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Abstract

Neural language models are increasingly de-
ployed into APIs and websites that allow a user
to pass in a prompt and receive generated text.
Many of these systems do not reveal generation
parameters. In this paper, we present methods
to reverse-engineer the decoding method used
to generate text (i.e., top-k or nucleus sampling).
Our ability to discover which decoding strat-
egy was used has implications for detecting
generated text. Additionally, the process of
discovering the decoding strategy can reveal
biases caused by selecting decoding settings
which severely truncate a model’s predicted
distributions. We perform our attack on several
families of open-source language models, as
well as on production systems (e.g., ChatGPT).

1 Introduction

Language models are increasingly being incorporated
into web applications and other user-facing tools.1

These applications typically do not provide direct
access to the underlying language model or the
decoding configuration used for generation. In this
paper, we show how even in this blackbox setting, it
is possible to identify the decoding strategy employed
for generation. We consider the case where one only
has access to a system that inputs a prompt and out-
puts a generated response. We present algorithms for
distinguishing the two most popular decoding strate-
gies, top-k and nucleus sampling (a.k.a. top-p), and
estimating their respective hyperparameters (k and p).

The choice of decoding strategy—the algorithm
used to sample text from a language model—has a
profound impact on the randomness of generated text,
introducing biases toward some word choices. For ex-
ample, when OpenAI’s ChatGPT,2 a chatbot built with
large language models, is repeatedly passed a prompt

∗Google Deepmind,†University of Toronto
1E.g., see https://gpt3demo.com/ for a list of such

apps.
2https://openai.com/blog/chatgpt/

asking it to report the outcome of rolling a twenty-
sided die, we found that it only returns 14 of the 20
options, even though all should be equally likely.

Prior work has shown that knowing the decoding
method makes it easier to detect whether a writing
sample was generated by a language model or
else was human-written (Ippolito et al., 2020). As
generated text proliferates on the web, in student
homework, and elsewhere, this disambiguation is
becoming increasingly important.

Concurrent work to ours by Naseh et al. (2023) has
developed similar strategies for detecting decoding
strategy from a blackbox API: however, they focus
more on identifying hybrid decoding strategies (includ-
ing beam search), whereas we focus more on prompt
engineering to produce close-to-uniform token distri-
butions that reduce the number of queries needed. Our
proposed methods complement but are not compara-
ble to those of Tay et al. (2020). Their method trains
classifiers that input a generated text sequence and
output a prediction for the decoding strategy used to
generate it. In contrast, our method interacts with an
API and does not require any data or ML training.

2 Background

Neural language models are not inherently generative.
A causal language model fθ takes as input a
sequence of tokens x1,...,xt−1 and outputs a score
for each possible next token xt, computing the
a likelihood score for each token in the vocabu-
lary, which can be transformed into a probability
distribution by applying a softmax such that
Prob(xt|x1,...,xt−1)∼fθ(x1,...,xt−1).

A decoding method takes this probability distri-
bution as input and samples a particular token to
output. The simplest algorithm is argmax decoding
(also known as ‘greedy decoding’), where the most
likely next token is outputted. Argmax is rarely used
in practice because (1) only one generation can be
produced for any given prompt, and (2) generations
with argmax tend to be repetitive and low-quality.

https://gpt3demo.com/
https://openai.com/blog/chatgpt/
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Most commonly used decoding algorithms are
based on random sampling: a token is chosen with
probability proportional to the likelihood assigned
to it by the model. Whereas argmax sampling has
too little randomness, purely random sampling over
the full distribution can have too much, leading to
text that is too erratic and prone to errors. Thus, it is
common to modify the distribution to reduce entropy
before sampling from it.

In this short paper, we focus on two popular
strategies researchers have developed for decoding:
top-k sampling (Fan et al., 2018) and top-p sampling
(Holtzman et al., 2019) (also known as nucleus
sampling). Top-k sampling involves the implementer
picking a fixed hyperparemter k then only ever
sampling from the kmost likely items by assigning all
other items a score of 0 before applying the softmax.
Top-p sampling involves the implementer picking
a fixed hyperparamter p. Then at each step t of
generation, a kt is selected such that the kt most likely
vocabulary items cover p proportion of the total prob-
ability mass in the distribution. More precisely, let the
notation x(l) refer to the lth most likely token in the
distribution predicted at step t. We set kt to the first
value for which

∑kt
l=1Prob(xt=xl|x1,...,xt−1)≥ p.

