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Abstract

Neural data-to-text systems lack the control
and factual accuracy required to generate use-
ful and insightful summaries of multidimen-
sional data. We propose a solution in the form
of data views, where each view describes an
entity and its attributes along specific dimen-
sions. A sequence of views can then be used
as a high-level schema for document planning,
with the neural model handling the complexi-
ties of micro-planning and surface realization.
We show that our view-based system retains
factual accuracy while offering high-level con-
trol of output that can be tailored based on user
preference or other norms within the domain.

1 Introduction

The original vision of data-to-text generation was
to take complex data and describe it using natu-
ral language such that humans could better under-
stand it (Reiter et al., 2005; Reiter, 2007). Neural
data-to-text systems commonly transcribe an iso-
lated, simple data structure to a natural language.
However, in many domains, e.g., finance, cinema
box-office, or weather, the structured-data to be
described are not independent, but rather exist as
points along multi-dimensional axes such as time
or entities (like people, companies, or locations).
Figure 1 shows an example of a human-authored
basketball game summary that requires data from
outwith an individual game record. Such sum-
maries often mention the upcoming games for
each team (e.g. last two sentences) and aggregate
player statistics over prior games.

Commercial applications deal with this com-
plex scenario using hand-crafted rules (Reiter and
Dale, 1997; Teixeira et al., 2020; Dale, 2020),
although recent research leveraging Deep Learn-
ing techniques has looked to alleviate this bur-
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den. However, such systems remain largely end-
to-end, offering little user specified control1. On
small sets of triples or attributes (Gardent et al.,
2017; Dušek et al., 2018), neural systems can pro-
duce fluent, in domain generations, although they
can struggle with factual accuracy mistakes such
as hallucination. Additional challenges are intro-
duced when using complex data such as tables
(Parikh et al., 2020), compounded when consid-
ering interlinked structured data and longer texts
(Wiseman et al., 2017).

While challenging, this complex setting is also
an opportunity. In this paper, we propose the novel
concept of data views, where all available data is
divided into manageable subsets, describing enti-
ties and their attributes along one or more dimen-
sions. Views are then aligned with correspond-
ing spans of text. They can then be combined
to form high level document plans (schema) for
neural data-to-text systems, controlling the gener-
ation of text without sacrificing factual accuracy.
We investigate the use of views in the domain of
automated journalism (English language basket-
ball game summaries), using the SportSett dataset
(Thomson et al., 2020a) which extends the Ro-
toWire dataset (Wiseman et al., 2017).

2 Related Work

Factualness and controllability are critical issues
for data-to-text systems. Studies have shown that
for end users of systems, accuracy is more of a
concern than readability (Law et al., 2005) and
users prefer texts tailored to their needs (van der
Lee et al., 2017; Gatt and Krahmer, 2018).

Recently, the research community has focused
on neural approaches, aiming to solve data-to-text
tasks by leveraging advances of deep learning in
language modeling fields (in particular neural ma-
chine translation) (Bahdanau et al., 2015; Vaswani

1The INLG2021 panel ‘What users want from real-world
NLG’ highlighted the need for system control.
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<Whole-Game=TG1+TG2> The Oklahoma City Thunder defeated the host Miami Heat, 118-102, at American Airlines Arena
on Friday. <Within-Game=TE1+TE2> While this wasn’t a wire-to-wire win for Oklahoma City, they won this game in dominat-
ing fashion. <Within-Game=TE1+TE2> In fact, a 31-24 first quarter really set the tone, with a 41-29 second quarter sealing the
victory. <Within-Game=TE1+TE2> The Thunder actually led by at least 15 points for the entirety of the second half. <Whole-
Game=TG1+TG2> Three-point shooting was the key difference, with Oklahoma City hitting 16-of-30 and Miami connecting
on 11-of-36. <Whole-Game=TG1+TG2> The Thunder also dominated in transition, winning the fastbreak differential, 23-8.
<Whole-Game=PG3> The Thunder (33-18) were led by Paul George, as he tallied 43 points, seven rebounds, five assists and
two steals. <Whole-Game=PG4> Russell Westbrook collected 14 points, 12 rebounds and 14 assists. <Whole-Game=PG5>
Steven Adams accrued 13 points, seven rebounds, two assists and three steals. <Whole-Game=PG6> Dennis Schroder was huge
off the bench, as he provided 28 points on 11-of-13 from the field. <Whole-Game=PG16> The Heat (24-26) were led by Kelly
Olynyk, as he provided 21 points, seven rebounds and two assists off the bench. <Whole-Game=PG17> Josh Richardson led the
starters with 18 points, four rebounds, three assists and two steals. <Whole-Game=PG18> Hassan Whiteside amassed 12 points
and 16 rebounds. <Whole-Game=PG19> Justise Winslow finished with 10 points, two rebounds and five assists. <Between-
Game=TT2> Oklahoma City returns to action on Sunday, as they travel to face the Boston Celtics. <Between-Game=TT1> As
for Miami, they play host to the struggling Indiana Pacers on Saturday for their next outing.

Figure 1: Human authored summary for OKC@MIA on February 1st 2019. Tags and colours such as <Whole-
Game=TG1+TG2> map to views (or unions of), some examples of which are shown in Figure 2

ID Team Name PTS REB Wins Losses . . .
TG1 Miami Heat 102 47 24 26 . . .
TG2 Oklahoma City Thunder 118 50 33 18 . . .

Team Whole-GameViews (partial)

ID Team Name H1_PTS Q1_PTS Q2_PTS . . .
TE1 Miami Heat 53 24 29 . . .
TE2 Oklahoma City Thunder 72 31 41 . . .

Team Within-GameViews (partial)

ID Team Name Opp_Place Opp_Name Location . . .
TT1 Miami Heat Indiana Pacers Miami . . .
TT2 Oklahoma City Thunder Boston Celtics Boston . . .

Team Between-GameViews (partial)

ID Name PTS REB AST STL BLK . . .
PG3 Paul George 43 7 5 2 0 . . .
PG4 Russel Westbrook 14 12 14 1 1 . . .

