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Abstract

Text Style Transfer (TST) involves transform-
ing a source sentence with a given style label
to an output with another target style mean-
while preserving content and fluency. We look
at a fill-in-the-blanks approach (also referred
to as prototype editing), where the source sen-
tence is stripped off all style-containing words
and filled in with suitable words. This closely
resembles a Masked Language Model (MLM)
objective, with the added initial step of masking
only relevant style words rather than BERT’s
random masking. We show this simple MLM,
trained to reconstruct style-masked sentences
back into their original style, can even trans-
fer style by making this MLM "Style-Aware".
This simply involves appending the source sen-
tence with a target style special token. The
Style-Aware MLM (SA-MLM) now also ac-
counts for the direction of style transfer and
enables style transfer by simply manipulating
these special tokens. To learn this n-word to
n-word style reconstruction task, we use a sin-
gle transformer encoder block with 8 heads,
2 layers and no auto-regressive decoder, mak-
ing it non-generational. We empirically show
that this lightweight encoder trained on a sim-
ple reconstruction task compares with elab-
orately engineered state-of-the-art TST mod-
els for even complex styles like Discourse or
flow of logic, i.e. Contradiction to Entailment
and vice-versa. Additionally, we introduce a
more accurate attention-based style-masking
step and a novel "attention-surplus" method to
determine the position of masks from any ar-
bitrary attribution model in O(1) time. Finally,
we show that the SA-MLM arises naturally by
considering a probabilistic framework for style
transfer. *

1 Introduction

Text Style Transfer can be thought of as a form
of Controllable Language Generation (Hu et al.,

*Our code and data are available at: https://github.
com/sharan21/Style-Masked-Language-Model

2017) with tighter criteria. Dathathri et al. (2020)
show that a classifier trained on the final embed-
dings of any arbitrary large language model to learn
class labels of any dataset, can guide subsequent
generations to resemble this dataset’s style by back-
propagating signals from the classifier to the LLMs
activation layers. This approach, as well as other
generational approaches, generally suffer from the
lack of the model’s ability to preserve content. This
content preservation criteria, where only style influ-
encing words/phrases must be affected, forms the
critical challenge in the Style Transfer task. Learn-
ing style transfer from a parallel dataset is easy, i.e.
where the output sentence for every target style is
known and the model learns a straightforward map-
ping of input-output sentence pairs in a supervised
manner. Like most work, we assume the more re-
alistic case, where the dataset is non-parallel, and
the task is unsupervised. The style transfer task is
equivalent to the task of estimating the hypothetical
parallel dataset from a non-parallel or "partially-
observed" parallel dataset. We use this notion in
later sections to elucidate the mechanisms which
enable our approach.

Style is usually represented using a data-driven
approach, i.e. the class labels present in an anno-
tated dataset. One could argue that for a majority of
style transfer applications, only a subset of words
participate in giving the input sentence its corre-
sponding style. As examples, we can think of this
being true in the case of Sentiment, Toxicity, For-
mality, Politeness etc, where a few word edits can
lead to a style change while the other attributes
of the sentence are disaffected. As expected, this
type of approach has been vastly used in the style
transfer task with good success. This prototype
editing approach consists a) ranking tokens accord-
ing to how much they affect the underlying style b)
determining which subset of tokens to mask to pro-
duce a style absent sentence, and c) transforming
this style absent sentence into one that contains the

https://github.com/sharan21/Style-Masked-Language-Model
https://github.com/sharan21/Style-Masked-Language-Model


363

target style.
We show that a single self-attention encoder

block trained to reconstruct style-masked sen-
tences to the original versions using a non-parallel
dataset also learns style transfer automatically. This
method, resembling a masked language model,
compares with state-of-the-art models albeit having
a simpler training process, lesser parameters and
without using pre-trained language models. We
consider a novel discourse manipulation task and
show that the SA-MLM outperforms another state-
of-the-art model in this respect.

2 Learning Style Transfer from only
Reconstruction

Many similarities appear between the editing ap-
proach for style transfer and BERT’s masked
language model objective. The only difference
being that we reconstruct the original sentence
from its style-masked version, rather than random
or perplexity-based-masking sentences in typical
MLMs. We postpone discussing our approach
for style masking to the next section. In this sec-
tion, we explore the question “How does an MLM
trained only on a reconstruction task automatically
gain the ability to perform the unseen style-transfer
task?”.

An Ensemble Approach. Intuitively, we can
reason that just training a model to reconstruct sen-
tences from style-masked versions ("the food was
<blank>" to the "the food was good") will not work.
Since a) this does not give context to the model
about styles present and b) does not give us any
knob to control the output style. A simple solution
would be training n different models, each to re-
construct one particular style. Style transfer can be
performed by feeding a style-masked sentence to
that corresponding target style model. This how-
ever a) is not computationally efficient or scale-able
b) limits the learning of each model to only a frac-
tion of the dataset, thereby over-fitting to that target
domain. We perform the style transfer task using
this ensemble model consisting of two generational
encoder-decoder models, denoted as Ensemble in
Tables 3, 5, 4 and 6.

