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Abstract

Current captioning datasets focus on object-
centric captions, describing the visible objects
in the image, e.g. “people eating food in a
park”. Although these datasets are useful to
evaluate the ability of Vision & Language mod-
els to recognize and describe visual content,
they do not support controlled experiments in-
volving model testing or fine-tuning, with more
high-level captions, which humans find easy
and natural to produce. For example, people of-
ten describe images based on the type of scene
they depict (‘people at a holiday resort’) and
the actions they perform (‘people having a pic-
nic’). Such descriptions draw on personal ex-
perience and commonsense assumptions. We
present the High-Level Dataset '; a dataset ex-
tending 14997 images from the COCO dataset,
aligned with a new set of 134,973 human anno-
tated (high-level) captions collected along three
axes: scenes, actions and rationales. We fur-
ther extend this dataset with confidence scores
collected from an independent set of readers,
as well as a set of narrative captions generated
synthetically, by combining each of the three
axes. We describe this dataset and analyse it
extensively. We also present baseline results
for the High-Level Captioning task.

1 Introduction

Conceptual grounding broadly refers to the idea
that symbols (e.g. language) are grounded in
perception (Barsalou et al., 2008). Perceptually
grounded communication is made possible by the

fact that perceptual experiences are largely shared.

However, individual experience can also license
subjective inferences which inform not just what
we express through language, but also what we
choose to assume and leave unexpressed (Bisk
et al., 2020).

'huggingface.co/datasets/

michelecafagna26/hl
github.com/michelecafagna26/HL-dataset

Among the many modalities available in the
perceptual spectrum, visual grounding has always
been of primary interest as it provides a relatively
straightforward way to link linguistic expressions
to physical objects. Consistent with this claim, a
glance at many widely used datasets and models
in image captioning reveals a bias towards ‘object-
centric’ descriptions, whereby models are trained
on image-text pairs where the text consists of ex-
plicit mentions of objects visible in the scene. How-
ever, experience and perception also motivate other,
non-object-centric ways of talking about the world,
for example, when we talk about scenes, or when
we describe actions or their underlying rationales.
While such ‘high-level’ descriptions are also per-
ceptually grounded, they incorporate world knowl-
edge and subjective experience.

For example, the object-centric description in Ta-
ble 1 certainly describes the visual content, though
it is based mainly on the recognition of objects
in the scene. By contrast, the three high-level
captions (scene, action, rationale, from the HL-
Dataset described below), provide three different
perspectives of the scene among the many possi-
ble ones, which are triggered by expectations and
assumptions based on subjective experience and
world knowledge.

In this work, we tackle the issue of ground-
ing high-level linguistic descriptions in the visual
modality, proposing the High-Level (HL) Dataset:
a resource for Vision and Language (V&L) mod-
eling which aligns existing object-centric captions
with human-collected high-level descriptions of im-
ages along three different axes: scenes, actions and
rationales. The high-level captions capture the hu-
man interpretation of the scene which are comple-
mentary to object-centric captions used in current
V&L datasets, e.g. in COCO (Lin et al., 2014). We
take a step further, and we collect confidence scores
from independent annotators, which serve to shed
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Axis

Image

Caption

scene
action

rationale

the picture is shot in a ski resort
they are just relaxing after a
round of skiing

they want to have a good time
together

object-centric (COCO)

a woman and a boy sitting in the
snow outside of a cabin.

Table 1: Example of High-Level captions. It is shown one of the three captions available for the three axes collected:
scene, action, rationale, combined with the object-centric captions from COCO.

light on the extent to which the high-level captions
in the dataset correspond to widely-shared assump-
tions, or to idiosyncratic interpretations. Finally,
we consider the task of generating captions that
incorporate these different axes, yielding a more
narrative-like description of images. Our contribu-
tions are:

* We present and release the HL Dataset, a
new V&L resource, grounding high-level cap-
tions in images along three different axes and
aligned with existing object-centric captions;

* We describe the collection protocol and pro-
vide an in-depth analysis of the data;

* We present baselines for the High-Level Cap-
tioning task and describe further potential uses
for our data.

2 Related work

Hodosh et al. (2013), in their influential work, ar-
gue that image captioning is mostly interested in
‘conceptual descriptions’, which focus on what
is actually in the image and differ from the so-
called non-visual descriptions, which provide addi-
tional background information. This line of thought
has been broadly followed in the field, resulting
in datasets emphasizing object-centric content in
V&L tasks involving text generation, like image
captioning (Lin et al., 2014; Sharma et al., 2018;
Agrawal et al., 2019) and visual question answering
(Antol et al., 2015; Zhu et al., 2016).

For instance, in the instructions used to collect
COCO (Lin et al., 2014), the annotators are explic-
itly asked to mention entities visible in the image.
This is beneficial to enhance cross-modal interac-
tions: Zhang et al. (2021) show that improving the
visual backbone on object recognition tasks, im-
proves the performance of visio-linguistic models
in downstream tasks. Li et al. (2020) show that

using object labels to bridge the two modalities
improves grounding capabilities of V&L models.
Object-centricity is also a feature of widely-used
web-scraped datasets: in the Conceptual Captions
dataset for instance, Sharma et al. (2018) filtered
out all captions which did not overlap with object
labels automatically identified by a computer vision
model in the corresponding image.

Some efforts have been made to understand how
low-level concepts improve generalization capabil-
ities and connect to high-level concepts. Object-
centric captions help to improve the generalization
over unseen objects (Hu et al., 2021) and play a
role in the model understanding of abstract con-
cepts (Cafagna et al., 2022; Wang et al., 2022b). In
our work, we are interested in the relations between
what Hodosh et al. (2013) refer to as ‘conceptual’
and ‘non-visual’ descriptions, which we re-frame
as a distinction between low-level (object-centric)
and high-level descriptions in multimodal learning.
We release a novel dataset to foster research in this
direction.

