ and the p-
value between every pair of corpora in terms of accuracy,
macro-averaged F1, and weighted F1.

The lack of correlation between the results on
MSR/WSJ and those on NEG/WSJ suggests that us-
ing a corpus of a different genre could greatly in-
fluence the ranking of the models and, therefore,
make the conclusions difficult to generalise. Addi-
tionally, these results are in line with the fact that
MSR and NEG are from the same source, both being
the introductory part of Wikipedia articles, and a
higher correlation is to be expected. Also, we may
conclude that macro-averaged F1 is a more reliable
evaluation metric (see the discussions in Section 6,
Section 7.1, and Section 7.2).

7.4 Feature Selection Study

We performed a feature importance analysis to
check whether the contribution of linguistic factors
changes depending on the choice of the corpus. We
used XGBoost from the family of Gradient Boost-
ing trees (Chen and Guestrin, 2016) and then com-
puted the permutated variable importance for each
model. Data were analysed in two ways: firstly,
we used the complete dataset, as outlined in Sec-
tion 5; secondly, we excluded first-mention REs to
concentrate only on subsequent mentions. Consid-
ering that the choice of a referent’ first mention is
less context-dependent, we only report on the latter
dataset below:

As expected, the ranking of feature importance
varies across different corpora. However, a substan-
tial overlap is observed when considering the most
important features across the three corpora. An
example is the semantic category of the REs that is
used in various MSR and WSJ REG models.* In the
case of MSR, the REs belong to five semantic cate-
gories: human, city, country, river, and mountain.
In the case of wWsJ, the REs are annotated for a wide

4Only human referents are annotated in NEG; therefore,
this feature is not applicable.
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Figure 2: Different rankings of the features in MSR, NEG, and WSJ OSU models.

range of categories including human, city, country,
organisation, objects, etc. Notably, in every model
that employs semantic category information, this
feature has either the highest or second-highest im-
portance ranking. A plausible explanation could be
that humans use different referencing strategies to
refer to different categories of referents.

In addition to the semantic category, the gram-
matical role of the RE and the categorical sentential
distance to the antecedent consistently have a high
importance ranking. The grammatical role marks
the distinction between subject, object, and deter-
miner roles. The categorical distance in the number
of sentences provides information on how far an
RE is to its nearest coreferential antecedent. For
instance, whether they are both in the same sen-
tence or are separated by one or more sentences.
Figure 2 illustrates the importance rankings of the
0SU features in the three corpora. Other importance
ranking graphs are available in Appendix C. For a
comprehensive description of all features employed
in classic ML models and the feature importance
analysis, refer to Same and van Deemter (2020).

8 Discussion

In this paper, we have conducted a series of re-
productions, evaluations, and analyses to check
whether the conclusions of GREC are still true af-
ter 15 years. Below, we summarise and discuss
our findings in accordance with our three research
questions in Section 3. We also report our post-hoc
observations on the choice of evaluation metric.

Performance of REG Algorithms. To answer
research question Rs, we extended the GREC by
introducing a corpus of a different genre, WSJ, and
two pre-trained (PLM-based) REG models. We
found that, on MSR, PLM-based and ML-based

models perform similarly, as confirmed by both the
BF and per-class analyses. With regards to NEG,
PLM-based and ML-based models have similar
accuracy scores, as confirmed by the BF analy-
sis, but there are large differences when micro-F1
is used, as confirmed by the per-class evaluation
(i.e., ML-based models have difficulty predicting
descriptions). On WSJ, PLM-based models are the
clear winners.

These results suggest that, in terms of explana-
tory power, PLM-based models have good per-
formance and good “direct support”, i.e., a good
ability to generalise to different contexts (see van
Deemter (2023) for further discussion). Whether
they have good “indirect support” (e.g., whether
their predictions are in line with linguistic theories)
needs to be investigated in further probing studies.