Player Whole-GameViews (partial)

ID Name Q1_PTS Q1_REB Q2_PTS Q2_REB . . .
PE3 Paul George 16 1 10 1 . . .
PE4 Russel Westbrook 5 5 0 4 . . .

Player Within-GameViews (partial)

ID Name PTS_2 . . . PTS_7 . . . REB_2 . . . REB_7
PT3 Paul George 80 . . . 237 . . . 0 . . . 2
PT4 Russel Westbrook 37 . . . 140 . . . 2 . . . 7

Player Between-GameViews (partial).

Figure 2: Example (partial) data views. PTS=point, REB=rebound, AST=assist, STL=steal, BLK=block. Q1, Q2,
H1 etc., refer to Quarters and Halves. PTS_X indicates the SUM of PTS over X games. Each row is considered to
be an individual record within the given type of view

et al., 2017). Neural systems can blur the dis-
tinction between each sub-task of the pipeline ap-
proach, and are able to learn end-to-end to gen-
erate in-domain text from structured data (Lebret
et al., 2016; Wiseman et al., 2017; Wang, 2019;
Puduppully et al., 2019b).

Our work draws on a wide body of prior re-
search on controllability and factualness, namely
data engineering, controllable text generation, as
well as planning.

Data engineering It is increasingly clear that
careful design of datasets used to train deep neural
models matters significantly (Rogers, 2021). On
simpler data-to-text tasks such as the E2E chal-
lenge (Dušek et al., 2018), a number of data-level
techniques have been proposed to improve fac-
tual accuracy and controllability, including dataset
curation (Nie et al., 2019), data-to-text align-
ment (Dušek et al., 2019; Perez-Beltrachini and
Lapata, 2018), straightforward control via input

manipulation (Filippova, 2020), and fine-grained
annotation (Castro Ferreira et al., 2018; Rebuffel
et al., 2021). However, these techniques are not
suited for the complexity of the problem at hand,
and do not enable interactability.

On complex datasets, adding extra records to
increase the coverage of the source data over the
description (Thomson et al., 2020b) has shown en-
couraging results, but not all cases of hallucination
are clear-cut and easy to solve with a few records.
Gong et al. (2019) suggested that it might be pos-
sible to model tables as three-dimensional, with
rows, column, and time as the dimensions. This is
not satisfactory because (1) current neural models
cannot correctly perform the arithmetics required
to generate the types of utterances found in the ref-
erence texts (Nie et al., 2018); (2) adding dimen-
sions leads to intractable complexity.

Controllable Text Generation Controllable
Text Generation (CTG) techniques traditionally

https://www.basketball-reference.com/boxscores/201902010MIA.html
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involve conditioning an NLG system on several
control factors of style (e.g. tone, tense, length,
etc.) (Dong et al., 2017; Hu et al., 2017; Ficler
and Goldberg, 2017), or content (e.g. customized
summaries based on aspect queries (Amplayo
et al., 2021)). Control factors are often framed
as a collection of key-value pairs, similarly to a
typical data-to-text setting.

In the biography domain (Lebret et al., 2016),
Filippova (2020) explicitly introduced CTG to
data-to-text via an hallucination score simply at-
tached as an additional attribute which reflects
the amount of divergence in the target reference.
Prompting (i.e. starting generation from textual in-
structions (Liu et al., 2021)) can also provide some
control, with (Li and Liang, 2021) obtaining en-
couraging results at managing the length of gen-
erated descriptions. Contrasting with document-
level approaches, Rebuffel et al. (2021) propose
a finer-grained controllability, via word-level at-
tributes to learn the relevant parts of each training
instance.

Planning and Schema Macro-Planning, i.e.
high-level planning of ideas, has long been used in
traditional NLG pipelines, and has recently been
introduced to neural systems as well. On small-
scale datasets with short inputs/outputs (e.g. the
WebNLG corpus), these approaches rely on de-
tailed annotations of sentence structure and men-
tion placement (Castro Ferreira et al., 2018), or
the strong assumption that descriptions describe
the associated data entirely (and nothing else) (Xu
et al., 2021). However, these are unreasonable
dependencies for large-scale datasets, with pro-
hibitive size and complexity of inputs and outputs.

On more complex tasks, the two-step neural ap-
proach of (Puduppully et al., 2019a; Puduppully
and Lapata, 2021) has proven effective at reduc-
ing factual mistakes and provides a small degree
of controllability. Given all possible combinations
of entities, a planner first selects which will be
part of the narrative. In a second step, a genera-
tive module learns to output descriptions based on
the selected entities. Designed this way, the plan-
ning step scales poorly in the input size, since it
needs to consider all possible combinations. Fur-
thermore, while the plans can be edited, the im-
pact of individual edits on the final output is un-
clear (since the model is an end-to-end encoder-
decoder). Additionally, no restrictions are placed
during decoding to ensure that (1) the decoding

process follows the order of the plan; (2) the de-
coder’s copy mechanism doesn’t copy attributes
from entities in other part of the plans. Lastly, no
restrictions are placed on the length of the texts
corresponding to each part of the plan, the decoder
has to decide the number of sentences to attribute
to each item. Generated texts are of similar size,
independent of the chosen plan.

3 Data views and their design

In multidimensional settings, descriptions of a
data structure mostly focus on an initial point
based upon the narrative intent, but also often
compare subsets of data along different points of
an axis. For example, the best player in the game
being summarised might be described in an initial
sentence:

“Steph Curry led the Warriors with 43
points and 12 assists.”

before an elaboration for the same player, but de-
scribing their performance over multiple games:

“It was his fourth consecutive double-
double2.”

We make explicit this latent partitioning of the
data, via views, as a solution to both the handling
of dimensional data, and the alignment of data to
text. We split the associated data following the
same partitioning, and a view is defined as the
records (i.e., key-value pairs) for one entity, from
within one partition. In cases where several views
are aligned with the same span of text, e.g. a sen-
tence comparing two entities, views can be com-
bined to form view sets.