Then, the distribution is truncated to the kt most likely
tokens, as described above for top-k.

Other common methods like beam search and
temperature annealing are omitted in the interest
of space (cf. Zarrieß et al. (2021) and Wiher et al.
(2022)). Temperature annealing simply modifies the
probability distributions of the output tokens, so the
methods in this manuscript can be easily generalized
(and indeed were in the concurrent work of Naseh
et al. (2023)). Beam search is a bit more complicated,
as tokens are not chosen independently of previous
tokens; instead, multiple candidate token paths are
retained. As such, it would be necessary to generate
more than a single word for each prompt, which is
the primary interrogative tool we use here.

3 Method

3.1 Threat Model

We assume black-box, query-only access to the system
Gen :m 7→r which takes as input a prompt stringm
and outputs a textual response r; without loss of gen-
erality, we assume that the response r is exactly one
token long. The adversary can input arbitrary prompts
and observe the output response. In most of our exper-
iments, we assume Gen passes m into the language
model without any modification, then generates a con-

tinuation using an unknown decoding strategy. How-
ever, in some cases, such as for ChatGPT, the system
might modify the provided prompt, m, such as by
prepending few-shot examples, before passing it to
the language model. Still, we assume that the causal
language model can be repeatedly queried by a fixed
promptm′, even if modified from the originalm.

The adversary’s attack objective is to determine the
decoding strategy employed by Gen, outputting either
topk or topp, as well as the value for either p or k.

3.2 Intuition for Method
We begin with the intuition of our attack. Suppose
we were given a prompt m, such that the output of
Gen(m) is equally likely to be any item from a set of
vocabulary items Vm⊆V. For example, the prompt
“List of capital English letters,
chosen uniformly at random:” ought to
result in the model emitting each of the 26 letters
of the alphabet with equal probability. However,
suppose that when we repeatedly prompt the model in
this way, it only ever emits 10 different letters. What
could cause this?

One explanation could be that our prompt does
not actually induce a uniform probability distribution
over each of the 26 letters, and in fact that the model
assigns (nearly) zero probability mass to the 11th
most likely token. Suppose we know for a fact the
prompt does induce a near-uniform distribution on
all publicly-available language models: then the
more likely explanation would be that the sampling
algorithm itself truncated this distribution—either
with top-k or top-p sampling. By measuring what
fraction of the words we would expect to get
generated actually do get generated for prompts with
known output distributions, we can estimate values for
k and p and distinguish between these two techniques.

3.3 Estimating k
Suppose, for a given prompt m, we call Gen(m),
n number of times, each time keeping just the first
token of the output. We can trivially lower bound k
by observing the number of unique items in a set of re-
sponses. As n approaches∞, all k allowed responses
will be observed. To achieve a compute-efficient
attack, our goal is to estimate k while keeping n as
small as possible. Appendix A gives theoretical ac-
curacy/runtime estimates for this approach by posing
it as the coupon collector problem (Pólya, 1930).

In practice, we use Algorithm 1 (see Appendix),
which repeatedly estimates a lower bound for k using
two different prompts m1 and m2 for increasing
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numbers of trials until (1) the two estimates match
and (2) the x(k) token appears at least twice in both
generations (to prevent spurious matching).

3.4 Estimating p

In this paper, we set a goal of determining p to
within 0.05 of the true value. We can upper bound
p by constructing a prompt that yields a known,
computable distribution over a set of vocab items
Vm. Then to attack a system, we repeatedly sample
with the prompt, and count how many of those items
are generated. Let’s call this value k.3 We estimate
p as the sum of the probabilities of the k most likely
tokens in the known distribution over items in Vm.
Because our guessed distributions are not perfect,
instead of relying on just one prompt for our estimate,
we instead average over two upper bounds of p
derived from two different prompts. Although our
experiments here use only two prompts, increased
precision is achievable by using additional prompts.
The detailed algorithm can be found in the Appendix.