Impact of the Choice of Corpus. As our eval-
uations and analyses demonstrate, the choice of
corpus plays a crucial role in assessing REG algo-
rithms. This role is twofold. Firstly, the choice of
corpus strongly influences the evaluation results,
pertaining to the research question R1. Secondly,
in addition to the score differences discussed in
Section 6, we found that: (1) the difference be-
tween PLM-based and ML-based models on WSJ is
larger (and evidentially different) than on MSR and
NEG models (as evidenced by the BF analysis); (2)
the correlations of the evaluation results between
WST and both MSR and NEG are not significant.

For R3, we conducted feature selection analyses
across the three corpora, discovering that the im-
portance of the features ranks differently for each
corpus. This suggests that when investigating the
“indirect support” for a model, one needs to aggre-
gate findings from multiple corpora with different
genres.
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The Use of Evaluation Metrics. As we dis-
cussed in Section 6.2, different metrics evaluate
different aspects of a model. This was further as-
certained by the inconsistency of the BF analysis
and per-class analysis. One lesson we have learned
is that it is not enough to report or do analyses on a
single metric. Another lesson is that the evaluation
results by macro-F1 are more reliable than other
metrics because (1) they are consistent across cor-
pora with similar genres (i.e., MSR and NEG; see
the Correlation analysis results); (2) the differences
identified by using macro-F1 can be confirmed by
the per-class evaluation.

9 Conclusion

We are now in a position to address the question
that we raised in the Introduction: Can the conclu-
sions from the GREC shared tasks still be trusted?
By examining a wider class of corpora, models,
and evaluation metrics than before, we found that
the answer to this question is essentially negative
since the GREC conclusions are prone to drastic
change once a different corpus or a different metric
is employed.

Perhaps this should come as no surprise. Ac-
cording to a widely accepted view of scientific
progress (e.g., Jaynes (2002); applied to NLP in
(van Deemter, 2023)), theories should be updated
again and again in light of new data (i.e., indirect
Support), and when new models are proposed, the
plausibility of existing models should be compared
against the plausibility of these new models (as
well as pre-existing ones). New metrics deserve a
place in this story as well, even though they are of-
ten overlooked. In other words, what we have seen
in the present study is nothing more than science in
progress — something we are bound to see more of
as the enterprise called NLP-as-Science matures.
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stance. In the future, we plan to investigate this
phenomenon and find ways to mitigate it.

Supplementary Materials Availability State-
ment: All associated data, source code, out-
put files, scripts, documentation, and other rel-

evant material to this paper are publicly avail-
able and can be accessed on our GitHub
repository: https://github.com/fsame/REG_
GREC-WSJ, DOI: 10.5281/zenodo.8182689.

Acknowledgements: We thank the anonymous re-
viewers for their helpful comments. Fahime Same
is supported by the German Research Foundation
(DFG)- Project-ID 281511265 — SFB 1252 “Promi-
nence in Language”.

References

Anja Belz, Eric Kow, Jette Viethen, and Albert Gatt.
2008. The GREC challenge 2008: Overview and
evaluation results. In Proceedings of the Fifth Inter-
national Natural Language Generation Conference,
pages 183-193, Salt Fork, Ohio, USA. Association
for Computational Linguistics.

Anja Belz, Eric Kow, Jette Viethen, and Albert Gatt.
2009. Generating referring expressions in context:
The GREC task evaluation challenges. In Empirical
methods in natural language generation, pages 294—
327. Springer.

Emily M Bender, Timnit Gebru, Angelina McMillan-
Major, and Shmargaret Shmitchell. 2021. On the
dangers of stochastic parrots: Can language models
be too big. Proceedings of FAccT.

Bernd Bohnet. 2008. IS-G: The comparison of differ-
ent learning techniques for the selection of the main
subject references. In Proceedings of the Fifth Inter-
national Natural Language Generation Conference,
pages 192-193, Salt Fork, Ohio, USA. Association
for Computational Linguistics.

Meng Cao and Jackie Chi Kit Cheung. 2019. Refer-
ring expression generation using entity profiles. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3163—
3172, Hong Kong, China. Association for Computa-
tional Linguistics.