Figures 1 and 2 illustrate this mirrored multi-
dimensionality, along the time axis. The open-
ing sentence describes the basketball game in fo-
cus, with details of the teams and their respec-
tive scores. This team data can be seen in the left
(team) <Whole-Game> views. In contrast, the fi-
nal two sentences report the upcoming opponents
for both teams. This data, which lies elsewhere on
the axis, is shown in the left <Between-Game>
views. The third sentence mentions team statistics
within quarters of the game, this data is shown in
the left <Within-Game> views.

2https://en.wikipedia.org/wiki/Double-double

https://en.wikipedia.org/wiki/Double-double
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3.1 Designing views

We argue that despite its subtleties, data can be
broadly categorized along distinct axes. These
axes are data and task dependent and must be de-
cided by experts on a case by case basis. We il-
lustrate such an ad-hoc characterization using the
SportSett database (Thomson et al., 2020a). This
dataset expands on the game-level data from the
RotoWire dataset, adding information on the time
dimensional axis. SportSett provides a represen-
tation of the more general problem of data-to-text
with multidimensional data. While specifics may
vary between domains and applications, in this
case we are able to define three view types cor-
responding to different time spans. Firstly, we
have the <Whole-Game> view, which describes
the entities (players and teams), with their statis-
tics (such as points and rebounds) for the game
overall (Figure 2: first row). This is similar to
the data in the original RotoWire dataset, and
is the focal point of the narrative (texts are de-
scriptions of a game). We then define views de-
scribing the same entities, but for different time
spans. The <Within-Game> view describes
the entities within parts of each game (such as
a half or quarter, Figure 2: middle row), and
the <Between-Game> view describes entities
in past or future games (Figure 2: last row).
<Between-Game> views can either include in-
formation about upcoming games, or aggregate
statistics for players over a span of games.

For a given dataset, we are therefore able to
create views, by assigning each data record to a
view type (e.g. in Figure 2 PTS (points) can be as-
signed to <Whole-Game>) and grouping all data
of a single type and belonging to a single entity to-
gether, forming one view. This manual partition-
ing of the data is crucial to allow later control in a
manner relevant to the task at hand and the goals
of the system’s user. In particular, we emphasize
that while we apply our framework to a basketball-
specific task, our approach is not specific to bas-
ketball – or sports – and can work in a number
of settings. In the financial domain for instance,
expert users of an NLG system could choose to
describe a stock’s performance against a bench-
mark (e.g. S&P500) on its own, or compared to
stocks from the same domain (e.g. all Pharma-
ceutical stocks), or from the same country (e.g US
stocks). Views could also be created on the time
axis, to compare a stock’s performance to its own

in previous months or years.
We argue that in order to present domain experts

with convincing NLG software for their business
use cases, this light involvement on their part is
actually beneficial, since they will all require sub-
tle handling of the data that cannot be anticipated
while creating the model, but can be passed dur-
ing training on their in-house dataset via an ad-hoc
partitioning they design and understand.

3.2 Aligning descriptions to views
To identify which views ground the data to each
text, we align spans of tokens (in our case sen-
tences) to one or more views (a view set), as
shown in Figures 1 and 2. We consider as view
sets any sensible combination of views. An ex-
ample commonly seen in the reference texts is
the two teams’ <Whole-Game> view set which
is often used at the beginning of human written
descriptions3. This alignment between sentences
and view sets could be performed by human anno-
tators, or learned (Perez-Beltrachini and Lapata,
2018). We used relatively simple heuristics (see
Appendix E for more details) based on our knowl-
edge of the domain as the focus of this paper is on
the generation system.

Figure 3 shows the result of this process, with
four example sentences grounded to their re-
spective views. In the second column, for in-
stance, the sentence “Russel Westbrook put up
fourteen points” is aligned to Russel Westbrook’s
<Whole-Game> view because the noun phrases
“Russel Westbrook” and “14 points” are both valid
for that view. Most sentences in the corpus are
longer than our brevity-focused examples.

3.3 Schemata
View sets can be combined as ordered lists to form
document plan schemata in order to guide genera-
tion (see Section 4). To train the model, we use the
schemata extracted from the reference texts. Dur-
ing inference, we experiment with either following
static, extracted, or simple rule-driven schemata
(Section 5). While this is another manual input
from the expert users of the NLG system, we re-
fer readers to the discussion in Section 6.1 where
we discuss the impact of also predicting the plan.
Briefly, models that predict the plan are often dull
in the sense that they always predict the same plan,

3To reduce complexity, we allow view sets to be com-
prised of one or two entities (players/teams) for one view
type.
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Name G W B
Thunder

Heat
George

Westbrook
. . .

The Thunder out-scored
the Heat 72-53 in the first
half.

Name G W B
Thunder

Heat
George

Westbrook
. . .

Russel Westbrook put up
fourteen points.

Name G W B
Thunder

Heat
George

Westbrook
. . .

Westbrook had his 4th con-
secutive triple-double.

Name G W B
Thunder

Heat
George

Westbrook
. . .

The Thunder head to
Boston on Sunday.

Figure 3: Example sentences aligned to views (Whole-Game, Within-Game, and Between-Game).

and tend to include a number of irrelevant facts
that scored high in evaluation metrics.

4 Generating text with a Hierarchical
Model leveraging views

As discussed in Section 2, it is unclear to what ex-
tent current models deal with extremely large in-
puts or can utilize views: copy actions are harder
to train; memory and compute constraints make
training and inference very slow; no model has
been proposed to explicitly constrain the order and
scope of sentences in generated descriptions.

The hierarchical system of Rebuffel et al.
(2020) can be extended to fully leverage view
annotations, scaling well with increased input
size, generating descriptions following a precise
ordering of content. Specifically, the original
model was designed with an emphasis on struc-
ture, which we use to our advantage to constrain
the copy mechanism, as well as input additional
data and guide the generation process. We provide
an overview of the model here, but refer readers to
the original paper for an extensive description.

From a high-level perspective, the system was
designed to handle data structured in a hierarchical
fashion, i.e. data that can be split into distinct enti-
ties, each of them being described by a collection
of records, in the form of (key, value) pairs. The
system follows a standard encoder-decoder archi-
tecture. In particular, it:

1. Encodes each entity independently, as collec-
tions of records;

2. Encodes the input data-structure, as a collec-
tion of entities;

3. Generates text using hierarchical atten-
tion/copy mechanisms:

(a) An attention distribution is computed
over entities;

(b) Inside each entity, an attention distribu-
tion is computed over its records.