3.5 Distinguishing Top-k from Top-p

To distinguish between top-k and top-p, we need
only reject the hypothesis that top-k is used. It turns
out that we can simply reuse Algorithm 1 because
we already built in a measure of concordance in
the k predictions. If the two prompts used as input
to Algorithm 1 continue to yield very different
predictions of k no matter how many samples are
taken, we can reject the hypothesis of top-k being
used. For rejecting top-k, we found it useful to start
with two prompts with radically different distributions;
it suffices to choose prompts that with very differently
sized Vm, such as ADVERBS and MONTHS.

Although we did not explore it in this short paper,
we could in theory also reject top-p by looking at how
closely the p estimates from different prompts match.
This may prove helpful if we wish to determine
that neither top-p or top-k is being used, but is
unnecessary for simply disambiguating the two.

Prompt Selection In addition to the distributional
properties described above, we also need our prompts
to have the property that the first space-separated
word in the output of Gen(m) is in-fact a word in the
vocabulary. Since we often do not know which vo-
cabulary was used by the model we are attacking, we
choose prompts which yield distributions over words

3This is a slight abuse of notation since we used k earlier for
top-k, but in both cases, this value corresponds precisely to the
number of unique tokens seen.

Table 1: Prompts used for top-k and (top) top-p (bottom)
estimation on open-source models. The first two prompts
include randomly selected exemplars (shown in blue). For
MONTHS, Ramadan is included as the 13th month.

Name Prompt |Vm|

NOUNS List of nouns chosen completely
randomly: dog, slash, altar

8,432

ADVERBS List of adverbs chosen completely
randomly: formally, blatantly, sadly

504

MONTHS She came to visit in the month of 13
DATES The accident occurred on March 31
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Figure 1: Error in top-k estimation for 500 GPT-2 XL-
and 500 bloom-3b-based systems. Error for both models
is very low in common settings (k < 100).

Table 2: Performance at k estimation over 100 systems
with k values randomly chosen between 1 to 500.

Model Acc Acc±5 Avg Error

GPT-2 Base 28% 76% 1.3
GPT-2 XL 44% 80% 0.9

BLOOM-3B 0% 71% 2.3
pythia-2.7b 22% 81% 1.1

which are likely to be tokens in all models trained on
webtext4. Table 1 shows all the prompts used in all
experiments except for those we used on ChatGPT
(which had to be longer), and Appendix C gives more
details on prompt selection (including for ChatGPT).

4 Experiments

We conduct experiments on four language models
where we can set the decoding strategy: GPT-2
Base and XL (Radford et al., 2019), GPT-3 Davinci
(Brown et al., 2020), BLOOM 3B (Scao et al., 2022),
and Pythia 2.7B (Biderman et al., 2023).

4.1 Predicting k

We used two prompt templates for estimating top-k:
NOUNS and ADVERBS (see Table 1), each with 16
randomly selected exemplars. We build an evaluation

4Other prompts may be needed for attacking code models.
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Figure 2: Performance at p estimation over 100 systems
with p values ranging from 0.0 to 1.0, when the known
distributions are computed using GPT-2 base (orange),
and GPT-3 Davinci likelihoods (blue). Using Davinci as
the known model leads to a better attack on GPT-3 models,
but a worse one on all other models. RMSE in Table 6.

Figure 3: Mismatch between the known distributions and
the distributions of the language model underlying the
blackbox system lead to increased error. The matched
estimates still have a slight systematic upward bias
because we use the upper bounds for p in our algorithm.

set of 100 systems, each with a k selected uniform
randomly to be between 1 and 500. Table 2 shows the
accuracy of our approach on this evaluation set.5 We
see that while our method is not so great at guessing
k perfectly, on average its guesses are between 0.9
and 2.3 off (depending on the underlying model).