Motivation for the present work is also provided
by recent research exploring the visual correlates of
inferences, temporal and causal relationships (e.g.,
Park et al., 2020), which also have implications for
generation. In visual storytelling, for instance, a
model has to understand actions and interactions
among the visually depicted entities (Huang et al.,
2016; Hu et al., 2020; Lukin et al., 2018; Hong
et al., 2023). Identifying actions is a prerequisite
for predicting their motivations or rationales as
well as explaining automatically generated descrip-
tions of images (Hendricks et al., 2018). Actions
and intention are paramount to performing com-
monsense and temporal reasoning on visual inputs.
Along these lines, Park et al. (2020) creates dy-
namic stories on top of static images, where the
task is to predict priors and subsequent actions and
rationales. Our work is similar in spirit, as we align
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high-level descriptions of actions and rationales
with low-level descriptions of static images.

Some work has also been done to test multi-
modal model grounding capabilities from a more
linguistic perspective. Parcalabescu et al. (2022)
build a benchmark to test models on a variety of
linguistic phenomena, like spatial relations, count-
ing, existence, etc. Pezzelle et al. (2020) assess
the integration of complementary information of
V&L models across modalities, while Thrush et al.
(2022) test multimodal models on compositional
reasoning. In this context, the HL Dataset pro-
posed here can offer another benchmark for V&L
models’ understanding of high-level descriptions
of images. Such descriptions are licensed by the
entities depicted in the visual modality and the re-
lationships between them but they do not mention
them explicitly.

3 Data

In this section, we describe the protocol used to col-
lect annotations for scenes, actions and rationales
and the subsequent collection of confidence scores
through crowdsourcing. Differently from previous
works, such as COCO, where human annotators
are instructed to be objective and to mention only
the objects clearly visible in the picture, we elicit
high-level concepts in the form of captions by en-
couraging the annotators to rely on their subjective
interpretation of the image.

3.1 Data collection

The task of collecting high-level descriptions is
by nature hard to define and requires a clear and
careful formulation, therefore we run a pilot study
with the double goal of collecting feedback and
fine-tuning the task instructions. Full details of the
pilot are reported in Appendix D.

Procedure The participants are shown an image
containing at least one human subject and three
questions regarding three aspects or axes: scene,
actions and rationales i,e. Where is the picture
taken?; What is the subject doing ?; and Why is the
subject doing it? We explicitly ask the participants
to rely on their personal interpretation of the scene
and add examples and suggestions in the instruc-
tions to further guide the annotators. Moreover, dif-
ferently from other VQA datasets like (Antol et al.,
2015) and (Zhu et al., 2016), where each question
can refer to different entities in the image, we sys-
tematically ask the same three questions about the

same subject for each image. See Appendix D for
the full instructions and Appendix C for details
regarding the annotations costs.

Images As mentioned in Section 1 the COCO
dataset has a very explicit object-centric orienta-
tion, therefore it provides a good starting point
to select images, such that we can couple object-
centric and high-level captions in a resource-lean
approach. Moreover, the alignment of object-
centric and high-level captions permits an inves-
tigation of the relationship between them.

We randomly select 14,997 images from the
COCO 2014 train-val split. In order to answer
questions related to actions and rationales we need
to ensure the presence of a (human) subject in the
image. Therefore, we leverage the entity annota-
tion provided in COCO to select images containing
at least one person.

The whole annotation is conducted on Amazon
Mechanical Turk (AMT). We split the workload
into batches in order to ease the monitoring of the
quality of the data collected. Each image is anno-
tated by three different annotators, therefore we
collect three annotations per axis.

3.2 Confidence Scores

The high-level descriptions are collected by asking
the participants to interpret the scene leveraging
their personal experience. The element of subjec-
tivity leads us to expect some variation in the result-
ing descriptions, especially where annotators need
to infer actions and rationales. In order to distin-
guish what can confidently be considered widely-
shared, or ‘commonsense’ descriptions, from more
idiosyncratic interpretations, we conduct a separate
study where we crowd-source confidence scores
for each high-level caption. We ask independent
participants to score the likelihood of a high-level
description given the image and the correspond-
ing question on a Likert scale from 1 to 5. For
a detailed example of the form see Figure 23 in
Appendix D.

Agreement-based worker selection The confi-
dence scores are collected following the same pro-
tocol used to collect the high-level descriptions.
Using the data from our pilot study, which was car-
ried out with participants who had been thoroughly
briefed on the task, we ran a preliminary qualifica-
tion task where we employed an automatic worker
selection method to hire qualified annotators from
the crowd-sourcing platform.
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Let’s consider the participants of the pilot as
gold annotators (as they were trained on the task)
and their annotations as reference annotations. The
inter-annotator agreement computed on the refer-
ence annotations can be considered the gold inter-
annotator agreement g4 Of the task.

We run the qualification task using the same set
of items used in the pilot, then for each worker
w we re-compute the inter-annotator agreement
(Hayes and Krippendorff, 2007), combining the
workers and the reference annotations, obtaining
oy We compute an agreement ratio

Qo

T =

(D

Qgold
Then, we select the worker w if r > ¢, where ¢ is a
threshold empirically set to 0.5. This is equivalent
to choosing workers such that their contribution
does not negatively affect o014 by a factor greater
than ¢. In other words, the workers are selected if
they are relatively compliant with the gold annota-
tors.

4 Dataset Analysis

In this section, we analyse the captions collected
in the High-Level Dataset. To provide insights
on the kind of captions collected, we analyse the
distribution of the captions across different axes,
also comparing them with the object-centric COCO
captions”. Furthermore, we perform a grammatical
error analysis, which we report in Appendix A.1.

4.1 High-Level descriptions

We collected 3 annotations per axis over a set of
14,997 images for a total of 134,973 captions. An
example of high-level descriptions aligned with
the original object-centric caption from COCO is
shown in Table 1. We expect to observe shorter
texts in the high-level captions as annotators were
not giving highly descriptive details typical of
object-centric captions. This is visible in Figure 1,
which shows that the length of the high-level cap-
tions is roughly half of the object-centric COCO
captions. Though shorter, they have a comparable
number of unique tokens over all the axes (as re-
ported in Table 2); this suggests that the high-level
captions are not repetitive and contain a fair amount
of lexical variability. A more detailed comparison
of the statistics is reported in Table 2.