A Single Style-Aware Encoder. As an alter-
native to training n models, we can train a single
model and contextualize style by concatenating
a <target_style> special token to the input style-
masked sentence. Training on the reconstruction
task this way (e.g. "the food was good" from "the

Task Positive
to Negative

Contradiction
to Entailment

Input This movie is by far
one of the best ur-
ban crime dramas
i’ve seen .

a woman is sitting
outside at a table us-
ing a knife to cut
into a sandwich . a
woman is sitting in-
side

Style
Masked This movie is by

<mask> one of
the <mask> urban
crime <mask> i’ve
seen .

a woman is sitting
outside at a table us-
ing a knife to cut
into a sandwich .
a woman <mask>
<mask> <mask>

Output This movie is by far
one of the worst ur-
ban crime garbage i
’ve seen .

a woman is sitting
outside at a table us-
ing a knife to cut
into a sandwich . a
woman is a outside

Table 1: Examples of Sentiment and Discourse style
transfer by the SA-MLM on the IMDb and SNLI
datasets respectively.

food was <blank>. <positive>") allows it to infer
the target style needed and reconstruct accordingly.
This allows us to perform style transfer by sim-
ply manipulating the target style token. The model
estimates the unseen portion of the hypothetical par-
allel dataset. Furthermore, we hypothesize that a
word-by-word generational approach using an auto-
regressive decoder might degrade performance in
content preservation criteria. We juxtapose the
performances of these approaches, denoted as Gen-
erational and Encoder-only in Tables 3, 5, 4 and 6.

To summarize, a simple modification (in the
form of label concatenation) to the traditional
MLM task enables style transfer by training solely
on a reconstruction/denoising task. This forms the
basis of our approach.

3 Masking Style with Attention

We explore the question, "What constitutes a good
style-masking step?". Intuitively, we can reason
that our style-masking approach must a) produce
accurate attribution scores for each token and b)
use an appropriate masking policy that determines
which tokens to mask using these attribution scores.
The final style-masked sequences (input to the SA-
MLM) must be a) completely devoid of style infor-
mation and b) accurate, i.e. not done at the expense
of content information.

3.1 Accurate Attribution Scores

Many prototype editing methods use Vanilla At-
tention (VA) as attribute scores (Wu et al., 2019b;
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Zhang et al., 2018; Wu et al., 2020). It has been
shown that attention is not explanation, i.e. these
attribution scores do not align with human inter-
pretability (Jain and Wallace, 2019). VA does not
correlate well with other well-known attribution
methods (such as Integrated Gradients Sundarara-
jan et al. (2017)). We instead use "Explainable
Attention" (EA) scores from a Diversity-LSTM
classifier (Mohankumar et al., 2020; Nema et al.,
2017) which have been shown to correlate better
with other attribution methods as well as human
judgement. We discuss more about the Diversity
LSTM in section A.6 of the appendix. We also
quantitatively compare the efficacy of the style-
masking step between EA and VA in Table 2.

3.2 An Accurate Masking Policy

Even with having accurate attribution scores using
explainable attention, effective style-masking re-
quires careful selection of a policy which satisfies
certain criteria. The primary criteria being that only
tokens which significantly contribute to the style
of a sentence must be masked, and other tokens
must be ignored to ensure content is also preserved.
Similar to the masking policy in Wu et al. (2020),
it is natural to consider a "top k tokens" scheme
in which the top k tokens with highest attribution
are masked. However, this static approach fails
for sentences which do not have exactly k style-
contributing tokens, leading to either partial style
masking or erroneous masking of content tokens.
For the same reason, even a sentence length aware
scheme such as "top 15%" masking fails. Further-
more, all such policies require sorting, leading to
O(n log n) time complexity for style masking of
each sentence in a batch.
Attention Surplus. Let A = {Ai . . . An} denote
the attention distribution of a sentence of size n.
Intuitively, we can reason that all "special" tokens
which might contribute more to style should have
an attribution greater than the average base attri-
bution of the sentence, given by Amean = 1/n.
Generalising this further, we refer to tokens with
Ai ≥ Abaseline as tokens with "attention surplus"
with respect to a sentence-length sensitive baseline
attention Abaseline given by:

Abaseline = (1 + λϵ) ∗Amean (1)

where λϵ is a hyperparameter of range 0− 1.0.
This chosen threshold Abaseline is sensitive to the

sentence length as well and subsequently ensures
that the number of style-significant tokens can be
dynamically determined, without need of an elab-
orate algorithm. As a sanity check, we observe
that even in the adversarial case where all tokens
might be equally important to style, A resolves into
a UniformDistribution(n) and our policy correctly
resorts to masking all tokens†. Let Mask denote
the token mask matrix of size n initialised with
zeros.

Mask[Ai ≥ Abaseline] = 1 (2)

Using a vectorised batch-wise approach, we can
style-mask an entire input batch in just O(1) com-
plexity, compared to sorting-based approaches
which take O(batch_size · n log n) .