Views are integrated to this framework by
considering each as an independent entity, with
an important distinction to adapt to the now
extremely large input size. In their original
work, (Rebuffel et al., 2020) encode all input
data, which is not satisfactory when adding a
large number of views. Akin to teacher forc-
ing (Williams and Zipser, 1989), we encode ad-
ditional views only when they are relevant to
the description at hand. In other words, we al-
ways encode all <Whole-Game> views which
provide a needed high-level understanding of the
game, but only encode the <Between-Game>
and <Within-Game> views that ground sen-
tences of the current description, leaving out views
which will never be solicited by the decoder.

This prior enables the model to have a broad
overview of the game (using <Whole-Game>
views), while being able to copy specific informa-
tion from other dimensions for each entity men-
tioned in the target descriptions. During inference,
we only encode the views which are part of the
specified control schema, as other views need not
be solicited during decoding.

4.1 Hierarchical Encoding

Formally, we consider the following setting: • Let
D be a dataset which is a collection of aligned
(data-structure, description) pairs (s, y).

• A data-structure s is originally seen as an un-
ordered set of I views ei. We thus denote s :=
{e1, ..., ei, ..., eI}.
• Each view ei is a labelled set of Ji unordered

records {ri,1, ..., ri,j , ..., ri,Ji}; where a record ri,j
is defined as a (key, value) pair: (ki,j , vi,j). Note
that Ji might differ between views. Importantly,
the set of records is labelled by the view-type, etype

Following (Rebuffel et al., 2020), we first en-
code each view independently, and then together.
We denote by ei the learned representation of view
ei, computed by the high-level encoder.
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Russel Westbrook put up fourteen points . The Thunder to Boston on Sunday . </s>.

<Whole-Game type=“Player” name=“Russel_Westbrook”> <Between-Game type=“Team” name=“OKC_Thunder”> <End>

head

Figure 4: Example decoding of sentences. Decoder is trained to predict next words (blue arrows). During sentence
decoding the attention and copy mechanisms are restricted to entities grounded to the current views (see Figure 3),
selected at sentence delimiter. We regularize training with an added loss (see Section 4.3). The decoder must
predict the next grounding views (orange bars) at each sentence delimiter.

Encoding a subset of views Each sentence of
the target description is grounded to a small subset
of views. To encode high-level information about
the entities and the dimension of the considered
views, our system relies on self-attention, which
enables encoding sets of unordered objects.

Formally, for a given sentence s, we denote
Gs the subset of views that grounds the sentence,
as explained in Section 3. We compute a fixed-
size representation Gs of this subset using self-
attention (SA):

Ĝs = SA( [ei; ∀ei ∈ Gs] )

Gs = [Ĝs; etype]
(1)

where [ · ; · ] represents concatenation, and
etype is a learned embedding of the view-type
etype, which is the same for all views grounding
a same sentence.

4.2 View-aware decoding
In addition to relying on the encoded content of
the views, we guide and constrain the decoding
process sentence by sentence.

1. The system uses the encoded high-level in-
formation about the entities and the type of
the considered subset of views;

2. The system decodes word by word, using the
previously encoded information;

3. Attention and copy mechanisms are limited
to records from the considered views.

During the decoding process for sentence s, the
decoder uses the learned representation Gs, com-
puted at Equation 1, to update its hidden state at
each decoding step. Recall that the standard de-
coder of (Rebuffel et al., 2020) is an LSTM which
updates its hidden state dt using the previously de-
coded token:

dt = LSTM([ dt−1; yt−1 ]) (2)

where yt−1 is the learned embedding of token
yt−1. In this work, we adapt this update so that the
grounding’s representation is taken into account:

dt = LSTM([ dt−1; yt−1; Gs ]) (3)

when the current token yt is from sentence s.

Hierarchical attention constrained on views
To fully leverage the hierarchical structure of their
encoder, (Rebuffel et al., 2020) proposed a hierar-
chical attention mechanism to compute the context
fed to the decoder module. The dynamic context
is computed in two steps: first attending to views,
then to records corresponding to these views. At
each decoding step t, the model learns a first set
of attention scores αi,t over views ei and a sec-
ond set of attention scores βi,j,t over records ri,j
belonging to view ei. The αi,t scores are normal-
ized to form a distribution over all views ei, and
βi,j,t scores are normalized to form a distribution
over records ri,j of view ei. Each view is then rep-
resented as a weighted sum of its record embed-
dings, and the entire data structure is represented
as a weighted sum of the view representations.

Formally, the dynamic context is computed as:

ct =

I∑
i=1

(αi,t

(∑
j

βi,j,tri,j
)
) (4)

where αi,t ∝ exp(dtWαei) (5)

and βi,j,t ∝ exp(dtWaki,j) (6)

where dt is the decoder hidden state at time step t,
Wα ∈ Rd×d and Wβ ∈ Rd×d are learnt parame-
ters, ei and ki,j are the computed representation of
views and records’ keys respectively,

∑
i αi,t = 1,

and for all i ∈ {1, ..., I}
∑

j βi,j,t = 1.
In this work, we constrain the attention

mechanism such that it is computed only on
grounded views. This has the benefit of re-
straining the copy mechanism to a few specific
records, minimizing the number of inaccurate
copies. Figure 4 illustrates this mechanism:
during the first sentence, only records from
<Whole-Game> Russel_Westbrook
can be attended to, while during the
second sentence, only records from
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<Between-Game> OKC_Thunder can
be attended to.

4.3 Dual Loss Regularization
For each data-structure t in D, the objective func-
tion aims to generate a description ŷ as close as
possible to the ground truth y. This objective func-
tion optimizes the following log-likelihood over
the whole dataset D:

argmax
θ

L(θ) = argmax
θ

∑
(t,y)∈D

logP (ŷ = y | t; θ)

where θ stands for the model parameters and
P (ŷ = y | t; θ) the probability of the model to
generate the adequate description y for table t.

