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Abstract

Good figure captions help paper readers under-
stand complex scientific figures. Unfortunately,
even published papers often have poorly written
captions. Automatic caption generation could
aid paper writers by providing good starting
captions that can be refined for better quality.
Prior work often treated figure caption genera-
tion as a vision-to-language task. In this paper,
we show that it can be more effectively tackled
as a text summarization task in scientific docu-
ments. We fine-tuned PEGASUS, a pre-trained
abstractive summarization model, to specifi-
cally summarize figure-referencing paragraphs
(e.g., “Figure 3 shows...”) into figure captions.
Experiments on large-scale arXiv figures show
that our method outperforms prior vision meth-
ods in both automatic and human evaluations.
We further conducted an in-depth investigation
focused on two key challenges: (i) the common
presence of low-quality author-written captions
and (ii) the lack of clear standards for good
captions. Our code and data are available at:
https://github.com/Crowd-AI-Lab/Gen
erating-Figure-Captions-as-a-Text-S
ummarization-Task.

1 Introduction

In scientific documents, effective figure captions
help readers understand complex figures like bar
charts, line charts, or pie charts. These captions de-
scribe the images and often include necessary con-
text from the document’s full text (Durbin, 2004).
Unfortunately, even published papers often have
poorly-written captions. As per our analysis (Sec-
tion 8.2), around 53.88% of line charts’ captions
in arXiv cs.CL papers are found to be unhelpful
for NLP readers. Automatic caption generation
could aid paper writers by providing good starting
captions that can be refined for better quality.

Previous research typically approached figure
caption generation as a vision-to-language task, i.e.,

*Equal contribution.

creating captions based on the image. For instance,
Hsu et al. (2021) used an end-to-end approach with
CNN+RNN structures, which extracted feature rep-
resentation from the image and converted it into
caption text. Qian et al. (2021) took a slightly
different approach: first understanding what is in
the image, pulling out key information, and then
using a preset template to create the caption. How-
ever, although achieving some success in synthetic
data (Kahou et al., 2017; Kafle et al., 2018; Chen
et al., 2020a; Zhu et al., 2021), these approaches
often struggled to caption real-world figures. For
example, Hsu et al. (2021)’s end-to-end approach,
trained and tested using arXiv figures, achieved a
BLEU-4 score of only 2.91.

In this paper, we argue that figure captioning in
scientific documents can be more effectively tack-
led as a text-summarization task: The caption
can be generated by summarizing the paragraphs
mentioning the figure (as shown in Figure 1.) Sci-
entific figures typically come with extensive text
in the scientific document that can aid caption gen-
eration. Our analysis (Section 5) shows that, in
arXiv, over 75% of words in figure captions can be
aligned with the words in the paragraphs referenc-
ing those figures, which motivates our approach.
The automatic evaluation shows that summarizing
paragraphs referencing the figures results in bet-
ter captions than prior vision-based methods. In a
human evaluation by external domain experts, our
best-performing model’s captions were preferred
over the original captions 46.67% of the time.

We further conducted an in-depth investigation
focused on two key challenges: (i) the common
presence of low-quality author-written captions and
(ii) the lack of clear standards for good captions.
Surprisingly, 53.88% of the author-written captions
in our sample was deemed unhelpful. This has
implications for the design of future captioning
systems, underscoring the influence of data quality
on captioning performance.

https://github.com/Crowd-AI-Lab/Generating-Figure-Captions-as-a-Text-Summarization-Task
https://github.com/Crowd-AI-Lab/Generating-Figure-Captions-as-a-Text-Summarization-Task
https://github.com/Crowd-AI-Lab/Generating-Figure-Captions-as-a-Text-Summarization-Task
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Figure 1: Figure captioning can be addressed as a text-summarization task. The figure’s caption can be generated by
summarizing the paragraphs mentioning the figure. The caption is generated by the model PegasusP+O+B . The
example shown in this figure is extracted from the paper (Doulaty et al., 2015).

2 Related Work

Prior figure captioning works can be broadly cat-
egorized into two approaches: caption generation
(i) based on the image of the figure or (ii) based on
the data chart underlying the figure.