4 Related Work

Recent work focuses on various common
paradigms such as disentanglement (Hu et al.,
2017; Shen et al., 2017), cycle-consistency losses
(Yi et al., 2020; Luo et al., 2019; Dai et al., 2019;
Liu et al., 2021), induction (Narasimhan et al.,
2022; Shen et al., 2020). Jin et al. (2021) and
Hu et al. (2020) provide surveys detailing the cur-
rent state of style transfer and lay down useful tax-
onomies to structure the field. In this section, we
only discuss contemporary work similar to ours
(prototype editing approaches) assuming the same
unsupervised setting.

Li et al. (2018) present the earliest known work
using the prototype editing method, in which a
"delete" operation is performed on tokens based
on simple count-based methods, and the retrieval
of the target word is done by considering TF-IDF
weighted word overlap. Malmi (2020) first train
MLMs for the source and target domains and per-
form style transfer by first masking text spans
where the models disagree (in terms of perplex-
ity) the most, and use the target domain MLM to
fill these spans. Wu et al. (2019b) introduce the
Attribute-Conditional MLM, which most closely
aligns to the working of the SA-MLM, also uses
an attention classifier for attribution scores, a count
and frequency-based method to perform masking,
and a pretrained BERT model fine-tuned on the
style transfer task. Lee (2020) and Wu et al. (2020)
also follow roughly the same pipeline but uses

†Assuming λϵ = 0, whereas in practice we find λϵ =
0.15, 0.5 giving optimal masking for the Sentiment and Dis-
course TST, respectively. More is discussed in 7.2
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a generational transformer encoder-decoder ap-
proach and also fine-tunes using signals from a
pretrained classifier. Wu et al. (2019a) uses a hi-
erarchical reinforced sequence operation method
is used to iteratively revise the words of original
sentences. Madaan et al. (2020) uses n-gram TF-
IDF based methods to identify style tokens and
modify them as either "add" or "replace" TAG to-
kens, which are then substituted by the decoder to
perform style transfer. Similar to the SA-MLM,
(Xu et al., 2018) also uses attribution-based meth-
ods from a self-attention classifier. However, they
use an LSTM (Hochreiter and Schmidhuber, 1997)
based approach, one to generate sentences from
each domain. (Reid and Zhong, 2021) performs
unsupervised synthesis to create a pseudo-parallel
dataset and uses multi-span editing techniques to
fill in the style using a fine-tuned pretrained lan-
guage model.

5 Methodology

In this section, we describe the working of the SA-
MLM during training and inference using a formal
probabilistic framework.

5.1 Notation
Let S denote the set of all style labels
for a annotated dataset D of the form
{(x0, l0), (x1, l1) . . . (xn, ln)} where xi de-
notes the input sentence and li ∈ S denotes
the label corresponding to xi. The set of
all sentences of style s in D is denoted by
x̂s = {xj : ∀j where(xj , s) ∈ D}. We
use a special meta label ms to represent the
"style-masked" label class having s the original
style. Subsequently, xms refers to the set of all
style-masked sentences with source style s. The
set of all style-masked sentences from D is given
by xm = Union(xms : ∀s ∈ S).

5.2 A Probabilistic framework
For the sake of convenience in notation, we assume
binary style labels, S = {0, 1}‡. We assume that
a non-parallel dataset is a partially observed hypo-
thetical parallel dataset. The SA-MLM, therefore,
has to estimate the unseen half of this hypotheti-
cal parallel dataset. We follow the assumption that
every output sentence with a style s is a result of:

• sampling from a latent style-masked prior,
p(xms),

‡In theory, this can be extended to any number of styles.

Figure 1: Probabilistic overview of our style transfer
method.

• which we get from style masking input sen-
tences, p(xms |xs, θSMM ) (posterior), and is
then

• reconstructed to form the sentences with tar-
get styles using the SA-MLM, q(xs, xs|xms)
(likelihood).

Style transfer is equivalent to estimating the unseen
half of the hypothetical parallel q(xs|xms). The
overall model is summarised in Fig. 1.

5.3 SA-MLM architecture: A single
self-attention block

The SA-MLM, q(xs, xs|xms) in this case, consists
of a lightweight Transformer Encoder (a single
self-attention block) with 2 layers, 8 heads and
embeddings of size 512. To learn style transfer,
training on the reconstruction task is sufficient, e.g.
outting "The food was good" from a style masked
input "The food was <blank>. <positive>".

5.4 Training objective

Our model, when trained only on the reconstruc-
tion task i.e. q(xs|xms), automatically learns style
transfer i.e. q(xs|xms). The intuition for why this
is, is given in Section 2. Strictly speaking, this
behaviour of automatically learning an unseen task
is the result of two features we adopt, a) a single
model with a common latent prior for all styles and
b) the presence of target style information in the
input sentences. Our model, consisting of a single
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Figure 2: Overview of model architecture considering
sentences of style s i.e. xs. In reality, this is applied all
styles xs,∀s ∈ S

self-attention encoder block, minimizes the NLL
reconstruction loss.

Lrecon(θencoder) = −logqencoder(xs|xms)

5.5 Fine-tuning
The presence of the special target style token during
the reconstruction task forces the encoder to try and
ensure that the target style is present in the output.
To further enforce this behaviour, we fine-tune the
encoder for one epoch using techniques similar to
those found in (Liu et al., 2021). While training on
the reconstruction task, we simultaneously train a
classifier to predict target style labels using final
layer embeddings of the reconstructed output §.