Thiago Castro Ferreira, Diego Moussallem, Akos Kadar,
Sander Wubben, and Emiel Krahmer. 2018. Neural-
REG: An end-to-end approach to referring expres-
sion generation. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1959-1969,
Melbourne, Australia. Association for Computational
Linguistics.

Thiago Castro Ferreira, Chris van der Lee, Emiel
van Miltenburg, and Emiel Krahmer. 2019. Neu-
ral data-to-text generation: A comparison between
pipeline and end-to-end architectures. In Proceed-
ings of the 2019 Conference on Empirical Methods

101


https://github.com/fsame/REG_GREC-WSJ
https://github.com/fsame/REG_GREC-WSJ
https://doi.org/10.5281/zenodo.8182689
https://aclanthology.org/W08-1127
https://aclanthology.org/W08-1127
https://aclanthology.org/W08-1128
https://aclanthology.org/W08-1128
https://aclanthology.org/W08-1128
https://doi.org/10.18653/v1/D19-1312
https://doi.org/10.18653/v1/D19-1312
https://doi.org/10.18653/v1/P18-1182
https://doi.org/10.18653/v1/P18-1182
https://doi.org/10.18653/v1/P18-1182
https://doi.org/10.18653/v1/D19-1052
https://doi.org/10.18653/v1/D19-1052
https://doi.org/10.18653/v1/D19-1052

in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 552-562, Hong
Kong, China. Association for Computational Lin-
guistics.

Guanyi Chen, Fahime Same, and Kees van Deemter.
2021. What can neural referential form selectors
learn? In Proceedings of the 14th International
Conference on Natural Language Generation, pages
154-166, Aberdeen, Scotland, UK. Association for
Computational Linguistics.

Guanyi Chen, Fahime Same, and Kees van Deemter.
2023. Neural referential form selection: General-
isability and interpretability. Computer Speech &
Language, 79:101466.

Tiangi Chen and Carlos Guestrin. 2016. XGBoost: A
scalable tree boosting system. In Proceedings of the
22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’16,
page 785-794, New York, NY, USA. Association for
Computing Machinery.

Rossana Cunha, Thiago Castro Ferreira, Adriana
Pagano, and Fabio Alves. 2020. Referring to what
you know and do not know: Making referring ex-
pression generation models generalize to unseen en-
tities. In Proceedings of the 28th International Con-
ference on Computational Linguistics, pages 2261—
2272, Barcelona, Spain (Online). International Com-
mittee on Computational Linguistics.

Walter Daelemans, Jakub Zavrel, Ko van der Sloot, and
Antal van den Bosch. 2007. Timbl: Tilburg memory-
based learner.

Benoit Favre and Bernd Bohnet. 2009. ICSI-CRF:
The generation of references to the main subject and
named entities using conditional random fields. In
Proceedings of the 2009 Workshop on Language Gen-
eration and Summarisation (UCNLG+Sum 2009),
pages 99—-100, Suntec, Singapore. Association for
Computational Linguistics.

Charles Greenbacker and Kathleen McCoy. 2009a.
UDel: Generating referring expressions guided by
psycholinguistc findings. In Proceedings of the 2009
Workshop on Language Generation and Summarisa-
tion (UCNLG+Sum 2009), pages 101-102, Suntec,
Singapore. Association for Computational Linguis-
tics.

Charles F Greenbacker and Kathleen F McCoy. 2009b.
Feature selection for reference generation as in-
formed by psycholinguistic research. In Proceed-
ings of the CogSci 2009 Workshop on Production of
Referring Expressions (PRE-Cogsci 2009).

Samir Gupta and Sivaji Bandopadhyay. 2009. Junlg-
msr: A machine learning approach of main subject
reference selection with rule based improvement. In
Proceedings of the 2009 Workshop on Language Gen-
eration and Summarisation, pages 103—104. Associ-
ation for Computational Linguistics.