Earlier image-based approaches focused on auto-
mated image understanding, which involved pars-
ing images to extract the figure’s key attributes and
converting parsed data into captions, e.g., using pre-
defined templates (Kahou et al., 2017; Kafle et al.,
2018; Methani et al., 2020; Qian et al., 2021; Siegel
et al., 2016). Recently, with the advance of deep
learning, more works are adopting an end-to-end
paradigm, generating captions straight from the
neural representations of images (Mahinpei et al.,
2022; Pelka et al., 2021; Hsu et al., 2021; Chen
et al., 2019; Kantharaj et al., 2022; Chen et al.,
2020a). Our work contrasts with prior studies by
focusing on text to generate captions instead of vi-
suals. To the best of our knowledge, no existing
figure-caption datasets explicitly contain the fig-
ures’ accompanying documents (Pelka et al., 2021;
Hsu et al., 2021; Chen et al., 2019), as this task has
generally been approached as a vision task. Most
recently, a knowledge-augmented image caption-
ing method that uses both image and text data was
introduced (Yang et al., 2023), suggesting the po-
tential of using text from documents.

Some approaches generate captions using the
underlying tabular data of a figure rather than
the figure’s image. Earlier approaches often em-
ployed rule-based techniques (Corio and Lapalme,
1999; Demir et al., 2008; Fasciano and Lapalme,
1996; Mittal et al., 1998), while newer ones fa-
vor learning-based methods (Barzilay and Lapata,
2005; Wiseman et al., 2017; Moraes et al., 2014;
Zhu et al., 2021; Kantharaj et al., 2022; Obeid
and Hoque, 2020; Reiter et al., 2005; Parikh et al.,

2020; Chen et al., 2020b; Gong et al., 2019; Su
et al., 2021; Chen et al., 2020c). Despite these ap-
proaches’ ability to utilize tabular and meta data,
they necessitate access to the figure’s raw data.
Contrarily, our work uses the rich textual informa-
tion in scientific documents to generate captions.

3 Problem Statement and Terminology

A document D contains n figures, F1 to Fn, where
Fi has a caption Ci that was written by the doc-
ument author. In document D, j sentences, Mi,1

to Mi,j , explicitly mention Fi (e.g., “As shown in
Fi...”). The objective of this work is to automati-
cally generate a high-quality caption, C ′

i, for figure
Fi using only its mentions (Mi,1 to Mi,j) and the
surrounding text of the mentions in document D.

In the rest of the paper, we use these terms:

• A “Mention” refers to a sentence in a document
that explicitly mentions the target figure, e.g.,
“As shown in Figure 6...” If there are multiple
Mentions, the first Mention is referred to.

• A “Paragraph” refers to a section of text con-
taining a Mention. In this work, the boundaries
of a Paragraph are determined by the <p> tag
produced by PDF parsing.

• Sentences near a Mention may contain relevant
information, so we extracted n preceding sen-
tences and m following sentences to form the
“Window[n, m]” text snippet. For instance,
“Window[1, 2]” refers to a snippet of four sen-
tences, including one preceding sentence, the
Mention sentence, and two following sentences.

• An “OCR” refers to the textual information (e.g.,
legends, labels, etc.) extracted from the image,
by optical character recognition (OCR) software.
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Source Random Mention Paragraph OCR Window[0, 1] Window[1, 0] Window[1, 1] Window[2, 2]

S P - +OCR - +OCR - - +OCR - +OCR - +OCR - +OCR

Caption 35.23 44.43 53.43 60.16 75.19 76.68 34.75 60.85 65.43 59.09 64.19 65.20 68.73 69.09 71.77
Source 32.52 19.52 39.51 18.78 12.53 9.39 20.79 30.49 17.19 32.40 17.33 25.10 15.55 19.84 13.45

Table 1: Macro coverage rates (percentage) between captions and relevant texts (S: Sentence and P: Paragraph).
Caption coverage gives the percentage of words in the caption that can be found in the source texts and vice versa
(punctuation and stop words are excluded.) The results show that 76.68% of the words in captions could be found in
Paragraph+OCR, motivating us to generate captions by text summarization.

4 Dataset

Before diving into our experiments and analyses,
we first describe the dataset upon which our study
is grounded. Our results are based on a scientific
figure caption dataset, SCICAP, and several pre-
processing steps to fit it into our workflow.

SCICAP is a dataset that contains over 416,000
line charts and captions extracted from more than
290,000 arXiv papers (Hsu et al., 2021). It was one
of the first large-scale figure-captioning datasets
based on real-world scientific figures. However,
it does not contain the paragraphs that mention
the figure. To address this, we downloaded all the
PDF files of the original arXiv papers used in SCI-
CAP and extracted all the Mentions and Paragraphs
as outlined in Section 6.1. Detailed information
on preprocessing, including the dataset resplit and
OCR extraction, are described in Appendix B.