Early experiments showed that training us-
ing only the standard objective function can be
somewhat unstable, and that adding regularization
proves useful and increases the model’s perfor-
mances. In practice, in addition to predicting next
words, the decoder is also trained to predict next
grounding views and view-type at the end of each
sentence (illustrated in Figure 4).

Formally, let Lw refers to the original token-
level loss (Section 4.3), and Lℓ and Le refer to two
classification losses, on view-type and grounding
entities respectively. Then, our model is trained to
minimize the following loss:

L = λ1Lw + λ2Lℓ + λ3Le (7)

where
∑

i λi = 1 and are manually tuned.

5 Experimental Setup

Data We use the sports journalism (basketball)
dataset SportSett Thomson et al. (2020a), based
on the RotoWire datset introduced by (Wiseman
et al., 2017). It consists of game statistics paired
with human-authored descriptions. The original
dataset contained train-test corruption so we par-
tition by season4 to provide a suitable proxy of a
real-world task.

System comparisons5 We trained one model,
then used three different schemata to produce text:

• V-SIMPLE - A simple static schema that is
the same for all games (see Figure 5).

• V-EXTENDED - Based on V-SIMPLE,
schema varies for each game, adding

42014-16 train; 2017 valid; 2018 test
5To ensure comparable results, we have retrained all base-

lines with the same dataset partitions. Hyper-parameters and
other training details will be included in the code repository.

<Between-Game> / <Within-Game>
elaborations to some players. These elabora-
tions are chosen with simple heuristics (e.g.
when a player has had 3 double-doubles in
his last games, add a <Between-Game>
elaboration for this player).

• V-GUIDED - Schema automatically ex-
tracted from the human authored descrip-
tions. These vary from game to game.

We compare our three variants to two variants
of the hierarchical model of (Rebuffel et al., 2020)
(that do not have planning modules and repre-
sent state-of-the art without such a feature) and
two variants of the explicit-planning approach of
(Puduppully and Lapata, 2021):

• H-FULL - Hierarchical encoder based sys-
tem of (Rebuffel et al., 2020) but with all
views made available to it.

• H-NEXT - Hierarchical encoder based sys-
tem of (Rebuffel et al., 2020), configured as
per (Thomson et al., 2020b) to include ad-
ditional information for the game and next
games.

• MP-SIMPLE - System of (Puduppully and
Lapata, 2021) using our simple static schema
(same as our variant V-SIMPLE).

• MP-GUIDED - System of (Puduppully and
Lapata, 2021) using the schema extracted
from human authored texts (same as our vari-
ant V-GUIDED).

Note that the hierarchical model of (Rebuffel
et al., 2020) is not able to handle schema guidance
during generation, and that the system of (Pudup-
pully and Lapata, 2021) doesn’t differentiate
between <Whole-Game>, <Between-Game>,
and <Within-Game> dimensions: descriptions
generated using this system are identical when us-
ing the SIMPLE or EXTENDED schema.

6 Human evaluation of factual accuracy
With the gold standard protocol of Thomson and
Reiter (2020), human annotators highlight non-
overlapping spans of text that contain errors,
also selecting an error category. Participants are
provided with links to basketball-reference.com,
which is at least as complete as the system in-
put data, and much easier for humans to navigate.
Four main error categories are used; Name (named

basketball-reference.com
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Document plan (schema):
<Whole-Game> OKC Thunder, Miami Heat
<Whole-Game> OKC Thunder, Miami Heat
<Whole-Game> OKC Thunder, Miami Heat
<Whole-Game> OKC Thunder, Miami Heat
<Whole-Game> Paul George
<Whole-Game> Dennis Schroder
<Whole-Game> Russell Westbrook
<Whole-Game> Steven Adams
<Whole-Game> Jerami Grant
<Whole-Game> Patrick Patterson
<Whole-Game> Kelly Olynyk
<Whole-Game> Josh Richardson
<Whole-Game> Hassan Whiteside
<Whole-Game> Bam Adebayo
<Between-Game> OKC Thunder
<Between-Game> Miami Heat

The Oklahoma City Thunder (33-18) defeated the Miami Heat (24-26)
118-102 on Friday. The Thunder shot 48 percent from the field and
53 percent from three-point range. They also dominated the rebound-
ing battle, 50-47. The HeatN also held the Heat to 45 percent shooting
and outrebounded them 50-38U. Paul George led the way for the Thun-
der with 43 points, seven rebounds, five assists and two steals. Dennis
Schroder added 28 points of his own off the bench. Russell Westbrook
finished with 14 points, 12U assists and 12 rebounds. Steven Adams
scored 13 points and grabbed seven rebounds in 27 minutes. Jerami Grant
chipped in eight points, while Jerami GrantW added eight. Patrick Pat-
terson led the benchW with five points and two rebounds. Kelly Olynyk
was the only otherW Heat playerC in double figures, finishing with 21
points. Josh Richardson scored 18 points on 7-of-18 shooting. Hassan
Whiteside had 12 points and 16 rebounds in 19 minutes. Bam Adebayo,
it wasn’t enough to overcome the HeatW. Oklahoma City will travel to
Boston to take on the Celtics on Sunday. Miami plays host to the Pacers,
also on Saturday.

Figure 5: Instructions and generated (V-SIMPLE system) game summary for OKC@MIA on February 1st 2019.
NameN, NumberU, WordW, and ContextC mistakes are highlighted in the summary.

entities), Number (ordinal, cardinal, etc), Word (a
word or phrase that is not a name or number), Con-
text (such as implicature errors). There is also the
last resort category Other, for text that is nonsen-
sical. Finally, there is a Not Checkable category,
which covers facts that are impractical or impossi-
ble to check using the provided reference data.

We performed our experiment with one anno-
tator per text6. The original protocol limited an-
notators to only 4 prior games before defaulting
to Not Checkable errors. We felt this was overly
restrictive so we asked annotators to check all as-
sertions within the current season. We compared
generations for 35 random basketball games, gen-
erating a text for each of the 7 systems. A Latin
square design was used whereby each participant
annotated 5 texts for each system, never seeing the
same game twice (245 total annotated texts).