>The analysis is performed by using Spacy v.3 pipeline

for English using the en_core_web_md model to analyse the
part of speech of the texts.

Data | #Tok | AvgLen | #Uniq | #Cap
actions 271168 | 6.02 7326 44991
scenes 233232 | 5.18 4157 44991
rationales | 306396 | 6.81 8301 44991
HL (tot) 810796 | 6.00 12296 134973
COCO 857218 | 11.42 13300 75019

Table 2: HL dataset caption statistics compared the
COCO captions (object-centric) for the shared set of im-
ages. We report the number of tokens (# Tok), average
length (Len), number of unique tokens (# Uniq), and
number of captions (# Cap).

object 4

action q }—|:|:|—{mmmmm “e » (X}
scene 4 }—I—{Wm (X4 (X4
rationale - }—I—{WO XU

[ 10 20 30 40 50 60 70
length

Figure 1: Caption length of the HL captions divided
per axis (action, scene, rationale) in comparison to the
object-centric COCO captions (object).

Moreover, as already mentioned, the COCO cap-
tions are object-centric, that is, these captions are
collected to objectively represent the visual content.
Although this is convenient in recognition-oriented
tasks, they lack the situational knowledge required
to contextualize scenes; knowledge that is instead
an essential part of the cognitive processes under-
lying the grounding of language in vision. Indeed,
as shown in Figure 2, the most frequent lemmas in
the original COCO captions for the images used
in the HL Dataset denote mostly objects visible in
the picture. The high-level captions represent the
same visual content with the addition of situational
knowledge coming from the three axes, and this is
also visible in different lexico-semantic choices in
the texts. For example, Figure 3 shows the most
frequent lemmas found in the scene axis. Because
we align them to the same images, the dataset gives
us a clean way to explore the relationship between
objects and high-level axes.

Disentangling the content across the axes Ask-
ing the same three questions about the same sub-
ject for each image allows us to consistently com-
pare the content of our captions across three well-
defined axes. We analyse the most frequent nouns
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man
woman
person
tennis
street
group
baseball
table
ball

boy

bus
snow
player
girl

field
beach
game
skateboard
water

train

Figure 2: The most frequent nouns in the COCO cap-
tions of the shared set of images with the HL dataset.
The majority of the terms correspond to physical objects
visible in the image.

street
room
road
park
beach
field
tennis
court
ground
baseball
restaurant
house
shoot
outside
kitchen
ski
resort
sea

city
living

Figure 3: The most frequent lemmas of the captions in
the scene axis of the HL dataset.

in the scene axis in order to characterize the kind of
scenes mentioned in the captions collected. The top
most frequent scenes include street, room and road.
These are scene types which can encompass a very
broad variety of objects. However, we can also
identify scenes for which a narrower range of ob-
jects would be diagnostic, for example those related
to sport activities like baseball, tennis, ski, ground
and court, or domestic environments like house,
kitchen and living (referring to ‘living rooms’). For
a more complete view see Figure 3 where we report
the top 20 most frequent scenes in the HL dataset.

Similarly, we can characterize also the action
and the rationale axes. We identify the action dis-

play
ride
hold
walk

sit
stand
eat

ski

look
pose
surf
wait
skate
watch
fly

talk
skateboard
drive
prepare
try

Figure 4: The most frequent verb lemmas of the captions
in the action axis of the HL dataset.

want
enjoy
fun
play
game
work
hungry
time
need
like
vacation
friend
love
wait
tennis
try
practice
eat
match
family

Figure 5: The most frequent noun and verb lemmas of
the captions in the rationale axis of the HL dataset.

tribution by analysing the verbs contained in the
captions. In Figure 4 we observe that the most
frequent actions are related to sports activities, con-
sistently with what was observed in the scene axis
distribution. The most frequent verbs are play, ski,
surf, skateboard, but we can also find generic ac-
tions like hold, walk, sit and eat.

In the rationale axis we analyse both nouns and
verbs. In this axis we expect to observe more sub-
jectivity and content variability, with more lemmas
denoting intents, mental states and events, includ-
ing psych verbs. Our hypothesis is that the anno-
tators leverage their personal experience to infer
these answers to a greater extent than they do for
scene descriptions.

The majority of the rationales express intentions;
in fact, want is by far the most frequent term in the
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lemmas distribution. As observed with the other
two axes, terms related to sports activities are more
frequent (play, game, tennis, practice), but also
related to leisure (enjoy, fun, vacation, love, family)
along with generic activities (work, wait, try, eat).
For more details see Figure 5.

The systematic disentanglement of the content
along three axes can serve as a filter to identify
or analyse sub-samples of the data with specific
characteristics. For instance, as observed so far, we
can confidently say that sports-related activities are
predominant in the dataset.

Connecting high- and low-level concepts One
of the main goals of this resource is to enable the
discovery of connections between high- and low-
level captions, that are, descriptions of the same im-
ages at different levels of abstraction. By construc-
tion, the alignment provided by the HL Dataset
allows us to identify concrete objects in images
which provide ‘support’ to infer high-level con-
cepts such as scenes, actions and rationales.

We dive deeper into our analysis and study the
connection between high-level concepts related to
scene, action and rationale, to low-level objects
present in the aligned COCO captions. We ask:
‘What are the most informative objects for a high-
level concept (e.g. enjoy) found in a specific axis
(e.g rationale)?’

We leverage the Point-wise Mutual Information
(PMI) (Church and Hanks, 1990) to find the most
informative objects linked to a high-level concept.
This is helpful to discover connections between
concepts across different levels of abstraction but
also gives clues on the content distributions within
the axes. We filter out object mentions which have
a frequency less than 100 in the low-level captions.
This leaves 475 object-denoting lemmas. Then,
we compute the PMI between content words in
the high-level captions and all these lemmas. For
example, Figure 6 shows the nouns in the object-
centric captions which have the strongest PMI with
the verb ‘enjoy’ in the rationale axis.