5 Motivating Analysis

To understand the correlation between mentions
and captions, we performed a series of analyses
using the data described in Section 4. Specifically,
we investigated the extent to which the words in
the figure captions are represented in the corre-
sponding figure-mentioning paragraphs. We used
awesome-align (Dou and Neubig, 2021) to obtain
the alignment between the source texts (mentions,
paragraphs, and OCRs) and captions. Awesome-
align compared the similarity of the words’ con-
textual embeddings and assigned an alignment be-
tween words if the similarity passed a threshold.
We used SciBERT (Beltagy et al., 2019) to obtain
contextual embeddings and softmax threshold =
0.99 to reduce false alignments.

After obtaining the alignments, we computed
what percentage of information in the caption could
be found in the source texts. The results shown
in Table 1 indicate that 76.68% of the caption’s
information could be found in Paragraph and
OCR, motivating us to generate figure captions by

summarizing Paragraph. We also observed that a
randomly selected sentence and paragraph from the
same paper can cover 35.23% and 44.43% of the
caption, respectively, showing that there was some
generic information-sharing across the paper. We
also conducted a study using the exact overlapping
(i.e., BLEU score) in Appendix A.

6 Generating Figure Captions as a Text
Summarization Task

Figure 1 overviews the proposed pipeline. This
section describes each step of the pipeline.

6.1 Extracting Mentions and Paragraphs

The system first extracts Mentions and their asso-
ciated Paragraphs (as defined in Section 3.) In
this paper, we used Grobid (kermitt2, 2022), a
publicly-available tool for converting PDF files into
structured XML documents, to extract plain text
from the paragraphs (including the <p> tags) in
each paper. This plain text was then segmented
into sentences using BlingFire (microsoft, 2022).
We developed regular expressions to identify sen-
tences mentioning specific figures. For instance,
sentences such as “As shown in Figure 6, ...” were
first identified and then linked to Figure 6. To as-
sess the performance of these regular expressions,
we conducted a manual evaluation of 300 sam-
ples from our experimental dataset. The results
showed a high level of precision (99.58%) and re-
call (94.44%).

6.2 Generating Captions Using Text
Summarization Models

As shown in Figure 1, our system then auto-
matically summarizes all the extracted Mentions
(or Paragraphs) into a figure caption. In this
work, we used PEGASUS, an abstractive sum-
marization model (Zhang et al., 2020), and fine-
tuned it on our dataset. Five Pegasus models,
PegasusM , PegasusP , PegasusO, PegasusM+O,
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and PegasusP+O, were trained utilizing five dis-
tinct input combinations, including (i) Mention,
(ii) Paragraph, (iii) OCR output of the target
figure image, (iv) Mention+OCR, and (v) Para-
graph+OCR. PegasusP+O encompasses the most
of relevant information in the document and thus is
expected to yield the optimal summary.

Additionally, we built PegasusP+O+B , a spe-
cialized version of the model designed to be
trained on a subset of higher-quality captions,
(vi) Paragraph+OCR-Better. Given the absence
of reliable automated ways to assess the quality
of captions, we followed a guideline from pre-
vious studies indicating that longer captions en-
hance reader comprehension (Hartley, 2003; Gel-
man et al., 2002). We trained the model using
captions with 30 or more tokens. The average cap-
tion length was 26.8 tokens, so we set 30 tokens as
the threshold. The training was performed using
Paragraph+OCR inputs.

We identified two major challenges in generating
captions for scientific figures in real-world scenar-
ios. We discuss these challenges in the following
subsections, with an in-depth analysis in Section 8.

6.2.1 Challenge 1: Addressing Unreliable
Quality of Real-World Data

Low-quality captions often occur in scholarly ar-
ticles. Our analysis (see Section 8.1) showed that
50% of line charts’ author-written captions in arXiv
cs.CL papers were deemed unhelpful by domain
experts. The impact of this unreliable data qual-
ity is that developers could train and test caption-
ing models with unhelpful captions. The lack of
automatic methods for evaluating caption quality
makes it hard to identify suitable training exam-
ples and eliminate poor ones. To address this issue,
we included PegasusP+O+B that was trained on
longer captions, which is suggested by literature
to be more helpful to readers (Hartley, 2003; Gel-
man et al., 2002). To account for low-quality test
data, we conducted both human and automatic eval-
uations. The data quality of figure captions was
analyzed and is presented in Section 8.2.

6.2.2 Challenge 2: Defining a Clear Standard
for “Good” Figure Captions

The deeper issue is the lack of a set of well-defined
and actionable criteria for determining the use-
fulness of a figure caption. Although there are
guidelines for writing effective scientific figure
captions (Rougier et al., 2014; Biegel and Kamat,

2019), their translation into algorithmic models can
be challenging. From a modeling standpoint, the
lack of a clear goal presents a challenge, as it is
uncertain what to optimize for once fluency has
been achieved. In this paper, we focus on demon-
strating the feasibility of generating captions via
text summarization. Although we did not incorpo-
rate specialized goals in the model, we examine the
criteria for a “good” caption in Section 8.2.