6.1 Human Evaluation Results

The best performing systems were our View-based
system, and that of Puduppully and Lapata (2021)
(when both are provided with a simple schema).
They were both significantly different, in terms of
the number of errors reported, to all other systems.
Figure 6 shows a box plot of error count for each
system Figure 5 shows the generation for the V-
SIMPLE system, marked up for errors by an an-
notator, on the same game shown in Figure 1.

6MTurk workers were recruited by the same process as
Thomson et al. (2023) who reported high precision and recall
of single annotators by this method. It is expensive to run
with three annotators per text, therefore we prioritised having
more texts over more annotators per-text.

10 20 30 40

H-NEXTD

H-FULLCD

MP-GUIDEDC

MP-SIMPLEAB

V-EXTENDEDCD

V-GUIDEDBC

V-SIMPLEA

Error count

Figure 6: Error count, systems sharing superscript let-
ters are not significantly different.

7 Discussion and Limitations

7.1 Different Domains and Datasets

Our work focuses on a single domain/dataset. Ex-
panding this to include additional domains and
datasets would be useful future work now that a
process has been outlined in this paper for working
with multi-dimensional data. The MLB dataset
(Puduppully et al., 2019a) and the Chart-to-Text
dataset of Obeid and Hoque (2020) both exhibit
problems related to modelling of time that is seen
in the basketball domain.

7.2 Large Language Models

The system evaluated in this paper used a trans-
former encoder and an LSTM decoder. Whilst the
LSTM, in particular, may be considered an out-

https://www.basketball-reference.com/boxscores/201902010MIA.html
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dated NLP model7, the view-based design could
also be implemented using pre-trained large lan-
guage models such as GPT-3 (Brown et al., 2020)
or even using ChatGPT8. For systems such as
ChatGPT, a series of prompts could be generated
that reference views, e.g.,

1. Given View A; write a sentence that describes
Steph Curry’s performance in this game.

2. Then, given View B; add a sentence that de-
scribes Steph Currys performance over the
past 7 games.

Question-answer-based document planning has
been explored for tasks such as summarisation
(Narayan et al., 2023) and by referencing views it
could be applied to data-to-text generation. Note
that even with the larger token windows of GPT-4,
it remains impossible to feed the model all input
data that could be used to extract useful insights,
meaning that some form of insight selection is re-
quired upstream of the language model. Our view-
based approach handles this at a high level, whilst
leaving micro-planning and realisation to the neu-
ral model.

7.3 Generality and View Grounding
View grounding was performed using simple
heuristics in order to use the grounded spans of
text (sentences) for the downstream generation
task. This should be explored and evaluated as a
standalone task in future work. It is also unclear
for an individual view, what the limits of complex-
ity are. This introduction of control through the
use of views is not a loss of generality, but rather
a requirement for generating text that is useful and
interesting to human readers, rather than “general”
but vague or dull.

8 Conclusion

Increasing concern has been raised regarding the
quality of both task setup (Raji et al., 2021), as
well as evaluation in NLP/NLG, with caveats of
systems and experimental results often going un-
reported (Gehrmann et al., 2022). We contribute
to the meaningful progress of both. In exploring
an alternative task where generation of an exact

7Our reasoning for using an LSTM decoder was that it
was used by previous models (Puduppully and Lapata, 2021)
and we were exploring changes to the encoder component
only.

8https://openai.com/blog/chatgpt

human reference text is not the goal (it is just part
of the available information), we bring the genera-
tion process more inline with a real-world problem
where control is a major requirement.

We expanded the data-to-text task by consider-
ing the mirrored multi-dimensional aspects of both
data and text. We have shown that by splitting this
extended data into manageable views based on its
dimensionality, meaningful control can be intro-
duced over system output without sacrificing fac-
tual accuracy. Control comes in the form of or-
dering views using schema, in the way messages
might be ordered in rule-based systems, but allow-
ing the neural model to handle the complexities of
micro-planning and surface realization.

The method of splitting data into views could be
applied to complex data from sources such as rela-
tional databases or multi-dimensional arrays. Our
implementation of views is only one possible way
to structure the data. We intuit that views that de-
scribe a named entity and a set of direct attributes,
in any dimension, work well.

Considering the multidimensionality of data
and text brings the problem closer to that encoun-
tered and addressed by humans in the real world.
Enhancing the structure of datasets, as well as
designing models that leverage this multidimen-
sionality, will move systems closer to the goal of
human-like descriptions of complex data.

Ethics Statement

Ethical approval was obtained from our ethics re-
view board. We paid our Mechanical Turk par-
ticipants $8 US per text annotated during qualifi-
cation, practice, and live work. This equates to
approximately $20 per hour and multiple workers
indicated to us that this was “about right”. Only
when qualifying participants uploaded blank doc-
uments (no reported errors when there should be
around 20) did we reject HITs. In the rare cases
that qualified workers made mistakes such as ac-
cidentally uploading a blank annotation document
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Online Resources

All code, data, and human evaluation resources
will be made available on GitHub9.

9https://github.com/nlgcat/inlg2023views
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A Automated Metric Results

We include results on common metrics of BLEU,
Relation Generation (RG), Content Selection
(CS), and Content Ordering (CO) for this task in
Table 1. Automatic metrics are often expected in
NLP papers, although their usefulness in this do-
main is limited at best. We include them in the
appendix for this reason.

The V-SIMPLE and MP-SIMPLE systems,
based on simple schema, had the highest RG
scores, and hierarchical systems the lowest. Inter-
estingly, CO scores are highest when models fol-
low extracted schema from gold texts.

BLEU scores are within a narrow range, with
Mathur et al. (2020) having shown that larger dif-
ferences are required in order to make judgments.
The information extraction based metrics prove
more useful, with Wiseman et al. (2017) stating
that their results were generally inline with their
human evaluation. However, Thomson and Re-
iter (2021) observed that state-of-the-art metrics
can detect simple errors, but struggle with more
complex semantic and contextual errors. It is also
worth noting that running BLEU on a deranged
copy of the test set (comparing each game with a
random game other than itself) can yield BLEU
scores in the region of 8.0 to 10.0, simply due to
common terminology and syntax.