We can observe that high-level captions can ex-
press different nuances of the same abstract con-
cept. To take another example, love (in Figure 7)
can refer to the love between an animal and its
owner, between two partners (e.g. wedding) or the
love for sports (e.g. skate, snowboard). In the
same way, as shown in Figure 6 a general concept
like enjoy can be characterized by object-level con-
cepts leaning toward a specific nuance of meaning,

=0Eean:

et e h ll ]. snowboard 2

wave

Shoresurfer

sandyo>, lake ®
c1te
skiing -

t snowboarder Skler

Figure 6: Most informative objects for the word enjoy
in the rationale axis. Font size is proportional to PMI.

donut teddy

liey
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QYaSeTy Camy g
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coat _ th o
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SR 2 ‘ bite g v
M
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Figure 7: Most informative objects for the word love in
the rationale axis. Font size is proportional to PMI.

like sports activities (e.g. kite, snowboarder, skier)
or places (e.g. sandy shore, ocean, lake). More
examples are provided in Appendix A.2.

4.2 Confidence scores analysis

Our confidence scores are similar in spirit to the
self-confidence scores collected in the VQA dataset
(Antol et al., 2015). However, they differ insofar as
our scores are not self-reported by the authors of
the captions, but collected from independent anno-
tators. The inclusion of an external judgment plays
an important role in determining the reliability of
interpretation operated by the annotators in the cap-
tion collection and therefore, in shedding light on
the extent to which an annotator’s interpretation
of a scene relies on ‘shared’ or ‘commonsense’
knowledge, or is entirely idiosyncratic.

We observe an average confidence score of 4.47
on a Likert scale from 1 to 5 (with a standard devi-
ation of 0.78 and a median of 5) over all the axes.
This suggests that, overall, according to indepen-
dent judges, our high-level captions succeeded in
capturing shared or ‘commonsense’ high-level in-
terpretations of the scene.

Furthermore, the confidence scores provide an
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action

axis

scene

rationale

15 2.0 25 3.0 3.5 4.0 4.5 5.0
confidence

Figure 8: Axis-wise confidence score distribution of the
high-level captions.

Idx Scene caption
1 in the restaurant 1
2 in the entrance of the library 1
3 | the picture is taken outside a library 3

Figure 9: Example of a ‘hard’ sample in the HL dataset
where the scene captions have low confidence scores.

additional perspective under which our data can be
characterized: by performing an axis-wise analysis
of the confidence scores distribution (see Figure 8),
we observe that the scene and action captions fea-
ture the highest overall confidence, while the ra-
tionale axis lags behind by a small margin. We
expect such differences, since determining the ra-
tionale of an action depicted in a static image is
challenging, in particular, because annotators can
leverage significant visual cues, but have no ac-
cess either to temporal information or the subject’s
stated intentions. Therefore, they need to resort to
their own priors and expectations which can also
lead to idiosyncratic interpretations which indepen-
dent judges — as in our confidence score analysis —
would find relatively unlikely.

One important use of confidence scores is to pro-
vide a measure of uncertainty of the data, which
can be used, for instance, to identify hard samples;
an example is shown in Figure 9. The scene is hard
to interpret even for humans and the scene captions
display more variability and have low confidence
scores. A detailed analysis of lexical and seman-
tic variability in the presence of high-confidence
scores is reported in Appendix A.3.

Model | Axis | Cider | SBLEU | Rouge-L
action 110.63 15.21 30.43
GIT rationale | 42.58 5.90 18.57
scene 103.00 24.67 33.92
action 123.07 17.16 32.16
BLIP rationale | 46.11 6.21 19.74
scene 116.70 26.46 35.30
action 176.54 27.37 39.15
ClipCap | rationale | 78.04 11.71 25.76
scene 145.93 36.73 42.83

Table 3: Automatic metrics for baselines (GIT, BLIP,
and ClipCap) fine-tuned along the three axes (scene,
action, and rationales) of the HL dataset. The results
are the average of 5 evaluation runs, by keeping the same
decoding strategy and parameters for all the models.

5 Baselines and results

In this section, we show how the dataset can be
used to finetune models to generate high-level,
aspect-specific descriptions, e.g. image-to-scene
or image-to-action. Below, in Section 6, we also
describe a data augmentation and generation exper-
iment, to merge the three axes into more ‘narrative-
like’ descriptions of images.

We provide baselines for this task by fine-tuning
three models, namely GIT (Wang et al., 2022a),
BLIP (Li et al., 2022), and ClipCap (Mokady et al.,
2021) on each separate axis. All the baselines
were trained for a maximum of 10 epochs using a
learning rate of 5e—5, Adam optimizer, and half-
precision (£fpl6).

Table 3 displays automatic evaluation results for
the three models, on each axis. The first observa-
tion is that ClipCap outperforms by far the other
models in each separate axis. Differently from the
other models, which are natively multimodal, Clip-
Cap leverages a LLM to generate captions, condi-
tioning the text generation on a prefix representing
the visual information, which is obtained by a map-
ping network trained to generate the prefix from
CLIP’s (Radford et al., 2021) image embeddings.

A second observation, consistent with the analy-
sis presented in earlier sections, is that on all met-
rics, models fine-tuned to generate rationale-based
descriptions receive lower scores. We hypothesise
that this is due in part to the greater variability in
this axis, and to its inherent difficulty, as reflected in
lower confidence scores. Future work could lever-
age these scores as additional signal in fine-tuning
models on captions that require more inference,
compared to more descriptive ones.
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6 Data augmentation and narrative
generation

We now describe how we extend the dataset to com-
bine the three axes to compose a short ‘narrative’,
which describes the scene, action and rationale in
tandem. We call this new dataset HL Narratives.
To do this, we leverage the individual axes and syn-
thesise this part of the data using a pre-trained lan-
guage model. Since scenes, actions, and rationales
were elicited individually in a visually grounded
and controlled setting, a synthesised version of the
three individual captions should also be true of the
image to the same extent (modulo the variations in
confidence that we observe).