Lcls(θcls) = −logpcls(s|xs)

For fine-tuning, this classifier then provides su-
pervision signals to the encoder with respect to
the style transfer accuracy to further enforce the
outputs to align with the target style. This is for-
mulated as min-max objective LFT between the
classifier cls and the encoder:

min
θencoder

max
θcls

−logpcls(s|xs)

6 Datasets and Tasks

We report the split and label-wise statistics of each
dataset in Table 14 of the appendix.
Sentiment Style Transfer: Following many past
studies, we evaluate our model for the sentiment
style transfer task using three review datasets, Yelp,

§We use a single feed-forward layer with input being the
average of the last layer embeddings of Xs

i (excluding the
meta-labels).

Amazon and IMDb. All three datasets are anno-
tated with two labels corresponding to positive or
negative reviews and are non-parallel. ¶

Discourse Style Transfer: Some style transfer
tasks are more complex than others and have dif-
ferent levels of granularity (Lyu et al., 2021). To
show that our seemingly simplistic approach can
perform more cognitive tasks, we introduce the
Discourse style transfer task by performing style
transfer on the SNLI (Bowman et al., 2015) dataset.
Each instance in the dataset consists of two sen-
tences, which either contradict, entail or are neutral
(no relationship). We consider the task of manipu-
lating the discourse or "flow of logic" between two
sentences, i.e. from contradiction to entailment
and vice-versa. Unlike the sentiment task, which is
"intra-sentence", where the style can be attributed
to a select set of words, the discourse task is "inter-
sentence" and requires the model to be cognizant
of the context (especially for the Contradiction to
Entailment Task) and detect the flow of logic.

7 Analysis of Style-Masking approach

In this section, we evaluate and justify our choice
of style-masking architecture, i.e. "Explainable
Attention" + "Attention-Surplus" masking policy.

7.1 Analysis of Various Attribution Methods
We consider various other attribution methods for
our analysis i.e. Vanilla Gradients, Integrated Gra-
dients (Sundararajan et al., 2017), Vanilla Atten-
tion, Attention * X (or inputs) and Explainable
Attention (Mohankumar et al., 2020). We do not
consider techniques such as LIME (Ribeiro et al.,
2016), LRP (Bach et al., 2015), DeepLIFT (Shriku-
mar et al., 2017) as they are relatively more com-
putationally expensive during inference time. For
the style-masking policy, we use our "attribution-
surplus" to determine which tokens to mask, as
mentioned in Section 3.

In Table 2, we compute the Accuracy% and s-
BLEU on the final style-masked sequences pro-
duced by each attribution method on the test split
for all four datasets. We can reason that an ideal
style-masking method should be able to produce
sentences that completely mask out style, thereby
fooling a pretrained classifier (minimizing its Ac-
curacy%) and also preserving content informa-
tion (maximizing the s-BLEU between the source

¶For Yelp, Amazon and IMDb, we used the pre-processed
version specified in https://github.com/yixinL7/Direct-Style-
Transfer.
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Figure 3: Effect of λϵ on the resultant style-masked
sentences using our "EA+AS" method. We compute
s-BLEU(Top) and Accuracy%(Bottom) of the style-
masked sentences on the test split of each dataset.

and style-masked sentences). We see that though
Vanilla Attention is able to generally produce the
lowest Accuracy%, however it does so at the ex-
pense of preserving content, reflected as lower s-
BLEU compared to Explainable Attention, which,
on the other hand, has the best content-preserving
style masking throughout all datasets and comes
as a close second in terms of Accuracy %. Other
gradient-based methods do not perform favourably
in any aspect.

7.2 Effect of λϵ on Style-Masking
We can intuitively reason that the s-BLEU metric of
the style-masked sentences serves as a rough upper
bound for the s-BLEU we can potentially achieve
on the output sentences after style transfer. As ex-
pected (from Eq. 1), we observe a positive correla-
tion between λϵ and both s-BLEU and Accuracy%
as seen in Fig. 3. It is desirable to carefully choose
λϵ to be high enough to boost future s-BLEU scores
on the style transfer task and also ensure that the
sentences are sufficiently style masked with low Ac-
curacy% scores. On manual checking, we observed
that λϵ = 0.15 served best to accurately style-mask
sentences for the Yelp, IMDb and Amazon datasets.
SNLI required a higher λϵ of 0.5 to ensure content
information was preserved appropriately.

8 Experiments

We perform style transfer on all the datasets and
analyse the results. Henceforth, we refer to the
Encoder-only variant (described in Section 5.3) as

our "SA-MLM" flagship model while comparing
with baselines in Tables 3, 5, 4 and 6. The other
two SA-MLM variants i.e. Ensemble and Gener-
ational described in Section 2, serve as ablation
studies to support our hypothesis that a single non-
generational self-attention encoder only approach
is optimal for style transfer.