In Figure 1, we plot accuracy as a function of true
k for GPT-2 XL. This plot reveals that our method
is especially effective at predicting k for k<300, and
accuracy deteriorates for higher k. The vast majority
of applications use k well within this range, and it is
simple to adjust for larger k by increasing the max
number of iterations parameter.

4.2 Predicting p

We build an evaluation set of 100 systems, each with a
randomly assigned p between 0 and 1. Table 1 shows
the prompts used for top-p estimation: MONTHS

and DATES. For each prompt, we need to compute
a known distribution over the next word. We experi-

5GPT-3 is omitted because the API does not expose top-k.
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Figure 4: We plot the ratio between the k estimated using
ADVERBS and using MONTHS, for systems actually
using top-p. Except when p is near its extreme values, the
prompt with larger Vm results in more generated words.

ment with using both GPT-2 Base and GPT-3 Davinci
for this. For GPT-2, we compute the distribution
directly; for GPT-3, we estimate it by running 1,000
trials with full random sampling. Figure 2 shows
our method’s accuracy at predicting within 0.05 of
the true p value. Figure 3 shows two limitations: (1)
our estimates are worse when there is significant mis-
match between Gen’s distributions and our known
distributions; and (2) the minimum p our method
can predict is

(
Prob(x(1)1 )+Prob(x(1)2 )

)
/2, reducing

accuracy for low p values. Further research is needed
into the design of prompts which induce consistent
distributions over many families of language models.

4.3 Distinguishing Top-k and Top-p

To evaluate our ability to distinguish between top-k
and top-p, we conduct the following experiment. We
take 10 systems with p values ranging from 0.0 to
1.0 and find the chance we misclassify each system
as using top-k. Figure 4 reports the results of this
experiment. We see that it would be fairly easy to dis-
tinguish the two methods by thresholding the ratio of
the k values returned by the two prompts. Note that at
the extreme values of k and p, the method are indistin-
guishable. Top-k with k=1 and top-pwith p=0.0 are
both the same as argmax; top-k wirh k=|V| and top-p
with p=1.0 are both the same as full random sampling.

4.4 ChatGPT

We cannot repeat the exact same experiments with
ChatGPT because (1) it does not use the exact
prompt passed to the UI as the language model
input, instead preprocessing it into a conversation
format; and (2) the rate limiting prevents us from
easily conducting many trials. We instead employ
four conversational-format prompts (see Table A5).
For the known distribution, we try out empirical
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Prompt n Est. p

MONTHSCHAT 200 0.84
DATESCHAT 125 0.74
D20CHAT 115 0.79
D100CHAT 500 0.86

Table 3: The values of p estimated for ChatGPT using dif-
ferent prompts, where n is the number of samples taken.

distributions from five different versions of GPT-3,
and take the one with lowest total variation distance
from ChatGPT’s output distribution. Table 3 shows
the p estimated using each prompt. Averaging
these, we get p=0.81. This estimate could be further
narrowed down by incorporating more prompts,
though of course we cannot validate this number due
to opacity of the ChatGPT proprietary system.

4.5 Room for Improvement
All of the estimates reported in this section could be
improved with additional queries to the model For
both p and k estimation, we average over the estimates
from just two prompts, but using more prompts would
lead to better estimates. In addition, to improve top-k
estimation for larger k, one can increase the minimum
number of times the least frequent items needs to be
seen before the sampling loop terminates; in this pa-
per, we set that value to 2. Our methods could also be
further improved by in-depth investigation of prompts
which consistently produce close-to-uniform distri-
butions across different families of language models.

Finally, while our methods do not currently address
the case where temperature annealing is used in
conjunction with top-k or top-p, extending them to
support this setting should be straightforward. Tem-
perature followed by top-k is still top-k, and should
be detectable via our methods. Temperature followed
by top-p is trickier, because we no longer have a
known distribution. However, this combination can
be detected by comparing the empirical distribution
against a set of known distributions for common
models; if the distribution does not match any of
them, then we can conclude that either it is not using
any known model, or that other distribution shaping
such as temperature has been applied.