6.1 Data generation process

We frame the synthesis of narrative captions as a
paraphrasing task. We follow a human-in-the-loop
approach consisting of three stages: (i) we man-
ually annotate a small sample of gold data; (ii)
we fine-tune a large pre-trained language model
(LPLM); (iii) we use the fine-tuned model to gener-
ate a sample of data, which is manually corrected
and then (iv) added to the gold annotations before
fine-tuning again. This procedure allows us to use
only a few iterations to annotate quickly a consid-
erable amount of data because the model improves
the quality of the generated data, making manual
correction progressively easier.

We use a version of TS5 (Raffel et al., 2020)
already fine-tuned on paraphrase generation® as
LPLM data generator. We initialise the process
with manually paraphrased annotations for 50 im-
ages (3 x 50 = 150), fine-tune the model for 2
epochs, and generate 150 captions for another 50
images, which are manually corrected and added
to the original 150. The model is then fine-tuned
for a further two epochs. In each iteration, we re-
serve 10% as validation data. After two epochs, we
observe that the validation loss does not improve
further. Finally, in the last iteration, we use all gold
data to fine-tune the model and generate synthetic
high-level captions for the whole HL dataset, ob-
taining 14,997 synthetic captions for training and
1499 for testing. In addition to the TS5 paraphrase
model, we also experimented with LLaMA (Tou-
vron et al., 2023) in a few-shot setting; however,
we find that TS outperforms LLAMA in this task.

3Details about the T5 fine-tuned on paraphrase generation
are available at https://huggingface.co/Vamsi/
T5_Paraphrase_Paws.

Model | SacreBLEU | ROUGE-L | Cider

GIT (PRE) 1.23 11.91 13.88
BLIP (PRE) 3.47 15.21 24.15
ClipClap (PRE) 8.72 1945 | 4047
GIT (FT) 1111 2761 | 7578
BLIP (FT) 11.70 2617 | 79.39
ClipCap (FT) 8.15 2453 | 6391

Table 4: Results of the narrative generation task, aver-
aged over 5 runs using the same decoding parameters
for all models. PRE: pretrained models; FT: finetuned
on the synthetic data.

See Appendix B for full details.

6.2 Results

We build three baselines by fine-tuning the same
three large pre-trained models used in Section 5:
GIT, BLIP, and ClipCap on our synthetic narrative
captions. We fine-tune for 3 epochs with batch size
8, learning rate 5e >, and Adam optimizer with
weight decay (Loshchilov and Hutter, 2017). We
test on our gold human-annotated data. As shown
in Table 4, where we report results for automatic
metrics, overall the models achieve worse results
than in the aspect-specific caption generation task
(reported in Table 3). This further highlights the
difficulty of generating narrative captions of this
kind for models trained on object-centric captions.

Notably, the best-performing model in the
aspect-specific caption generation task, namely
ClipCap, is the worst in the narrative caption gener-
ation, though by a small margin (Table 4). This sug-
gests that although a conditioned LLM can greatly
adapt to generate high-level descriptions of specific
aspects of the scene, it struggles in generating com-
prehensive high-level descriptions involving mul-
tiple high-level aspects of the scene. Ultimately,
this suggests that the multimodal representations
learned by multimodal models are more robust and
effective in generating natural captions than condi-
tioned unimodal models such as ClipCap.

However, the exposure to a small amount of syn-
thetic high-level captions is sufficient to drive the
models’ generated text toward more narrative-like
outputs. See Appendix F for more examples from
all models. Further progress can be done in this
direction, for example by incorporating confidence
scores during finetuning.

7 Further uses of the HL Dataset

We envision a wide set of use cases and tasks en-
abled by the HL. Dataset.
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U

GIT (PRE): a group of people on the beach
GIT (FT): people enjoying sunbathing, the picture was
taken on the beach and are going to have fun and enter-

tainment

GIT (PRE): two girls looking at their cell phones
GIT (FT): they are reading a text message outside on the
street, waiting for their friend.

Figure 10: Comparison between the object-centric captions generated by GIT pre-trained (PRE) and the high-level
caption generated by the fine-tuned (FT) model. The generated high-level caption embeds high-level information
regarding action, rationale, and scene, depicted in the visual content.

V&L generative tasks Our captions support im-
age captioning generation tasks which encompass
a broader range of visually grounded linguistic de-
scriptions than the highly object-centric, ‘concep-
tual’ descriptions which dominate the captioning
literature Hodosh et al. (2013). Moreover, the de-
composition along three axes can be exploited to
compose narratives of the image, as in image para-
graph generation (Wang et al., 2019) and visual
storytelling (Huang et al., 2016; Hu et al., 2020).
They can be used in combination with the ques-
tion each axis corresponds to, in order to generate
micro-dialog scenarios.

We would also argue that the high-level captions
are also more natural and human-like, since they
were collected without enforcing any restriction on
the content to be described. Given that the images
are also aligned with object-centric captions, it is
possible to envisage a scenario in which a model
is trained to generate high-level captions, which
are ‘explained’ or justified with reference to low-
level, object-centric properties (see Hendricks et al.,
2016, 2018, for some work in this direction). In
this way, the dataset can be leveraged to provide
captions and explanations. Furthermore, the con-
fidence scores serve for the identification of hard
samples in the data, both for evaluation purposes
and to provide additional training signals, as re-
cently shown by Ouyang et al. (2022).

Multimodal Grounding HL Dataset is also a
useful resource to benchmark the grounding capa-
bilities of large pre-trained V&L models. Along
these lines, Cafagna et al. (2021) study the capa-
bility of V&L models to understand scene descrip-
tions in zero-shot settings, finding that only large-
scale pre-trained V&L models have enough gener-
alization capabilities to handle unseen high-level

scene descriptions. Cafagna et al. (2022) analyse
the impact of exposure to high-level scene descrip-
tions on multimodal representations in models pre-
trained on object-centric captions. They show that
exposure to high-level concepts mainly affects the
model’s attentional resource allocation over the
visual input, even though the low-level concepts
learned during pre-training provide enough signal
to support and easily adapt to scene descriptions
during fine-tuning. This is also supported by Wang
et al. (2022b) who find that low-level concepts are
needed to learn higher-level concepts, though this
does not hold in the other direction.