7 Experimental Results

A Simple Baseline: Using Extracted Mentions as
Captions. Motivated by our information overlap
study (Section 5), we created the Reuse baselines.
These baselines simply repurpose portions of the
input text as the prediction.

Vision-to-Language Baselines. The vision-to-
language generation treated this task as an image-
captioning task that took the scientific figure im-
age as input and generated a text to describe it.
We compared two vision-to-language models as
baselines. First, we built a sequence-to-sequence
model by combining BEiT (Bao et al., 2022) and
GPT-2 (Radford et al., 2019). We also selected the
TrOCR (Li et al., 2021) model, a transformer-based
sequence-to-sequence model pre-trained for OCR
tasks. Compared to image encoders like ViT (Doso-
vitskiy et al., 2021) and BEiT (Bao et al., 2022),
which were trained on photos, OCR models trained
on printed and handwritten documents align more
closely with the scientific paper domain. All fig-
ures from SCICAP (106,391 training samples) were
used for training since no mentions were required.

Experimental Setup. A total of 14 methods were
included for comparison: six reuse baselines with
six input variations (M, P, W[0, 1], W[0, 2], W[1,
1], and W[2, 2]); five text summarization models
with five inputs (M, M+O, P, P+O, and O); one
text summarization model using P+O with con-
trolled data quality; and two vision-to-language
models (BEiT+GPT-2 and TrOCR). Note that we
use subscripts of M, P, W, O, B to denote the input
features: Mention, Paragraph, Window, OCR, and
Better data quality, respectively. The model train-
ing details and decoding configuration are provided
in Appendix C.

7.1 Automatic Evaluation Results

Conventional Automatic Evaluation. We used
F1 of ROUGE-1, ROUGE-2, ROUGE-L (Lin,
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Model Feature Length Rouge-1 (F1) Rouge-2 (F1) Rouge-L (F1) MoverScore BERTScore

Score Norm Score Norm Score Norm Score Norm Score Norm

Reuse

M 33.2 .291 1.346 .139 1.790 .239 1.401 .535 1.023 .628 1.064
P 238.3 .171 1.042 .089 1.006 .134 1.030 .503 1.004 .567 1.008
W[0, 1] 50.3 .281 1.216 .132 1.509 .224 1.273 .529 1.016 .620 1.048
W[0, 2] 68.0 .259 1.129 .123 1.341 .205 1.186 .524 1.013 .611 1.034
W[1, 1] 67.8 .266 1.156 .124 1.346 .204 1.183 .524 1.012 .613 1.037
W[2, 2] 98.7 .235 1.082 .112 1.179 .180 1.105 .517 1.007 .600 1.020

Pegasus

M 12.2 .321 1.898 .153 2.907 .283 1.971 .553 1.065 .654 1.158
M+O 12.8 .331 1.909 .161 2.945 .292 1.993 .556 1.071 .661 1.166
P 14.0 .374 2.067 .205 3.507 .334 2.201 .570 1.095 .682 1.196
P+O 14.0 .381 2.106 .212 3.635 .340 2.242 .571 1.097 .685 1.202
P+O+B 38.3 .321 1.452 .154 1.916 .265 1.537 .546 1.044 .639 1.082
O 12.1 .133 0.789 .026 0.495 .119 0.828 .518 0.998 .561 0.993

TrOCR Figure 10.0 .220 1.464 .073 1.653 .195 1.502 .534 1.033 .610 1.096
BEiT+GPT2 15.8 .164 0.864 .042 0.666 .144 0.917 .529 1.013 .592 1.031

Table 2: Task Performance with the best and second-best results highlighted. PegasusP+O, the text-summarization
model with all available information (Paragraph+OCR), performed the best in all four metrics. PegasusP+O+B , the
model trained with better captions, however, got lower scores.

Figure 2: The relationship between average text length and ROUGE-2 score (left: original ROUGE-2; right:
normalized ROUGE-2). The random baseline in the left figure shows that text lengths and scores are not independent.
For example, when the predicted text is shorter than 50 tokens, predicting longer texts generally results in a higher
ROUGE-2 score. The normalized scores indicate the proposed system’s performance gain over the random baseline
of the same length. PegasusP+O+B and ReuseM get closer to TrOCR after normalization, suggesting the need for
normalization for accurate interpretation of results.