5 Limitations

Our method is limited to identifying when top-p sam-
pling or top-k sampling is used. We do not attempt to
detect other decoding strategies which other systems
might use. Additionally, there is no guarantee that a
system would use a single decoding strategy—it is

possible that different prompts may trigger different
decoding strategies, or that A/B testing results in dif-
ferent users seeing different decoding strategies. Our
ChatGPT results were computed by two different au-
thors on separate OpenAI accounts. Also, we have no
guarantees that the decoding strategy is not changed
over time. Some of our ChatGPT results were com-
puted using the December 15, 2022 release while oth-
ers were computed using the January 9, 2023 release.

Additionally, the biases in distributions that we
see here could have other underlying reasons; for
example, changes in the data can result in very
different true distributions.

Furthermore, under the hood, an API might not
be generating a new random generation each time an
identical prompt is passed in. Either random seeds
might be getting re-used, or generations could be
retrieved from a cache. In both cases, the generations
might look like argmax sampling. It’s also conceiv-
able that certain combinations of fixed models could
look like top-k/p. For example, if a query is randomly
routed to one of a series of s servers, each serving
a different model, we might interpret the decoding
strategy to be top-k even if each server is using
argmax. In these cases, an approach more like that
proposed by Tay et al. (2020), where classification of
decoding strategy is made based on a long generated
sequence (rather than single token system predictions,
as in our approach), might be more effective.

For top-p (though not top-k), we require access
to an underlying distribution that approximates the
model used. This is not an issue for open source mod-
els or models with API access that allows specifying
the decoding strategy, but it does limit the applicability
of our method to newer proprietary models. It may
be possible to empirically determine distributions
for carefully engineered prompts, but future work is
needed for reverse engineering fully closed models.

6 Conclusion

Our attack shows that with even a little work, it
is possible to reverse-engineer common decoding
strategies. Although we have focused here only on
top-p and top-k sampling, these approaches generalize
readily to other common methodologies when the
output probability distributions are well-approximated.
Along with other recent work on reverse-engineering
other parts of a language generation system (Zhang
and Ippolito, 2023), it seems is infeasible to hide
inference implementation details given black-box
access to the system.
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A Algorithm for Estimating k

Algorithm 1 Algorithm for estimating k.
Given a system Gen :m 7→r that takes an input prompt m and outputs a single response token r, let m1 and m2 be two prompts
that with high probability return responses from large (�k) sets of different sizes—e.g. m1 returns random nouns and m2 returns
random adverbs.
function ESTIMATEK(Prompts m1,m2;Gen :m 7→r)

samples1←[ [],samples2←[ []
while max number iterations not reached do // we set max iterations=32

for {1..100} do // at most 3200 samples generated
samples1.insert(Gen(m1))
samples2.insert(Gen(m2))

end for
k1←[# unique items in samples1
k2←[# unique items in samples2
minSamples←[(samples1(k1)>1 and

samples2(k2)>1) // Boolean testing all items appear twice
if k1=k2 and minSamples then

break
end if

end while
return b(k1+k2)/2c // guesses average if convergence not reached

end function

As we mentioned in the main paper text, suppose, for a given prompt m, we call Gen(m), n number of
times, each time keeping just the first token of the output. We can trivially lower bound k by observing the
number of unique items in a set of responses. As n approaches∞, all k allowed responses will be observed.
Since this is infeasible, the adversary’s goal is to estimate k while keeping n as small as possible.

It is easy to see that the ideal promptm is one that gives responses that are perfectly uniform over the entire
vocabulary V. In the uniform case, we are left with the standard coupon collector problem (Pólya, 1930). We
would recover the exact value of k with probability at least 1− 1

k by setting n>2klogk. Unfortunately, such
a prompt is exceedingly difficult to engineer (see Appendix D).

It turns out we can do almost as well without needing full uniformity. The key building block for our attack
is the construction of anm that distributes substantial probability mass onto a subset Vm⊆V of the token space.
We require that for any k< |Vm|, we have Prob

(
Gen(m)=x(k)

)
≥ 1
ck , for some small constant c. Put in plain

language, we want to ensure that for any number of tokens k the distribution might be truncated at, the least
likely token that can be generated is no more than c times less likely to appear than if the distribution were
truly uniform. If n≥2cklog(ck), then with probability at least 1− 1

ck , our prediction is exactly correct. This
result is far from tight, but follows easily from coupon collector on a uniformly random set of size ck.