8 Conclusions

In this paper, we introduced the High-Level (HL)
Dataset. We extended 14,997 images from the pop-
ular COCO dataset with 134,973 human-annotated
high-level descriptions systematically collected
over three axes: scene, action, and rationale. We
aligned high-level captions with object-centric cap-
tions and we provided human-collected confidence
scores to measure the degree of commonsense ex-
pressed in the high-level captions. We also pro-
vided baseline results on generating captions for
individual axes, as well as synthesised narrative
captions by combining these three high-level axes
of description.

Differently from current V&L captioning
datasets, the high-level captions capture the human
interpretation of the scene allowing for inference
and expectations. We discussed how they can be
used also in combination with low-level captions
to improve research in visual commonsense reason-
ing and multimodal grounding of visual concepts
into linguistic expressions and for generative tasks,
hoping to foster future research in this direction.
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Ethical Considerations

The data collection received ethical approval from
the University of Malta Research Ethics Commit-
tee. This data is intended to be used for training,
fine-tuning, and performing experimental evalu-
ations of machine learning models. The dataset
from which the images were originally sourced is a
widely-studied, publicly available resource. As far
as we are aware, the data does not contain harmful
or offensive content. However, we acknowledge
that any biases in the collection of images and/or
captions in the original dataset will also be present
in the HL Dataset.

Supplementary Materials Availability
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The HL Dataset is publicly released on GitHub*
and Huggingface®. The syntetic HL Narratives
Dataset described in Section 6, is publicly released
on Huggingface®. All the baselines described in
Section 5 and 6 are available on Huggingface’.
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Appendix
A Data Analysis Details

A.1 Quantitying grammatical errors

We ask two postgraduate students experts in lin-
guistics to correct grammatical errors in a sample
of 9900 captions, 900 of which are shared between
the two experts. They are shown the image-caption
pairs and they are asked to edit the caption when-
ever they identify a grammatical error. The most
common errors reported by the annotators are:

* Misuse of prepositions;
* Wrong verb conjugation;
* Pronoun omissions.

In order to quantify the extent to which the cor-
rected captions differ from the original ones, we
compute the Levenshtein distance (Levenshtein,
1966) between them.

We observe that 22.5% of the sample have been
edited and only 5% with a Levenshtein distance
greater than 10. This suggests a reasonable level
of grammatical quality overall, with no substantial
grammatical issues. This can also be observed from
the Levenshtein distance distribution reported in
Figure 11. Moreover, the human evaluation is quite
reliable as we observe a moderate inter-annotator
agreement (o = 0.507, (Krippendorff, 2018)) com-
puted over the shared sample.

Levenshtein Distance distribution
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Figure 11: Distribution of the Levenshtein distance com-
puted between the original and the corrected high-level
captions in a sample of 9900 captions.

A.2 PMI analysis examples

The PMI analysis can provide interesting insight
into the connection between object-level and high-
level captions on all the three axes available.

On the scene axis, for instance, the PMI gives
some clues on the extent to which an object can be
considered diagnostic for a scene. For instance, two
semantically similar scenes like restaturant (see
Figure 12) and kitchen (see Figure 14) share sev-
eral diagnostic objects, as we would expect. How-
ever, we can identify important semantic nuances:
the scene restaurant contains objects related to the
food (i.e. pizza, cheese, wine, sandwhich) whereas
kitchen contains objects related to the preparation
of food (i.e. stove, oven, tray, refrigerator). An-
other example is shown in Figure 13, where the
most relevant objects for the action look encom-
pass a wide variety of contexts, like looking at a
screen or a device (e.g. device, screen, cellphone)
or entertainment (e.g. zoo, zebra, giraffe). For
more examples see Table 5, where are shown the
top most relevant objects for the top three lemmas
in the scene, action and rationale axes.

These semantic differences, while quite easy
for humans to interpret, are not usually present
in object-centric V&L datasets. They are made ex-
plicit and easy to identify in the HL dataset, where
captions with different levels of abstraction are
aligned with the same image.

olateoutdoor

meal
Sllce
o?w;eee knl:fl_ kitchen

prepare

carrot

Figure 12: Most informative objects for the word restau-
rant in the scene axis. Font size is proportional to PMI.
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Figure 13: Most informative objects for the word look
in the action axis. Font size is proportional to PMI.
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Figure 14: Most informative objects for the word kitchen
in the scene axis. Font size is proportioanl to PML

Axis | Top Lemmas | Top Objects (PMI)

{ street | intersection, decker, meter
scene | room | living, wii, nintendo

| road | traffic, decker, intersection

| play | nintendo, wii, swing
action | ride | rider, carriage, wave

| hold |  controller, remote, rain

| want |  mirror, bathroom, sink

rationale | enjoy | wave, kite, ocean
| fun |  wil, nintendo, controller

Table 5: Top most informative objects of the top most
frequent lemmas in the three axes (scene, action, ratio-
nale) according to PMI.

A.3 Quantifying Lexical and Semantic
Diversity

In Section 4.2, we showed that in the presence of
low confidence, there can be variation or disagree-
ment among high-level captions given by different
annotators for the same axis. In such cases, the
captions focus on different aspects or refer to dif-
ferent interpretations. Although this phenomenon
has been observed for captions with a low confi-
dence score, it is conceivable that it might also
happen with high-confidence captions, for exam-
ple, two captions annotated by different annotators,
while differing in the interpretation of an image,
could nevertheless be considered highly likely. To
quantify this phenomenon, in this section we fur-
ther expand our analysis by studying the lexical
and semantic diversity of our captions.

Purity score We leverage the BLEURT score
(Sellam et al., 2020), a trainable metric used to
evaluate semantic differences in Natural Language
Generation, to compute a score measuring the se-
mantic diversity among the high-level captions as-
sociated with an image. To do so, we first compute
such scores across each axis, and then we combine
them to obtain a final score for the item. In this
way, we can unpack the semantic diversity item-
wise and axis-wise.