Iris Hendrickx, Walter Daelemans, Kim Luyckx, Roser
Morante, and Vincent Van Asch. 2008. CNTS:
Memory-based learning of generating repeated refer-
ences. In Proceedings of the Fifth International Natu-
ral Language Generation Conference, pages 194-95,
Salt Fork, Ohio, USA. Association for Computational
Linguistics.

Renate Henschel, Hua Cheng, and Massimo Poesio.
2000. Pronominalization revisited. In Proceedings
of the 18th conference on Computational linguistics-
Volume 1, pages 306-312. Association for Computa-
tional Linguistics.

Eduard Hovy, Mitchell Marcus, Martha Palmer, Lance
Ramshaw, and Ralph Weischedel. 2006. Ontonotes:
the 90% solution. In Proceedings of the human lan-
guage technology conference of the NAACL, Com-
panion Volume: Short Papers, pages 57-60.

Emily Jamison and Dennis Mehay. 2008. OSU-2: Gen-
erating referring expressions with a maximum en-
tropy classifier. In Proceedings of the Fifth Inter-
national Natural Language Generation Conference,
pages 196197, Salt Fork, Ohio, USA. Association
for Computational Linguistics.

E.T. Jaynes. 2002. Probability Theory: The Logic of
Science. Cambridge University Press, Cambridge,
UK.

Robert E Kass and Adrian E Raftery. 1995. Bayes fac-
tors. Journal of the american statistical association,
90(430):773-795.

Andrej A Kibrik, Mariya V Khudyakova, Grigory B
Dobrov, Anastasia Linnik, and Dmitrij A Zalmanov.
2016. Referential choice: Predictability and its limits.
Frontiers in psychology, 7(1429).

Emiel Krahmer and Kees van Deemter. 2012. Computa-
tional generation of referring expressions: A survey.
Computational Linguistics, 38(1):173-218.

Max Kuhn, Steve Weston, Mark Culp, Nathan Coulter,
and Ross Quinlan. 2018. Package ‘c50’.

Kathleen E. McCoy and Michael Strube. 1999. Gen-
erating anaphoric expressions: Pronoun or definite
description? In The Relation of Discourse/Dialogue
Structure and Reference.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Olga Uryupina, and Yuchen Zhang. 2012. CoNLL-
2012 shared task: Modeling multilingual unrestricted
coreference in OntoNotes. In Joint Conference on
EMNLP and CoNLL - Shared Task, pages 1-40, Jeju
Island, Korea. Association for Computational Lin-
guistics.

Ehud Reiter. 2017. A commercial perspective on ref-
erence. In Proceedings of the 10th International
Conference on Natural Language Generation, pages
134-138, Santiago de Compostela, Spain. Associa-
tion for Computational Linguistics.

102


https://aclanthology.org/2021.inlg-1.15
https://aclanthology.org/2021.inlg-1.15
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.18653/v1/2020.coling-main.205
https://doi.org/10.18653/v1/2020.coling-main.205
https://doi.org/10.18653/v1/2020.coling-main.205
https://doi.org/10.18653/v1/2020.coling-main.205
https://aclanthology.org/W09-2818
https://aclanthology.org/W09-2818
https://aclanthology.org/W09-2818
https://aclanthology.org/W09-2819
https://aclanthology.org/W09-2819
https://aclanthology.org/W08-1129
https://aclanthology.org/W08-1129
https://aclanthology.org/W08-1129
https://aclanthology.org/W08-1130
https://aclanthology.org/W08-1130
https://aclanthology.org/W08-1130
https://doi.org/10.1162/COLI_a_00088
https://doi.org/10.1162/COLI_a_00088
https://www.aclweb.org/anthology/W99-0108
https://www.aclweb.org/anthology/W99-0108
https://www.aclweb.org/anthology/W99-0108
https://aclanthology.org/W12-4501
https://aclanthology.org/W12-4501
https://aclanthology.org/W12-4501
https://doi.org/10.18653/v1/W17-3519
https://doi.org/10.18653/v1/W17-3519

Fahime Same, Guanyi Chen, and Kees Van Deemter.
2022. Non-neural models matter: a re-evaluation
of neural referring expression generation systems.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 5554-5567, Dublin, Ireland.
Association for Computational Linguistics.