In practice, we use Algorithm 1, which repeatedly estimates a lower bound for k using two different prompts
m1 and m2 for increasing numbers of trials until (1) the two estimates match and (2) the x(k) token appears
at least twice in both generations (to prevent spurious matching). In such a case, the expected number of trials
n is approximately bounded above by 2cklog(ck) via coupon collector6.

B Algorithm for Estimating p

Our goal is to estimate p to within a factor of ε. This would be trivial to do if we could construct a prompt
m that is uniform over a subset Vm⊆V of size at least 1

ε . Then estimating p would be equivalent to estimating
top-k for k≈ p

ε because each unique token seen implies a probability mass of ε.
It is impossible to design a prompt which yields a perfectly uniform distribution. However, although

uniformity is desirable, for top-p estimation, it is more important that the distribution of Gen(m) is known, i.e.,
we have access to the underlying language model fθ. If k distinct tokens appear in the p-truncated distribution,

6Aside: the constant 2 that appears in the expected number of trials is due to requiring that the kth most likely token appears at
least twice. However, it is unrelated to the constant 2 that appears in the bound in the previous paragraph, which is chosen to ensure
the 1

ck
failure probability.
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Algorithm 2 Algorithm for estimating p.
Consider a language model fθ :(m,r)→R that scores a prompt/response pair and a system Gen :m 7→r that takes an input prompt
m and outputs a single response token r using fθ and top-p sampling. Let m1 and m2 be two prompts that return responses from
known distributions over relatively small sets (|Vm|around 10-40)—e.g. m1 returns random months and m2 returns random dates
within the month of March.
function ESTIMATEP(Prompts m1,m2;Gen :m 7→r,fθ)

p1←[HELPER(m1,Gen,fθ)
p2←[HELPER(m2,Gen,fθ)
return (p1+p2)/2

end function
function HELPER(Prompt m;Gen,known LM fθ )

baseProbs←[ [] // Will store known probability distribution
for v∈Vm do // Vm is the subset of tokens we consider

baseProbs.insert(Pfθ(r=v|m)) // Probabilities using full random sampling
end for
Sort baseProbs from largest to smallest.
baseProbs.insert(

∑
v∈V−VmProbfθ(r=v|m) // Summed probabilities of all out-of-set tokens

samples←[ []
for {1..N} do

samples.insert(Gen(m))
end for
l←[num unique items in samples
p←[

∑l
i=1baseProbs[i]

return p
end function

then (using the same notation as above), we can bound p as:

k−1∑
l=1

Probfθ(x
(l))<p≤

k∑
l=1

Probfθ(x
(l)).

Thus, given a known distribution, the top-p reverse engineering problem reduces to top-k.
Even if we do not know exactly the underlying model for a blackbox system, we can construct prompts

that appear to often return distributions close to a family of known distributions. Then the error in estimating
p is just determined by how far off our guess of distribution is from the true underlying one. Note that to
ensure robustness against an imperfectly guessed distribution, we estimate p using the sum of the k largest
in-vocabulary probabilities, rather than trying to actually match the probabilities for the unique items sampled.
This turns out to be important when prompts including exemplars are used, as the exemplars often create a
bias in the tokens returned, but the overall drop-off in probabilities of most to least likely tokens tends to be
more consistent. However, for distribution matching, we use the actual distributions over tokens.