Let C be the set of high-level captions of a given
axis (e.g. scenes) for a given image. For simplicity,
we do not report the index of the image and the
axis in the following notation. We compute the
BLEURT score of the caption as follows:

si = BLEURT (¢;,ref) ()

where s; is the resulting BLEURT score, ¢; is a
high-level caption, and ref is the set of reference
captions defined as follows:

ref :={cj|c; € Candj # i} 3)

In other words ref is the set of remaining cap-
tions along the axis and therefore, s; is measuring
the semantic diversity of the caption with respect
to the other captions along the same axis.

By averaging the caption-wise scores across a
single axis and across all the axes we obtain a pu-
rity score measuring the semantic consistency both
axis-wise and item-wise.

Diversity score Along the same lines, we pro-
pose the diversity score, to measure the lexical di-
versity of the captions. The diversity score follows

306



the same logic implemented to compute the purity
score introduced in the previous paragraph, but the
BLEURT score in Eq. 2 is replaced by the BLEU
score (Papineni et al., 2002) and then normalized
between 0 (similar) and 1 (very different). Our
score is similar in spirit to self-BLEU (Zhu et al.,
2018) as it measures the similarity of the captions
within their own distribution. However, its com-
putation concerns only axis-wise and item-wise
captions.

A.3.1 Results and discussion

As shown in Figure 15 the purity scores obtained
are mostly negative, this is due to lexical variations,
which the BLEURT score is known to be sensitive
to (Sellam et al., 2020). However, BLEURT is not
defined in any specific interval thus, it is usually
hard to interpret (Sellam et al., 2020) if not consid-
ered in relative terms. Based on that, we use it to

Axis-wise Purity score distribution
0.51
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Figure 15: Axis-wise purity score distribution.

compare the semantic purity across items and axes
within our dataset. As shown in Figure 15, action
and scene share similar purity score distributions
whereas the rationale is more skewed to the left
than the other axes. This shows that the rationales
feature a higher semantic diversity (lower overall
BLEURT) than the other axes.

The rationale axis is also the one featuring the
highest lexical diversity, whereas the scene and the
action have similar distributions. This is shown
in Figure 16 where the rationale density estimate
(in green) has a higher peak skewed on the right-
hand side than scene and actiondensity estimate
(respectively in orange and blue).

We have similar observations for both purity and
the diversity scores and this confirms what was

Axis-wise Diversity score distribution

w
L

axis
—— action
scene
—— rationale

Density

-
L

0.0 0.2 0.4 0.6 0.8 1.0
diversity score

Figure 16: Axis-wise diversity score distribution. The
scores have been normalized between 0 and 1.
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Figure 17: Pearson correlation between confidence, di-
versity and purity scores.

observed in the confidence score analysis in Sec-
tion 4.2, namely that the task of determining the
rationale of an action from a static image produces
more variation and divergent interpretations lead-
ing to higher semantic and lexical diversity. More-
over, we find that both the diversity and the pu-
rity scores positively correlate with the confidence
scores (See Figure 17).

A.3.2 Item-based analysis

An item in the HL dataset is an image along with
all the high-level captions of all the axes. For in-
stance, Figures 18 and 19 show the item-wise di-
versity score and purity score distribution respec-
tively, along with their average value across the
whole dataset. An item on the right-hand side of
the distribution is systematically more consistent
across its axes with respect to the measure con-
sidered (purity or diversity). This information can
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Figure 19: Item-wise purity score distribution.

be combined with confidence scores to perform a
more fine-rained sample selection. For example
in zero-shot testing, we might want to use a hard
sample to test our model with, we can select items
with similar lexicons, low-semantic purity, and low
confidence scores.

B Narative Caption Generation Task
Details

B.1 Few-shots Prompting Data Generation

We test an alternative data generation pipeline by
leveraging the in-context learning capabilities fea-
tured by the most recent large language models
(LLM) (Brown et al., 2020; Maeng et al., 2017;
Touvron et al., 2023). This data generation ap-
proach has the advantage of not requiring any
model fine-tuning.

We design a prompt for our task and we use it to
generate data from the recently developed LLaMA

Given three sentences merge them into one sentence, and
make sure that the sentence is grammatically correct. Here
is an example:’in a beach’,” holding an umbrella’,” so they
won’t get a sunburn’ <holding an umbrella in the beach so
that they won’t get a sunburn.>\n The three sentences are:
’scene’,’action’,’ rationale’ <

Figure 20: Prompt used for the data generation. The
parts in bold are replaced with the corresponding high-
level descriptions for the given sample.

model (Touvron et al., 2023). The prompt consists
of the task description, followed by an example
and the inputs of the task written in natural lan-
guage. The full prompt is shown in Figure 20. The
resulting output is then post-processed to extract
the generated high-level caption.

Discussion As described in Section 6, we build
baseline image captioning models starting from
GIT-base and fine-tuning on the LLaMA- and T5-
generated synthetic data. The best model is chosen
on a combination of qualitative models’ output in-
spections and automatic metrics (SacreBLEU (Post,
2018), ROUGE-L (Lin, 2004) and Cider (Vedan-
tam et al., 2015)) computed over the gold data.

In Table 6 we show the results of the evalua-
tion based on the automatic metrics. First, we ob-
serve that the performance of the pre-trained model
(PRE) is extremely poor, in the high-level caption
generation task, highlighting the substantial differ-
ence between captions of this kind with traditional
object-centric captioning the pre-trained model is
trained on.

Second, focusing on the fine-tuned models, we
observe that GIT fine-tuned on T5-generated data
performs better than the LL.aMa-based counterpart
on the automatic metrics. We argue that the model
trained on T5-generated synthetic data benefits
from the exposure of the data generator to the gold
data distribution. However, we point out that the
few-shot data generation pipeline remains a valid
alternative as it achieves comparable performance
without requiring any further fine-tuning.

C Annotation Costs

In this section, we report the costs related to the
data collection.