Fahime Same and Kees van Deemter. 2020. A linguis-
tic perspective on reference: Choosing a feature set
for generating referring expressions in context. In
Proceedings of the 28th International Conference
on Computational Linguistics, pages 4575-4586,
Barcelona, Spain (Online). International Committee
on Computational Linguistics.

Kees van Deemter. 2016. Computational models of
referring: a study in cognitive science. MIT Press.

Kees van Deemter. 2023. Dimensions of explanatory
value in nlp models. Computational Linguistics.

Ralph Weischedel, Martha Palmer, Mitchell Marcus, Ed-
uard Hovy, Sameer Pradhan, Lance Ramshaw, Nian-
wen Xue, Ann Taylor, Jeff Kaufman, Michelle Fran-
chini, et al. 2013. Ontonotes release 5.0 1dc2013t19.
Linguistic Data Consortium, Philadelphia, PA, 23.

A Ranking of the Models

Accuracy-based Ranking

MSR: BERT > ICSI > RoBERTa > CNTS > OSU >
IS-G > UDel
NEG: UDel = RoBERTa > ICSI > OSU > CNTS >
BERT > IS-G
WSJ: RoBERTa > BERT > OSU > IS-G > ICSI >
CNTS > UDel

Macro-F1 Ranking

MSR: RoBERTa > BERT > ICSI > CNTS > OSU >
IS-G > UDel

NEG: RoBERTa > BERT > ICSI > CNTS > IS-G >
0SU > UDel

WSJ: RoBERTa > BERT > OSU > IS-G > CNTS >
UDel > ICSI

Macro-weighted F1 Ranking

MSR: BERT > RoBERTa > ICSI > CNTS > OSU >
IS-G > UDel

NEG: RoBERTa > ICSI > UDel > BERT > CNTS >
0SU > IS-G

WSJ: RoBERTa > BERT > IS-G > OSU > CNTS >
ICSI > UDel

B Implementation Details for ML-based
Models

The R programming language was used mostly for
running the classic ML models. The specification
of the models can be found below:

Conditional Random Field [CRF]. The R Pack-
age CRF (https://cran.r-project.org/web/
packages/crfsuite/) was used to train these
models. The iterations are set to 3000, and the
learning method is Stochastic Gradient Descent
with L2 regularization term (12sgd).

Decision Tree [C5.0]. The R Package C5.0
(Kuhn et al., 2018) was used to build the decision
trees. The number of boosting iterations (trials) is
set to 3, and the splitting criterion is information
gain (entropy).

Memory-Based Learning [MBL]. As men-
tioned before, we implemented the k-Nearest
Neighbors [KNN] algorithm instead of MBL. The
R package caret with the method KNN was used to
implement this model.
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Maximum Entropy [MaxEnt]. The multinom
algorithm from the nnet R package was used to
implement this model.

Multi-Layer Perceptron [MLP]. The Keras
package was used to implement MLP. The model
consists of two hidden layers with 16 and 8 units,
respectively. The hidden layers use the rectified
linear activation function (ReLU), and the output
layer uses the Sigmoid activation function. The
model is fitted for 50 training epochs. In addition,
50 samples (batch size) are propagated through the
network.

eXtreme Gradient Boosting [ XGBoost]. XG-
Boost was used for the feature selection exper-
iments. We used the R packages xgboost and
DALEXtra for the analysis. We set the learning
rate to 0.05, the minimum split loss to 0.01, the
maximum depth of a tree to 5, and the sub-sample
ratio of the training instances to 0.5.

C Feature Importance Rankings

The graphs in Figure 3 show the rankings across
MSR, WSJ, and WSJ. A maximum number of eight
features is depicted in the graphs.
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Figure 3: Importance ranking of the features in MSR, NEG, and WSJ models.
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