2004; Nallapati et al., 2016), MoverScore (Zhao
et al., 2019), and BERTScore for automatic eval-
uation. When computing ROUGE scores using
rouge-score (google research, 2022), we turned
all text into lower case and stem words. As both
MoverScore and BERTScore are based on the se-
mantic similarity, we obtained contextual embed-
dings from SciBERT (Beltagy et al., 2019).

Automatic Evaluation with Normalization Over
Caption Length. ROUGE F1 tends to favor
longer texts within a certain length, leading to
a skewed comparison where models generating
longer texts receive higher scores (Sun et al., 2019).
We followed Sun et al. (2019)’s approach of nor-
malizing the scores with the corresponding random
baseline that generates texts of the same length.

Scorenormalized =
Score

Random(length)
(1)

where length is the average length of the texts
generated by the target system. We estimated
Random(length) by applying linear interpola-
tion on several (length, random score) pairs. The
(length, random score) pairs were obtained by ran-
domly selecting a certain number of sentences (1,
2, ..., 10 sentences) from the input paragraph as the
prediction. To get random scores of texts shorter
than a single sentence (around 30 tokens), we trun-
cated sentences to the desired length (4, 6, ..., 30
tokens). For each length setting, we ran 10 differ-
ent random seeds and reported the average. The
Random line in Figure 2-Left shows the behav-
ior of ROUGE-2 favoring longer texts within 50
tokens.1 The normalized scores, as shown in Fig-
ure 2-Right, clearly indicate the superiority of our

1Similar trends for ROUGE-1, ROUGE-L, MoverScore,
and BERTScore are included in Appendix E.
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proposed model over the random baseline.
Table 2 shows the normalized automatic eval-

uation results. Overall, PegasusP+O, the text-
summarization model with all available informa-
tion (Paragraph+OCR), achieved the best per-
formance in all three metrics. PegasusP+O+B ,
the model using the same information but trained
on a better subset of captions (Paragraph+OCR-
Better), did not perform well. We hypothesized
this was due to half of the test data comprising poor
captions (refer to Section 8.2). This was validated
by examining performance shifts in different qual-
ity beams (Section 8.1) and conducting a human
evaluation (Section 7.2). Meanwhile, ReuseM , the
Reuse baseline with Mention, outperforms other
Reuse baselines. Its performance declined as con-
text sizes grew and shifted.

7.2 Human Evaluation Results

Pilot MTurk Study to Select Top Models. Be-
fore the main human evaluation, we ran a pilot
study on Amazon Mechanical Turk (MTurk) to
identify any apparently underperforming baselines
for exclusion in the final study, simplifying the
main human evaluations. In this study, we asked
MTurk workers to carefully read a figure and se-
lect the worst figure caption among (i) TrOCR, (ii)
PegasusP+O, (iii) PegasusP+O+B , and (iv) ground-
truth caption. Ninety figures without errors were
randomly sampled from our annotated set (i.e., fig-
ures from cs.CL arXiv papers in Section 8.2) for
the study. For each of the figures, we recruited
20 MTurk workers to judge.2 We report the num-
ber of majority votes (when tied, we counted all
captions with the highest votes as the worst) and
the average number of votes in Table 3. Results
indicated that TrOCR’s caption won the majority
vote 41 out of 90 times, with its average vote count
significantly exceeding others. Hence, we excluded
TrOCR from our formal human evaluation.

Main Human Evaluation with Domain Experts.
Three Ph.D. students with NLP backgrounds (who
are not coauthors) were recruited as human judges,
as it is hard for those without basic domain un-
derstanding to evaluate captions. This study has
been approved by the IRB office of the authors’
institute. The same 90 figures used in the pilot

2Four MTurk qualifications were used: Locale (US Only),
HIT Approval Rate (≥98%), Number of Approved HITs
(≥3000), and the Adult Content Qualification. The payment
for each task was set to 0.09 (hourly wage = $10 dollars).

n = 90 #Maj.
Votes↓

Avg.
Votes↓

T-Test over Avg. Votes

PegP+O PegP+O+B Caption

TrOCR 41 5.99 <.001*** .006** .001**
PegP+O 20 4.54 - .253 .973
PegP+O+B 24 4.93 - - .318
Caption 19 4.53 - - -

Table 3: The result of the pilot Mturk study. When tied,
all captions with the highest votes were counted as the
worst for #Majority votes. TrOCR is significantly worse
than other approaches when rated by crowd workers.

n = 90 Avg.
Ranking↓

T-Test on Avg. Ranking

PegP+O+B Caption

PegP+O 2.152 .016* .015*
PegP+O+B 1.930 - .923
Caption 1.919 - -

Table 4: Average ranking of the human evaluation.
PegasusP+O+B was rated significantly better than
PegasusP+O and was at the same level as the ground-
truth caption.