8.1 Automatic Evaluation Metrics
Typically, metrics for style transfer include Style
Transfer Accuracy (using a pretrained classifier),
BLEU for content preservation, and perplexity (us-
ing a pretrained LM) to check the fluency of out-
puts. Xu et al. (2020) show that this traditional
set of metrics can be gamed. For fluency, we use
the "Naturalness" metric (Mir et al., 2019) instead
of PPL as it is shown to correlate better with hu-
man judgement. Apart from using BLEU for con-
tent preservation, we also report METEOR (Baner-
jee and Lavie, 2005), ROUGE-L (Lin, 2004) and
CIDEr (Vedantam et al., 2015) scores in Table 12
of the appendix.

8.2 Baselines Selection
As baselines, we choose DirR (Liu et al., 2021),
Stable (Lee, 2020), Transforming (Sudhakar et al.,
2019), Tag (Madaan et al., 2020), CrossAligned
(Shen et al., 2017), CycleRL (Xu et al., 2018),
StyleEmbedding (Fu et al., 2018), D&R (Li et al.,
2018) and CycleMulti (Dai et al., 2019). For the
hyperparameters of each baseline, we consider the
optimal parameters of the best models for each
dataset reported in each respective work. When-
ever available, we directly make use of the flagship
style transfer outputs published as part of the origi-
nal work of each reference paper to ensure that a
fair comparison is done.

SOTA baselines. For all the datasets we
considered, we found that the Direct (Liu et al.,
2021), Lewis (Reid and Zhong, 2021) and Tag
(Madaan et al., 2020) reported the strongest results
out of all contemporary work in style transfer and
our in experiments. We, therefore, consider these
as current state-of-the-art baselines for the style
transfer task to compare against.

8.3 Hyperparameter selection
The self-attention encoder block consists has 2 lay-
ers, 8 heads and embeddings of size 512. We train
it for 15 epochs on the reconstruction Task and fine-
tune it using signals from a pre-trained classifier
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Yelp IMDb Amazon SNLI
Attribution Model Acc.% s-BLEU Acc.% s-BLEU Acc.% s-BLEU Acc.% s-BLEU

Vanilla Attention (VA) 73.8 62.41 69.8 62.4 70 57.54 50.76 66
Explainable Attention (EA) 71.3 64.32 75.25 70 77.36 73.21 66.5 85.14

Vanilla Gradients 74.2 38.8 81.5 54.47 74.64 44.19 61.36 39
Gradients * X 97.2 37 93 50.35 84.92 40.37 70.14 39

Integrated Gradients 77.7 37.29 81.75 42.42 71 40.77 74.73 43
No Masking 100 100 100 100 100 100 100 100

Table 2: Comparison of quality of style-masking produced using various attribution models. We found that
λϵ = 0.0 worked best with all gradient-based methods. For attention based methods (VA and EA), we found that
λϵ = 0.15, 0.5 worked best for {Yelp, IMDb, Amazon}, SNLI respectively.

for 1 epoch. During fine-tuning, λsta is set to 1 and
gradient-clipping with a threshold of 10−3 was set
to prevent gradient explosion.

Number of Parameters. The Tag (Madaan
et al., 2020) and DirR (Liu et al., 2021) models (the
two best performing baselines) have 50M and 1.5B
parameters respectively. The SA-MLM Encoder-
only variant has 45M parameters, 30x lesser pa-
rameters than DirR’s fine-tuned GPT-2 model, and
roughly the same number of parameters as Tag, but
outperforming it in the IMDb and SNLI datasets.
We report details on training time required and in-
frastructure used in section A.2 of the appendix.

8.4 Quantitative metrics
We compute style transfer% (percentage of sen-
tences with target style) using a Bi-LSTM based
pretrained classifier trained on each dataset (refer
section A.4 of the appendix for classifier details). r-
BLEU and s-BLEU refer to the BLEU score taken
between the output sentences and the human refer-
ence and ground truth sentences, respectively. For
fluency, we measure the mean "Naturalness" score
(the "Nat." column) as the mean classification score
of a pretrained fluency discriminator ||. We also add
a "Mean" score consisting of the average of style
transfer%, s-BLEU and naturalness (normalised
to 100) columns to denote a rough measure of the
overall quality of each style transfer model.

8.5 Sentiment Style Transfer
Sentiment style transfer is performed on Yelp (Ta-
ble 3), IMDb (Table 5) and Amazon (Table 4). We
observe that for Yelp and IMDb, DirR and Encoder-
only are the best-performing models according to
the Mean score. In IMDb, DirR and Lewis per-
forms better than Encoder-only in content preser-
vation metrics but slightly lags behind in natural-
ness scores. In IMDb, Encoder-only achieves a

||We use the pretrained naturalness classifier available in
https://github.com/passeul/style-transfer-model-evaluation.