In this paper, we set a goal of determining p to within ε=0.05 and construct two prompts with almost-known
distributions over k=13 and k=31. Because our guessed distributions are not perfect, instead of relying on
a single distribution to bound our estimate, we instead average over the two upper bounds of p derived from
the different prompts and return that as our guess. Additionally, as k is small for both prompts, instead of using
the stopping criterion of Algorithm 1, for each prompt, we always generate 3000 samples. This means that
with very high likelihood, we correctly return all possible items from the prompt’s vocabulary. Algorithm 2
gives our implementation.
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Figure 5: For each prompt style (DIGITS or ABC), we prompted with either [1, 2, 4, 8, 16, 32] exemplars selected
randomly (RS), or with a random permutation of all expected outcomes (P). We ran three trials for each number of
exemplars and generated the next word 5,000 times per trial. The majority of next-word generated were within the
vocabulary, however, sometimes they were not, in those cases, we discarded that output. Missing bars indicate that there
weren’t enough generated next-words that were in the vocabulary to compute entropy.

C Prompt Selection

This Appendix gives more details on selecting good prompts for the decoding strategy detection task.

D Challenges

We encountered many challenges in selecting appropriate prompts. Our initial aim was to find prompts that
induced an as-close-to-uniform distribution over the next token as possible. In addition to the prompts decided
on for our main experiments (Table 1), we tried prompts meant to elicit a uniform distribution over digits, letters,
dice rolls, and alphanumeric characters. For some of these prompt styles, the main difficulty was in getting the
language model to assign higher probability to the expected outputs for the prompt than to unexpected outputs.
For example, a prompt designed to elicit random digits would result in “and” being a more likely next token
than several of the digits. For other prompts, the distribution was not as random as we would have expected.
If exemplars were involved, even if they were chosen completely randomly, the model would try to follow
any patterns observed in the exemplars. For example, if a prompt containing randomly selected exemplars
of digits happened to end with “2 4 6”, then “8” would be by far the most likely next token. Our difficulty
here conforms with prior work that has shown that language models have significant biases toward certain
numbers and words, even in settings where there should not be such bias.

Table 4: Prompts showcasing the sensitivity of models to different exemplar choices. The exemplars, shown in blue, can
be varied in order and count.

Name Prompt v2 |Vp|

DIGITS Digits: 4, 3, 2 10

ABC Letters: E, F, P 26

Figure 5 shows the variance in output distributions for two exemplar-based prompts, DIGITS and ABC (Table
4), across different numbers of exemplars and different random selection of exemplars. The DIGITS prompt is ex-
pected to output digits [0-9] with equal likelihood, and the random letters prompt is expected to output the letters
[A-Z] with equal likelihood. While with enough exemplars, the DIGITS prompt yielded consistently high entropy
(i.e., close to uniform-random) distributions, the ABC prompt did not consistently improve with more exemplars.
In the end, we decided to avoid these prompts, and others which were too dependent on choice of exemplars.

For prompts to be used in top-p estimation, one additional challenge is that ideally the prompt should yield
a similar distribution when inputted to all popular language models. As discussed in the paper, our estimates
for p are worse when there is a greater mismatch between the known distribution used for top-p estimation
and the true distribution of the language model underlying the blackbox system being attacked. Figure 6 shows



405

gpt2 gpt2-xl bloom-3b pythia-2.7b text-davinci-002
Likelihood

0.00

0.01

0.02

0.03

0.04

0.05
"The accident occurred on March"

gpt2 gpt2-xl bloom-3b pythia-2.7b text-davinci-002
Likelihood

0.0

0.1

0.2

0.3

0.4
"She came to visit in the month of"

Figure 6: The likelihoods for the digits {1-31} given the prompt “The accident occurred on March" (left) and for
{January thru December + Ramadan} given the prompt “She arrived in the month of” (right), ordered from most to least
likely. The sum probability of the remaining items in V is shown in red.

Table 5: Prompts uses to estimate the p value for ChatGPT.

Name Prompt |Vm|

MONTHSCHAT write one word for the rest of this sentence:
“She came to visit in the month of”

13

DATESCHAT write one word for the rest of this sentence:
“The accident occured on March”

31

D20CHAT write one number for the rest of this sentence:
“I rolled a D20 and the outcome was”

20

D100CHAT Could you roll me a D100? We’re playing
D&D. Answer with just the roll value and
nothing else.