High-level caption collection Overall 1033 par-
ticipants took part in the caption data collection,
they were paid $ 0.04 per item corresponding to
the hourly minimum rate in the United Kingdom.
In total, the data collection cost $ 1938.
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Model | SacreBLEU | ROUGE-L | Cider

GIT(PRE) 1.23 11.91 18.88
GIT(TS) 11.07 31.37 74.79
GIT(LLaMA) 10.96 24.71 65.05

Table 6: Automatic metrics computed over the gold
annotated high-level captions; the scores are the average
results of 5 runs using the same decoding parameters for
all models. We compare the pre-trained model (PRE)
with the model finetuned on T5-generated (T5) and
LLaMA-generated (LLaMA) data.

Confidence Scores collection The qualification
task for confidence scores led to the recruitment
of 53 annotators. We found that this task was
harder than the high-level caption annotation in
terms of complexity but not in terms of execution
time which was indeed shorter. Therefore, in order
to encourage good quality annotations, we pay $
0.04 per item. Considering the time needed to per-
form the task, this corresponds to 4 times the hourly
rate of the minimum wage in the United Kingdom.
The qualification task and the data collection cost
respectively $ 93 and $ 1938.

D Annotation Details

D.1 Pilot

We run a pilot study with the double goal of collect-
ing feedback and defining the task instructions. The
pilot is run with 9 participants who were trained
on the task, with high proficiency in English and a
background in computer science and linguistics.

With the results from the pilot we design a beta
version of the task and we run a small batch of
cases on the crowd-sourcing platform. We man-
ually inspect the results and we further refine the
instructions and the formulation of the task before
finally proceeding with the annotation in bulk. The
final annotation form is shown in Figure 22. It is
important to notice that the instructions, shown in
Figure 21 are always visible to the workers.

Figure 23 shows the annotation form used for
the confidence score collection. Also in this case,
the instructions are always visible to the worker
and each image is presented along with the original
question and the answer.

E Additional Data Examples

In Table 7 we show further examples of images and
their corresponding captions in the HL Dataset.

Instructions:

You are going to see some pictures. Each picture involves
one or more people (‘the subject’). You will be asked
some questions about the picture

Don’t think too much, feel free to give your personal
interpretation using your knowledge or common sense.
Try to answer using full English sentences. If you’re not
sure what the answer could be, give your best guess.
Avoid using expressions like "I think” or "I suppose”
or "Maybe.

Do not propose options or possibilities saying for in-
stance: something ~or” something else. Make your best
guess and state the one you choose.

Write a statement, don’t write a one-word answer,
avoid acronyms or slangs and write a full sentence.

1. Where is the picture taken: give your best guess
about the type of place where the action is happen-
ing (for example, “in a ski resort”);

2. What is the subject doing: Try to describe what
the people are doing as concisely as possible.
If there is more than one person, try to choose a
description that captures what all of them are doing
(for example, "They are skiing”)

3. Why is the subject doing it: here, write your best
guess about why the person or persons are doing
the action (for example, "They are on a family
holiday”)

The What question and the Why question cannot have
the same answer.

The answers must be written correctly in English,
check the spell and most importantly don’t forget the
subject of the sentence in your answer (he, she, it,
they)

Figure 21: Final version of the instructions presented
to the workers during the collection of the high-level
captions. These instructions are always visible to the
annotators.

F Examples of Narrative Caption
generations

In Figure 24 we show examples of narrative caption
generations from our fine-tuned baselines.
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Where is the picture taken?

What is the subject doing?

Why is the subject doing it?

Figure 22: Annotation form presented to the worker during the high-level captions collection. The instructions
(shown in Figure 21), are always visible to the annotators.

Instructions:
You are going to see some pictures, each picture involves one or more people ('the subject’)
You will be shown 3 guestions about the picture and the corresponding answers.

Please judge how likely you consider the answer given the image, not the quality or fluency of the language

1) Where is the picture taken?
answer: in in the kitchen

How likely is the answer given the image? on a scale where 1 means "Mot likely at all” and 5 means "Very likely"

Figure 23: The confidence scores annotation form. We show the instructions, the image, the question, and the
corresponding answer.
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BLIP: they are playing football in a soccer field and are
spending time together

Gold (T5): They are playing in a stadium they are in a
game.

-

222

BLIP (FT): he skates in a snowy field and wants to enjoy
the ride.

Gold (T5): He is snowboarding in a ski resort and he is
on vacation.

ARVIN PQH|

ClipClap (FT): They are waiting for a bus to take them
to the bus station
Gold (TS5): at the bus stops he needs to be taken to his

destination..

GIT (FT): they are riding horses in the beach, they want
to go on vacation.
Gold (TS): They are riding in a beach, they are in a trip..

GIT (FT): the cat is watching the dog in the kitchen, it is

Figure 24: Examples of captions generated by the fine-tuned (FT) models and corresponding T5-generated (T5)

data on the narrative caption generation task.

ClipClap (FT): He is skating on a skateboard in a skate
park.
Gold (TS): He is skateboarding at a skatepark for fun.

watching television.
Gold (T5): Two cats are watching tv in a living room and
wait to be served food.
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Axis Caption

scene the picture is taken in a construc-
tion site

action he is operating machinery

rationale he is clearing up debris with the

machine.

object-centric (COCO)

A blue flatbed truck with a yel-
low backhoe behind on a resi-
dential street.

scene
action

rationale

The photo is taken in a toilet
the subject is sitting on the toilet
seat.

doing it just for fun

object-centric (COCO)

A man in blue shirt sitting on
toilet next to sink and mirror.

scene

action

rationale

the picture is taken at old town
street

one car is in the picture to turn
to old town

they are coming to old town

object-centric (COCO)

A car driving on a street in the
town center

scene
action
rationale

in the restaurant.
they are having their snacks.
to taste it.

object-centric (COCO)

A dad and his daughter eating a
meal at a small table.

scene
action
rationale

this is inside a garage

the bike is just standing alone.
no one is working on or trying
to ride the bike.

object-centric (COCO)

Custom motorcycle has a
wooden barrel as a sidecar

Table 7: Examples of instances of the High-Level Dataset. It is shown one of the three captions available for each of
the three axes collected: scene, action, rationale, aligned with the object-centric captions from COCO.
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