Model TST% r-BLEU s-BLEU Nat. Mean
DirR 92.9 23.5 60.8 0.84 79.27
Stable 81.6 15.6 39.2 0.73 64.6

Transforming 84.8 18.1 44.7 0.83 70.9
Tag 87.7 16.9 47 0.83 72.57

CrossAligned 74.4 6.8 20.2 0.68 54.2
CycleRL 51.1 14.8 46.1 0.86 61.07

StyleEmbedding 8.59 16.7 67.6 0.87 54.4
D&R 88 12.6 36.8 0.89 71.27

CycleMulti 83.8 22.5 63 0.86 77.6
Lewis 93.1 - 58.5 0.84 78.53

Ensemble 56.5 20.5 63.2 0.85 68.23
Generational 63.4 20.3 61.3 0.83 69.23
Encoder-only 91.2 18.3 53.4 0.88 77.6

Table 3: Quantitative metrics for the Yelp Dataset.

significantly high style transfer% score at a reason-
able s-BLEU of 60.9. In Amazon, Tag, Lewis and
Encoder-only are the best performing. Overall we
observe Encoder-only, DirR, Lewis and Tag as the
best-performing models.

8.6 Discourse Style Transfer

It is natural to suspect that prototype editing meth-
ods are only capable of working well on "course-
grained" styles, i.e. where the presence of style is
determined by the presence of a fixed set of words
(such as "good", "delicious" in the Yelp dataset).
To inspect if this is true and gauge the ability of
the SA-MLM to operate on more cognitive and
complex tasks, we consider "Discourse style trans-
fer" by using Natural Language Inference (NLI)
datasets.

We report statistics for the SA-MLM in Table 6.
We observe that the Encoder-only model does well
overall in this task and obtains a strong mean score
of 85.53 (higher than the sentiment style transfer
tasks). It lags behind a little mainly in the style
transfer% metric, but with a strong s-BLEU and
Naturalness score. We also report qualitative exam-
ples of the discourse style transfer task in Table 9
and 10 of the appendix.
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Model TST% r-BLEU s-BLEU Nat. Mean
DirR 58.2 30.1 60.6 0.91 69.93

Stable 57.2 24.9 50 0.83 63.4
Transforming 58.7 25.5 52.3 0.92 67.5

Tag 75 32.6 68.3 0.91 78.1
CrossAligned 73.9 1.5 2.5 0.62 46.1

StyleEmbedding 41.1 13.4 31.2 0.92 54.8
D&R 52 27.2 56.6 0.92 66.9
Lewis 74.3 - 65.6 0.93 78.53

Ensemble 52.4 31 71 0.91 71.47
Generational 53.4 31 69.6 0.88 70.33
Encoder-only 63.9 29.6 69.8 0.92 75.03

Table 4: Quantitative metrics for the Amazon dataset.

Model TST% s-BLEU Nat. Mean
DirR 80.3 67.9 0.92 80.05

cycleMulti 67.2 73.7 0.93 77.95
Ensemble 66.8 69.2 0.92 76

Generational 68.9 65.6 0.93 75.83
Encoder-only 87.9 60.9 0.92 80.27

Table 5: Quantitative metrics for the IMDb dataset.

8.7 Additional Content Metrics.

Past work does not tend to clarify the meaning and
prioritise the presence of "content-preservation"
abilities in style transfer models Lee et al. (2021).
In this effort, a more thorough analysis of content
preservation abilities of DirR, Tag and Encoder-
only is given in section A.5 of the appendix.

8.8 Qualitative Examples

Examples of the style transfer task performed using
the SA-MLM for the IMDb and SNLI dataset are
given in Table 8 and 9 of the appendix.

8.9 Human Evaluations

We only consider the relatively unexplored Dis-
course style transfer (Entailment to Contradiction
and vice versa) task for human evaluations. We
were unable to reproduce the DirR and Lewis base-
lines to run over the SNLI dataset. Therefore, we
only compare the next strongest performing mod-
els, i.e., Tag and SA-MLM. Three volunteers were
given the task of voting on 200 instances (equally
split for the E to C and C to E task) from the test
set. A vote consists of four options, i.e., "Model 1
better", "Model 2 better" or "Both Good", "Both
Bad", where the models were randomised. To de-

Model TST% s-BLEU Nat. Mean
Tag 48.3 90.2 0.98 78.83

Ensemble 52.2 88.5 0.98 79.57
Generational 58 86.7 0.98 80.9
Encoder-only 76.3 86.3 0.94 85.53

Table 6: Quantitative metrics for the SNLI dataset.

Direction Tag
better

SA-MLM
better

Both
Good

Both
Bad NA

E to C 11 55 8 18 8
C to E 8 44 2 35 11

Table 7: Human Evaluations done to compare Tag and
SA-MLM on Discourse TST task on SNLI dataset. "E"
and "C" denote "Entailment" and "Contradiction" re-
spectively.

termine the outcome for each instance, a majority
from three separate votes was taken, one from each
volunteer. In the case of no majority, the outcome
is "No agreement". As seen in Table 7, the SA-
MLM performs better in both tasks by a significant
margin.

9 Conclusion

We introduce the SA-MLM, a modification of the
standard MLM, which we show is capable of per-
forming TST by using a style-masked input and
performing a simple same-style reconstruction task
with a lightweight Transformer Encoder block. On
fine-tuning the SA-MLM for the TST%, it is on par
with state-of-the-art models with orders of more pa-
rameters and sophisticated architectures in the Sen-
timent TST task. We show that complex styles such
as flow of logic/ discourse can be manipulated even
with using this simple style masking assumption.
We empirically show that the SA-MLM performs
well in this Discourses Manipulation task and out-
performs another strong baseline in this task, also
seen through human evaluations.