100

the known distributions for the two prompts we used in top-p estimation, across several different models. We
see that some models have much spikier distributions than others. The best approach (and the one we used
to attack ChatGPT) is to choose the known distribution to use for top-p estimation by keeping around a database
of distributions from a bunch of different models, and then comparing the output distribution from the blackbox
system to each distribution in the database. We can then choose to estimate p using the known distribution
with the lowest relative entropy with the blackbox’s one.

D.1 Chosen Prompt Details

Here we describe the actual prompts used in our experiments. For the NOUNS and ADVERBS prompts, we
assumed access to the GPT-2 vocabulary and used Spacy (en_core_web_sm) to identify all tokens in the
vocabulary corresponding to nouns and adverbs. In all experiments with these prompts, we used 16 randomly se-
lected exemplars from these lists. An example prompt for NOUNS is: “List of nouns chosen completely randomly:
negativity diarrhea problems eloqu money aspect vertex fraternity stone breast skies pushes probabilities ink
north creditor”. In our experiments estimating top-k, for each system being evaluated, we varied the random seed,
resulting in a slightly different prompt. We did this to avoid any systematic biases resulting from always using
the same choice of exemplars. For the non-exemplar-based prompts, we did not assume vocabulary access and
instead relied on the expectation that letters, digits, and common words are present in most model vocabularies.

As mentioned in the main paper, different prompts were needed to attack ChatGPT than for the experiments
on open-source models because ChatGPT expects its inputs to be in a conversation format and it does not offer
control over the number of words generated (without careful prompt design, it tends to return tens to hundreds
of words). Table 5 gives the prompts used to attack ChatGPT.

E Scientific Artifacts

We use the following language models in our research:

• BLOOM 3B: This model was released by BigScience under the RAIL License v1.0 with the goal
to “to enable public research on large language models” (Scao et al., 2022). It can be downloaded at
https://huggingface.co/bigscience/bloom.

• Pythia 2.7B: This model was released by EleutherAI under the MIT License with the goal of enabling

https://huggingface.co/bigscience/bloom
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research on “interpretability analysis and scaling laws” (Biderman et al., 2023). It can be downloaded
at https://github.com/EleutherAI/pythia.

• GPT-2 base and XL: These models were released by OpenAI under the MIT license with the
goal of fostering language model research (Radford et al., 2019). They can be downloaded at
https://huggingface.co/gpt2.

• ChatGPT and GPT-3 model family: These models are only available via OpenAI’s API or through
OpenAI’s web interface. Our experiments with them fall under OpenAI’s research policy, found at
https://openai.com/api/policies/sharing-publication/#research-policy.

We chose these models evaluate on because (1) we wanted to evaluate our method on a wide range of
independently trained models using different paradigms and training dataset choices. For example, though
we conduct all our experiments using English prompts, we can observe the impact of BLOOM being trained on
multilingual data, in that for the MONTHS prompt, BLOOM puts significant probability-mass on non-English
month names, which could affect our p estimates for BLOOM models.

F Computational Resources

Preliminary experiments were run in Google Colab using a Pro membership, which gave access to one Tesla
T4. Subsequent experiments were running on a Google Cloud machine with 8 Tesla V100s. No more than
100 hours were spent running computation on this machine, which has a cost of $17 per hour.

G Additional Results

Table 6 gives the numbers used in Figure 2 in the main paper, as well as the root mean-square error between
the true and estimated p values.

Table 6: Performance at p estimation across 100 estimations with p values random from 0 to 1. On the left, GPT-2 Base
was used to compute known distributions, and on the right GPT-3 was used to compute the known distributions.

GPT-2 Base GPT-3 Davinci v1
Model Acc±.05 RMSE Acc±.05 RMSE

GPT-2 Base 0.93 0.03 0.08 0.19
GPT-2 XL 0.82 0.04 0.07 0.21
Davinci v1 0.23 0.14 0.51 0.06

BLOOM-3B 0.77 0.04 0.07 0.22
pythia-2.7b 0.88 0.03 0.07 0.20

https://github.com/EleutherAI/pythia
https://huggingface.co/gpt2
https://openai.com/api/policies/sharing-publication/#research-policy
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