MTurk study were used again. We asked the human
judges to compare each figure’s (i) PegasusP+O,
(ii) PegasusP+O+B , and (iii) ground-truth caption.
The judges were asked to rank the captions based
on how strongly they agreed with this statement:
“When I read the paper, this caption can help me un-
derstand the message that the figure tries to convey.”
Figure 5 (see Appendix D) shows the interface the
human judges used.

Table 4 shows the results of average ranking
(from 1 to 3). Overall, the ground-truth cap-
tion and PegasusP+O+B were ranked similarly
(1.919 vs. 1.930 with p-value = 0.923). Humans
also favored PegasusP+O+B over PegasusP+O

significantly (1.919 vs. 2.152 with p-value =
0.016). This supports our heuristic for auto-
matically determining caption quality based on
length and aligns with previous findings that longer
captions improve reader comprehension (Hartley,
2003; Gelman et al., 2002). However, we found
that the task of caption ranking poses a challenge,
as evidenced by the lower correlations between
raters, with Kendall’s tau values of 0.133, 0.148,
and 0.274, and Spearman’s rho values of 0.128,
0.156, and 0.317. This highlights the complexity
of the task and suggests that scaling human evalu-
ation across domains might be difficult. Different
preferences over captions, such as length, could
lead to lower agreement among raters.
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Agree Disagree Total Agree Percentage

Helpfulness 184 215 399 46.12%
Image-Text 338 61 399 84.71%
Visual-Desc 64 335 399 16.04%
Takeaway 74 325 399 18.55%

Table 5: Results of the manual annotation. More than
50% of the captions were annotated as unhelpful. (Out
of the initial 438 figure captions, we excluded those
with extraction or classification errors, e.g., incomplete
images, leaving us with only 399 captions.)

8 In-Depth Analysis

We conducted an in-depth investigation focused
on two key challenges: (i) the common presence
of low-quality author-written captions and (ii) the
lack of clear standards for good captions.

Quality Annotation Procedure. We manually
annotated 438 captions in the Computation and
Language domain (cs.CL) from the test set. Fig-
ure 6 (see Appendix D) shows the interface we
used, in which the title, abstract, and PDF file of
the paper were shown alongside the target figure’s
image, caption, and questions. For each caption,
we asked the annotators (coauthors) to rate four
aspects using a five-point Likert scale:

• Image-Text. The caption included named en-
tities or important words/numbers in the figure
(e.g., title, legends, labels, etc.).

• Visual-Description. The caption included some
visual characteristics of the figure (e.g., color,
shape, trend, etc.).

• Takeaway. The caption explicitly stated the high-
level takeaway message or the conclusion that
the figure attempted to convey.

• Helpfulness. “The caption helped me understand
the message that the figure attempted to convey”.

The annotated data was consolidated by grouping
“Strongly Agree” and “Agree” as “[Agree]” and
grouping “Neutral”, “Disagree”, and “Strongly Dis-
agree” as “[Disagree]”. The results of this con-
solidation are presented in Table 5.

8.1 Challenge 1: Addressing Unreliable
Quality of Real-World Data

Table 5 shows that over 50% of the author-
written captions in arXiv cs.CL papers were
deemed unhelpful. High unhelpful caption pro-
portion may skew evaluation results, particularly
for automatic evaluations that compare generated
text to human-written captions. To address this, we

#Sample PegP+O PegP+O+B Caption

Helpful 55 2.176 1.970 1.855
Unhelpful 35 2.114 1.867 2.019

Table 6: Human ranking results (lower is better) on
helpful and unhelpful beams. PegasusP+O+B received
better rankings in the unhelpful beam.

evaluated models on different quality beams using
the 399 annotated figure captions shown in Table 5.
The captions were divided into the “helpful beam”
(184 captions rated [Agree]) and the “unhelpful
beam” (215 captions rated [Disagree]).

Automatic Evaluation Over Beams of Different
Quality. To validate the effect of low-quality cap-
tions, we re-performed the automatic evaluation
for the helpful and unhelpful beam sets. Figure 3
shows the Normalized ROUGE-2 and MoverScore
scores for each model in the helpful and unhelpful
beam sets.3 Most models performed better in the
unhelpful beam, except PegasusP+O+B , which had
better scores in the helpful beam. PegasusP+O+B

was trained on captions with more than 30 tokens.
This result suggests that improving training data
quality, such as by using only longer captions, can
positively impact the model’s behavior and result
in a better generation of helpful captions.