10 Limitations

The apparent limitation with all prototype edit-
ing models, including the SA-MLM, is that it
encourages the model to only fill in necessary style
words and preserve the length and structure of the
original sentence. In the case of SA-MLM, the
word-to-word input-output mapping while training
the encoder prevents the output sentence length
from changing. Though it can be argued that this
even works for a relatively cognitive style like
discourse, in the future, there might exist styles
which explicitly require the addition/deletion
of words/phrases in order to alter the style
successfully. Future work will therefore focus
on enabling variable-length TST outputs, similar
to the (Madaan et al., 2020) approach or by
incorporating a padded masked language model
(Malmi, 2020).
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A Appendix

A.1 Ethics Statement
Any TST model can be used for illicit purposes.
Therefore, it is important we keep in mind a
code of ethics (e.g. https://www.acm.org/
code-of-ethics). We will make all our code
open-source and will contain all details of experi-
mentation and implementation, training time, addi-
tional hyperparameters used in the form of log files
included inside the directories of our saved models,
which can also be used to replicate results.

A.2 Computational Expense and
Infrastructure used

The most parameter-heavy SA-MLM model model
was from the SNLI dataset. Therefore we report
statistics for this model to gauge the overall com-
putational expenses the SA-MLM demands. The
model has 45 million parameters and each epoch
took approximately 224 seconds to train on an
Nvidia V100-SMX2 GPU and an Intel(R) Xeon(R)
E5-2698 CPU. For complete details, we will make
the code open source which will also contain the
models we trained along with log files with all
metadata about the model architecture and train-
ing.

A.3 Qualitative examples of style transfer
Qualitative examples of style transfer using the SA-
MLM for the IMDb and SNLI datasets are given
in 8 and 9 respectively. We also compare some
qualitative examples between the SA-MLM and
the Tag (Madaan et al., 2020) baselines in Table 10.

A.4 Details of pre-trained Classifier
We use a Bi-LSTM as our choice of classifier as
it performs comparably to FastText (Joulin et al.,
2017) and outperforms it in the SNLI dataset. A
comparison of the two models is given in Table 11

A.5 Additional Content Preservation Metrics
We present more content preservation metrics in
Table A.5 to compare the top three performing mod-

https://www.acm.org/code-of-ethics
https://www.acm.org/code-of-ethics
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Direction Negative to Positive Positive to Negative
Input ben affleck is back to making the same boring bad acting

films .
this movie is by far one of the best urban crime dramas i
’ve seen .

Style
Masked

ben affleck is back to making the same <mask> <mask>
acting films .

this movie is by <mask> one of the <mask> urban crime
<mask> i ’ve seen .

Output ben affleck is back to making the same truly great acting
films .

this movie is by far one of the worst urban crime garbage
i ’ve seen .

Table 8: Example of Sentiment style transfer on the IMDb dataset.

Direction Entailment to Contradiction Contradiction to Entailment
Input a guy in a red jacket is snowboarding in midair . a guy

is outside in the snow
a woman is sitting outside at a table using a knife to cut
into a sandwich . a woman is sitting inside

Style
Masked

a guy in a red jacket is snowboarding in midair . a guy
is <mask> in the <mask>

a woman is sitting outside at a table using a knife to cut
into a sandwich . a woman <mask> <mask> <mask>

Output a guy in a red jacket is snowboarding in midair . a guy
is swimming in the park

a woman is sitting outside at a table using a knife to cut
into a sandwich . a woman is a outside

Table 9: Example of Discourse style transfer on the SNLI dataset.

Direction Entailment to Contradiction Contradiction to Entailment
Input a black women holding a sign that says free

hugs in the city . a woman is holding a sign
a tan dog chases a black and white soccer ball
. a dog is chasing after a cat

Output (Tag) a black women holding a sign that says free hugs
in the city . a woman is holding a sign

a tan dog chases a black and white soccer ball .
a dog is chasing after a sport

Output (Encoder-only) a black women holding a sign that says free hugs
in the city . a woman is holding a book

a tan dog chases a black and white soccer ball .
a dog is outside after a ball

Input a man is doing a task by a body of water on
a farm . the man is doing something by the
water

a dad with his child and an apple pie . a dad
and his daughter with an blueberry pie

Output (Tag) a man is doing a nap by a body of water on a
farm . the man is doing pushups by the water

a dad with his child and an apple outside . a dad
and his daughter with an acousticelling outside

Output (Encoder-only) a man is doing a task by a body of water on a
farm . the man is doing nothing by the beach

a dad with his child and an apple pie . a dad and
his daughter with an apple outside

Table 10: Examples of Discourse style transfer on SNLI of SA-MLM vs Tag (Madaan et al., 2020)
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Dataset Model Acc.%
Yelp FastText 97.6

Bi-LSTM 97
IMDb FastText 99.35

Bi-LSTM 99
Amazon FastText 92.1

Bi-LSTM 93
SNLI FastText 72.5

Bi-LSTM 84

Table 11: Comparison of FastText, Bi-LSTM models
for classification task on all datasets.

els i.e., SA-MLM, Tag (Madaan et al., 2020) and
DirR (Liu et al., 2021).