System
RG CS

CO BLEUP% # P% R% F1

REF 0.84 26.84 - - - - -
V-SIMPLE 0.87 26.21 0.60 0.57 0.58 0.21 19.68
V-GUIDED 0.81 17.56 0.71 0.48 0.57 0.30 17.29
V-EXTENDED 0.84 27.06 0.57 0.58 0.57 0.21 21.90
MP-SIMPLE 0.88 43.27 0.48 0.73 0.58 0.22 21.52
MP-GUIDED 0.82 30.02 0.60 0.67 0.63 0.30 22.27
H-FULL 0.76 27.76 0.42 0.47 0.44 0.16 17.73
H-NEXT 0.77 23.09 0.51 0.47 0.49 0.18 21.22

Table 1: Automatic metric results for all systems.

B Content Ordering Experiment

This experiment aims to determine whether sen-
tences in generated summaries are in the correct
order. In designing this experiment we had two
main concerns. Firstly, inter-annotator agreement
should at least be moderate, ideally high. This pre-
cludes designs where participants are free to rear-
range all sentences; the large number of permu-
tations increases the likelihood of disagreement.
Secondly, it should be possible to perform mean-
ingful error analysis in order to better understand
both the systems, and the protocol itself. This

rules out Likert-based approaches because, with
paragraph-sized generations, it is impossible to
tell which part of the summary caused a partici-
pant to score the text in the way they did. Likert
ratings have been shown to have poor agreement
in this domain (Puduppully and Lapata, 2021).

B.1 Design

We presented generated summaries to participants
with the first two sentences highlighted as ‘the be-
ginning’, the final two sentences highlighted as
‘the end’, and everything in between highlighted
as ‘the middle’. We then asked participants, for
each of the four sentences in the beginning and
end, whether it should:

• Remain where it is.

• be Transposed with its partner, i.e., the other
sentence from the beginning or end.

• be moved to the middle, a Short distance.

• be moved to the opposing end of the sum-
mary, a Long distance.

When asked if sentences should be moved to an-
other section participants did not specify exactly
where, simply which other section. We also asked
the middle was in an acceptable order (Yes/No).

Participants were placed into 35 non-exclusive
groups (the number of combinations of size three
for 7 participants). Each group evaluated a sum-
mary from each of the 7 systems, such that 245
unique summaries were evaluated by 3 annotators.

B.2 Results

For content ordering, we first consider whether
participants believed a sentence should be moved
to a different section. Inter-annotator agreement
by Fleiss Kappa (Fleiss, 1971) was 0.591, indi-
cating a moderate agreement. However, this falls
to 0.469 when we consider the Short/Long move
distances, and to 0.350 if we also consider trans-
position of beginning/end sentence pairs (p-value
was less than 0.001 in all cases). This confirms
our design assumption that allowing participants
to freely rearrange texts of this length would re-
sult in low or no agreement. We did run an exper-
iment where different participants (MTurk mas-
ters with US high-school diplomas) were asked to
rate how readable and understandable generations
were. Agreement for this was even lower, below
0.2, and results are not included for that reason.
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System Long Short Transpose Remain
V-SIMPLE 1 3 55 361
V-GUIDED 1 33 10 372
V-EXTENDED 0 10 59 351
MP-SIMPLE 3 15 4 398
MP-GUIDED 3 53 7 353
H-FULL 2 65 1 352
H-NEXT 1 88 4 327

Table 2: Number of sentences that annotators would
move, by destination.

B.3 Conclusion
The results in Table 2 show that all models do a
good job at avoiding Long errors, that is they do
not confuse the beginning of the narrative with the
end. The simple schema of both V-SIMPLE and
MP-SIMPLE have fewer Short errors, especially
compared with the hierarchical encoder systems.
Our models in V-SIMPLE and V-EXTENDED
mode Transpose sentences in the beginning or end
with higher frequency. Looking into this further,
our schema (for both models) was set to realize the
upcoming game for the winning team in the Penul-
timate sentence, then the losing team in the Final
sentence. This was deemed incorrect by some an-
notators (the losing teams players are usually dis-
cussed immediately before the end, therefore the
context at that stage is the losing team). Our sys-
tem is capable of adjusting for this, with a simple
schema change reversing the order of these sen-
tences. The MP-SIMPLE system does not have
the fine-grained control to constrain generation to
two separate sentences, therefore it frequently dis-
cusses both teams upcoming games in a single Fi-
nal sentence and does not encounter this Trans-
pose problem as often as our models. It is also un-
clear how the Short errors of such a system could
be corrected.

This experiment is included in the appendix be-
cause whilst it was unsuccessful at demonstrat-
ing a difference between systems (agreement was
low), it does provide some insight and with some
refinement of experimental design could be a use-
ful approach (agreement was not so low that there
are no possible pathways to higher agreement).

C Post-hoc error analysis

In addition to the quantitative data, our accu-
racy evaluation yielded qualitative data in the
form of free-text comments that annotators could
leave when reporting each error. We therefore
performed an error analysis, something that is

crucial to to gain insight into where our sys-
tems are failing (van Miltenburg et al., 2021,
2023). With the MP-SIMPLE and MP-SIMPLE
systems some annotators queried the protocol be-
cause some names were spelled incorrectly. This
had not been a problem for word-based systems,
but since the system of Puduppully and Lapata
(2021) operates at the subword level, it would
sometimes generate texts that contained out of
vocabulary words once subwords were recon-
structed. An example can be seen in the sen-
tence: “Well ell ell ell ell ell ell ell CarterN , as
he scored 25 points to go along with eight re-
bounds and five assists .”, where “ell” is an out-
of-vocabulary word. The annotator for this sen-
tence marked it as an error, leaving the mildly de-
risive comment of “more commonly referred to as
just Wendell CarterN”. Upon further investiga-
tion, this problem is not uncommon in the gen-
erations of this system, yet it would be missed
by the RG metric and at times our human evalu-
ation as well10. In one of the worst cases (from
the full test set, not an item from our human eval-
uation), the complete generation was: “The Mi-
ami Heat ( 27 - 33 ) defeated the Golden State
Warriors ( 43 - 18 ) 126 - 125 on Friday .
Justise Winslow and Bam AAAAAAAAAAA”, fol-
lowed by the letter ‘b’ repeated 808 times. Our
view based systems also struggled at times to gen-
erate full sentences about players such as Bam
Adebayo, who had not been seen during train-
ing. For example, one output was “Bam Ade-
bayo, it wasn’t enough to overcome the HeatW.”,
where the model knew it should generate a sen-
tence about Bam Adebayo, but did not include any
statistics. It is possible the models are relying on
the values of the player name field rather than gen-
eralizing.