Human Evaluation Over Beams of Different
Quality. We also re-evaluated human scores for
both the helpful and unhelpful beams. The human
evaluation in Section 7.2 only covered 90 figures,
with 55 in the helpful beam and 35 in the unhelp-
ful beam. Table 6 shows the results. On average,
PegasusP+O+B (1.867) was ranked better than
author-written captions (2.019) in the unhelp-
ful beam, in which machine-generated captions
were preferred by human judges 22 out of 35
times. The results suggest that, with careful train-
ing data quality control, when author-written cap-
tions are not very helpful, machines could poten-
tially generate better captions.

8.2 Challenge 2: What Constitutes a Good
Figure Caption?

We calculated Pearson correlations (Rodgers and
Nicewander, 1988) among the four aspects using
raw five-point Likert ratings. The results are shown
in Table 7. The highest correlation was found
between Takeaway and Helpfulness, suggesting
that a high-quality caption accurately captures

3In addition, ROUGE-1, ROUGE-L, and BERTScore
scores can be found in Figure 12 in Appendix E.
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Figure 3: Normalized ROUGE-2 and MoverScore for beams of different quality. Most of the generation models
performed better in the unhelpful beam, suggesting that output may be more similar to bad captions. Only the model
trained with better captions learned to generate good captions by showing a better score in the helpful beam.

Image-Text Visual-Desc Takeaway Length

Helpfulness 0.206 0.523 0.686 0.383
Image-Text - 0.177 0.186 0.248
Visual-Desc - - 0.625 0.535
Takeaway - - - 0.514

Table 7: Pearson correlations between different aspects.
We used the row scores (five-point Likert scale) to com-
pute the correlation. Strong correlation (≥0.5) and
medium correlation (0.3 to 0.5) are highlighted. Help-
fulness is highly correlated with Visual-Description and
Takeaway and is moderately correlated with Length.

the main message of the figure. There were also
strong correlations between Helpfulness, Visual-
Description, and Takeaway, indicating that a good
caption effectively conveys visual information and
summarizes the main message. However, Table 5
shows that only 16.04% and 18.55% of the cap-
tions described the visual characteristics and the
takeaway message, respectively.

A moderate correlation between Helpfulness and
Length supports previous research findings that
longer captions are generally more helpful for read-
ers (Hartley, 2003; Gelman et al., 2002).

8.3 Caption Length Distribution

Throughout this work’s development, the length
of captions emerged as a consistent issue. Despite
existing literature indicating the benefits of longer
captions for readers (Hartley, 2003; Gelman et al.,
2002), space limitations often leave authors with
no option but to craft shorter captions. To shed
some light on this aspect and offer insight for future
research, we analyzed the lengths of both author-
created and machine-generated captions. We used
Kernel Density Estimate (KDE) plots to investigate
the distribution of caption lengths across differ-
ent models and domains. As shown in Figure 4a,
the majority of models demonstrate a common
peak at 10 tokens, while PegasusP+O+B presents
a significant deviation with a peak near 30 tokens.
Figure 4b presents the distribution of helpfulness

Information Image-Text Visual-Desc Takeaway

#Tokens 0.181 0.428 0.357
Percentage 0.099 0.279 0.210

Table 8: Correlations between the amount of missing
information from Paragraph and the quality aspects. The
missing information is related to visual descriptions and
takeaway messages.

scores, derived from quality annotation data (see
Section 8.2). Captions rated with a maximum help-
fulness score of 5 show a peak at 35 tokens. We can
also see a clear shift in caption length with higher
scores. In Figure 4c, we dug into the top 10 cate-
gory taxonomy from arXiv. This figure suggests
that a higher portion of the captions in cs, math,
stat, and eess are shorter (10 tokens); while the
rest of the categories (cond-mat, quant-ph, q-bio,
etc) have higher probabilities for longer captions.
However, within the cs domain (Figure 4d), the
top 10 subcategories do not show significant differ-
ences regarding caption length distribution.

9 Discussion

Is Text Really All You Need? Our results demon-
strate that summarizing figure-mentioning para-
graphs is sufficient to generate captions, as shown
by the similar scores of PegasusP and PegasusP+O

in Table 2. Adding OCR had limited impact. Fur-
thermore, in a recent study of scientific figure cap-
tioning conducted by Yang et al. (Yang et al., 2023),
the best-performing model only considered figure-
mentioning paragraphs and OCR tokens– note that
their OCR tokens were visual features– without
taking the figure’s imagery into account. These
results raise an interesting question: Do we need
visual information at all? What for? The token
alignment study (Section 5) showed that 75.19%
of the caption information could be found in the
Paragraphs, meaning 24.81% of the information
was missing. Understanding this missing informa-
tion could help improve the models’ performance.
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(a) All the examined generative models. (b) Helpfulness scores in 5-point Likert scale.