A.6 The Diversity-LSTM and Explainable
Attention

Effective style-masking requires an attribution
model with a high degree of plausibility, which
motivates our use of "explainable" attention scores
Mohankumar et al. (2020) as choice for the style-
masking step.
Why not use standard attention? Vanilla atten-
tion scores do not serve as accurate attribution
scores. Attention scores over RNN hidden states
for the classification task do not correlate well with
other standard interpretation metrics (Jain and Wal-
lace, 2019), such as gradient and occlusion based
methods. Feeding alternative adversarial/random
attention distributions lead to only a modest ef-
fects are the model’s decision (Wiegreffe and Pin-
ter, 2019). However Wiegreffe and Pinter (2019)
shows that these adversarial distributions, if prop-
erly produced, do induce poorer performance show-
ing that vanilla attention is still partially faithful
to its explanation. Mohankumar et al. (2020) pos-
tulate that attention scores over hidden states (H)
are not explainable due to information mixing and
subsequent entanglement/coupling and mutual in-
formation among H in RNNs. To mitigate this
entanglement, diversity driven learning (inspired
by results in Nema et al. (2017)) is enforced among
H. This promotes the attention mechanism over
such diversity-enforced H to satisfy "faithfulness"
and "plausibility" properties when interpreted as
attribution scores, which we refer to as "Explain-
able attention" (EA). Mohankumar et al. (2020)
empirically show that EA does not suffer any loss
in performance in the downstream task. Support-
ing plausibility, a) EA scores correlate better with
strong attribution tools such as Integrated Gradi-
ents b) On analysis over POS tags, EA attends
more to tags which are contextually important w.r.t

the given task and c) Correlates better to human
judgement than vanilla attention.

The Diversity Driven LSTM. The Diversity
LSTM consists of an LSTM-based classifier with
attention (Bahdanau et al., 2015) over the H. The
final context vector is fed through a feedforward
layer to generate the output.

α̃t = vT tanh(Wh+ b) ∀t ∈ [1,m]

αt = softmax(α̃t)

cα =
m∑
t=1

αtht

To enforce the H of the LSTM to be "diverse" i.e.
more disentangled w.r.t each other, the conicity
(Chandrahas et al. (2018), Sai et al. (2019)) met-
ric is used as an auxillary loss and is defined as
the mean of "Alignment to Mean" (ATM) for all
vectors vi ∈ V:

ATM(vi,V) = cosine(vi,
1

m

m∑
j=1

vj)

conicity(V) =
1

m

m∑
i=1

ATM(vi,V)

The attention mechanism over a Diversity LSTM’s
H is now encouraged to be faithful to a particular
set of scores, thus promoting the model to move
towards more faithful and plausible attributions.
The final loss is given as:

L(θDiv) = −logpDiv(y|P ) + λcon conicity(HP )

EA requires only training an additional diversity
driven RNN classifier over the given dataset. After
which, a single forward pass is required to obtain at-
tribution scores. This is unlike other methods such
as IG, Lime, DeepLift, Occlusion, wherein each
generating each explanation requires comparatively
more operations.

Diversity-LSTM Hyperparameter Selection
Table A.6 gives details of the Diversity-LSTM clas-
sifier used during the style-masking step. We also
note that the Diversity-LSTM’s performance is
comparable to a Bi-LSTM and FastText classifier
(as shown in A.4).
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Dataset Model METEOR ROUGE-L CIDEr Embd. Avg.
Cosine Sim.

Vector Extrema
Cosine Sim.

Greedy
Matching Score

Yelp Encoder-only 0.376 0.739 4.934 0.939 0.767 0.867
DirR 0.444 0.83 5.813 0.969 0.867 0.926
Tag 0.362 0.707 4.326 0.934 0.765 0.867

IMDb Encoder-only 0.414 0.8 5.657 0.96 0.755 0.891
DirR 0.472 0.852 6.344 0.978 0.847 0.933

Amazon Encoder-only 0.464 0.868 6.725 0.964 0.782 0.921
DirR 0.469 0.823 6.612 0.967 0.821 0.929
Tag 0.453 0.835 6.548 0.966 0.781 0.917

SNLI Encoder-only 0.563 0.906 8.297 0.986 0.886 0.96
Tag 0.606 0.944 8.619 0.992 0.921 0.972

Table 12: Content Preservation metrics for all datasets comparing top performing models

Dataset Acc.% Losscon λcon

Yelp 96 0.06 10
IMDb 100 0.09 10

Amazon 89 0.03 20
SNLI 82 0.18 10

Table 13: Classification task statistics and choice of
λcon for each dataset.

Dataset Style Label Train Dev Test

Yelp Positive
Negative

266K
177K

2000
2000

500
500

IMBb Positive
Negative

178K
187K

2000
2000

1000
1000

Amazon Positive
Negative

277K
179K

985
1015

500
500

SNLI Entailment
Contradiction

183K
183K

3329
3278

3368
3237

Table 14: Split and label wise statistics of each dataset.