(c) Top 10 frequent arXiv categories. (d) Top 10 frequent arXiv CS subcategories and cs.HC.

Figure 4: The KDE plot illustrates diverse caption length distributions among models, the relationship with
helpfulness, and variations across arXiv categories. The sample numbers are included in the legend.

Thus, we calculated the correlation between the
amount of missing information and three aspect rat-
ings (image-text, visual-description, and takeaway)
in the quality annotation data (Section 8.2). The
missing information was quantified as the number
or percentage of tokens without aligning to any
tokens in figure-mentioning paragraphs. Table 8
demonstrates a positive correlation between the ex-
tent of missing information and visual descriptions
and takeaway messages. This suggests that incorpo-
rating visual descriptions (e.g., “dashed line,” “red
line”) is key to enhancing performance by filling in
the gaps in information not covered by the article’s
text. Furthermore, the strong correlation between
Helpfulness and Visual-Description in Table 5 also
indicates that including image information is neces-
sary for writing good captions. It should be noted
that OCR is only capable of capturing image texts
(e.g., labels, legends) and not visual element infor-
mation (e.g., “dashed line”). A promising future
direction is developing a multimodal model that
can effectively incorporate both image and text.

What is the Best Length for Captions? Our re-
search indicates that filtering shorter captions can
facilitate the generation of more helpful captions.
However, the resulting captions tend to be longer
than usual, as shown in the PegasusP+O+B shift to
the right in Figure 4a. This raises a question: Is it
fair to compare short and long captions on useful-
ness, given that longer captions inherently contain
more information? While our automatic evaluation
addressed this by implementing length normaliza-
tion, our human evaluations and quality annota-
tions did not specifically instruct the annotators to

consider caption lengths. Nevertheless, we argue
that even if we asked annotators to consider cap-
tion lengths while identifying helpful captions, the
“ideal” caption length would differ among annota-
tors due to multiple factors. For example, as shown
in Figure 4c, the length distributions of captions
vary across domains. The low inter-agreement
from our human evaluation (see Section 7.2) also
suggests that personal preferences could influence
ideal caption length (Lundgard and Satyanarayan,
2021). Moreover, the ideal length could also be
dictated by the context: writers might favor shorter
captions due to page constraints, while readers
might prefer longer but informative ones (Stokes
and Hearst, 2022; Sun et al., 2019). To tackle this
issue, a potential future direction could be enabling
models to generate captions of diverse lengths to
suit different users and contexts.

10 Conclusion and Future Work

This work presented a new perspective on au-
tomatic figure captioning, demonstrating that a
language-based approach, i.e., summarizing figure-
referring paragraphs, can outperform conventional
vision-based methods. Our analysis further showed
many unhelpful captions in arXiv papers, high-
lighting data quality’s impact on captioning per-
formance. This work lays the groundwork for fur-
ther research, including exploring new data selec-
tion, revision, and augmentation strategies to mit-
igate the effects of low-quality data, developing
new evaluation methods, and creating more robust
models that better handle noisy data. We also aim
to expand the technology’s scope to cover a wider
variety of figures and article types.
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Limitations

Although our proposed methods have been shown
to be effective, we are aware of several limitations.
First, our approach requires mentions in order to
produce captions, but it is not always easy to au-
tomatically identify the mentions for a given fig-
ure in real-world data. There were 18.81% of fig-
ures in the original SCICAP that did not have any
identified mentions, which we excluded from this
work. Many factors contributed to the gap, includ-
ing errors caused by upstream components such
as image extraction or image type classification
(e.g., table), unexpected figure index formats (e.g.,
“Figure VIII”, “Figure C·1”,“Fig.Fig. 4(b)”), PDF
parsing errors, or the figure never being mentioned
in the paper. Second, our method uses texts instead
of images as the primary information source, so,
naturally, it inherits all the constraints of text. Our
method can not capture any visual element in the
figure that the text never mentioned; it struggles
when the text is poorly written. Finally, this paper
focused on non-compound line charts in arXiv pa-
pers; the human evaluation only focused on NLP
papers. More research is needed to examine the
generalizability.

Ethics Statement

We consider the proposed technology to impose
little risk to readers, as it only summarizes what
has already been presented in the paper. However,
when the generated caption contains some inac-
curate information, it could mislead readers. Fur-
thermore, the proposed technology has the nature
of neglecting visual content, which might have an
impact on the accessibility of figure captions.
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