To gain further insight, we performed some au-
tomated error analysis on outputs from the full
test set (2018 season). Table 4 shows the average
token counts and out of vocabulary11 tokens for
the generations of each system. Our view based
systems each generated a small number of out-
of-vocab tokens by erroneously copying boolean
values from the input data (we would fix this by

10The factual accuracy annotation instructions of Thomson
and Reiter (2020) ask annotators to ignore spelling, syntax
and grammar, so some annotators did not mark these as errors
(if they could make out which player was being referred to).

11A vocabulary was created using all test data values, train-
ing data texts and a range of numbers in word and digit form.
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System NAME NUMBER WORD CONTEXT OTHER NOT CHECKABLE TOTAL
V-SIMPLE 44 115 134 16 19 11 339
V-GUIDED 76 233 153 18 16 14 510
V-EXTENDED 60 218 206 18 30 17 549
MP-SIMPLE 195 79 91 22 6 5 398
MP-GUIDED 186 129 134 33 29 2 513
H-FULL 109 232 186 14 32 2 575
H-NEXT 113 232 243 24 38 2 652

Table 3: Errors for each system by type. Systems that were guided by simple schema (V-SIMPLE, MP-SIMPLE)
produced the fewest factual mistakes whilst offering the most control.

only including lexical values as input data val-
ues). The references texts had out-of-vocab to-
kens because human authors are not constrained
to the set of training words. The MP-SIMPLE and
MP-SIMPLE systems both had more out of vo-
cabulary words. Also shown is a count of single-
ton trigrams (where all three tokens in the trigram
are identical), a measure of repetition, where gain
the MP-SIMPLE and MP-SIMPLE systems had
higher mean counts. In both cases, this is likely
due to the incorrect recombination of subwords. It
may be possible to adjust the training of models to
aleviate this, but it is important to note that auto-
matic metrics all miss this kind of error and it was
only found because of our error analysis of human
annotated errors.

Shot breakdowns, which are a type of domain
specific syntax breaking down the shooting of a
player using between 2 and 6 numbers, e.g. “(4-
8 FG, 1-4 3Pt, 2-2 FT)”, were also counted in
Table 4. The number of shot breakdowns (ex-
tracted by regular expression) included by the MP-
SIMPLE and MP-GUIDED systems could explain
part of the increased RG# seen in Table 1. They
densely transcribe either 2, 4, or 6 numeric facts
yet are simple (once the decision has been made
to include one, the structure is deterministic). Sys-
tems learn to generate so many shot breakdowns
because that they are present in the training data,
although they are seldom found in the test set ref-
erence texts from the 2018 season. This could be
explained by drift due to a change in the specific
authors writing the reference texts during that year
(Upadhyay and Massie, 2022).

D Crowd-sourced worker recruitment

Participants were recruited on the Amazon Me-
chanical Turk platform. We used the recruitment
policy of Thomson and Reiter (2020) participants
were required to hold a US Bachelors degree,

be US residents, and be Mechanical Turk Mas-
ters workers (a qualification issues by Amazon for
high worker reliability). In addition, candidates
had to complete a (paid) custom qualification ex-
ercise. Fair treatment of crowd-sourced workers
is important (Silberman et al., 2018) both from an
ethical standpoint and to ensure high quality work.
We aimed to pay workers approximately US$20
per-hour for their time, which meant paying $8 for
each of the 35 factual accuracy annotation tasks
they completed, these take 20-25 minutes to com-
plete. We paid $2 for each of the ordering tasks
which take 5-6 minutes to complete. We also paid
the same for the any practice work. The same 7
participants completed all work for both our fac-
tual accuracy and ordering experiments.

E View Grounding

Given a sentence, we consider all possible view
sets as candidates for grounding. We propose to
judge the alignment between one view set and the
sentence as inversely proportional to the number
of alignment errors it would entail. An alignment
error simply refers to any token that could belong
to one of the generated noun phrases but cannot be
justified by the data contained in the view set.

To identify individual alignment errors, we first
use a simple rule-based system to generate noun
phrases based on the data within the view set.
This includes phrases based on statistics like ‘14
points’, or alternative forms such as ‘14-point’.
We also include those derived from multiple statis-
tics, e.g., ‘double-double’. Named entities are also
included, for example, ‘Russel Westbrook’. This
does introduce a requirement of manual definition,
but generating noun phrases for data is a much
simpler task than constructing grammar and nar-
rative to connect them. We take the best of both
rules and neural, defining that what which is sim-
ple and learning that which is complex or time-
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Token Count Out-of-Vocab
Count

Singleton
Trigram Count

Shot Breakdown
Count

System mean stdev mean stdev mean stdev mean stdev
V-SIMPLE 276 30 0.027 0.19 0.04 0.237 0.151 0.663
V-GUIDED 241 48 0.022 0.147 0.013 0.145 0.178 0.636
V-EXTENDED 340 33 0.026 0.179 0.05 0.253 0.229 0.817
MP-SIMPLE 292 62 2.673 3.625 0.386 3.008 1.551 2.185
MP-GUIDED 309 95 2.108 5.449 0.63 6.157 0.83 1.948
H-FULL 366 71 0 0 0 0 0.191 0.774
H-NEXT 386 94 0 0 0 0 1.142 2.008
GOLD 339 39 0.618 0.958 0 0 0.008 0.134

Table 4: Mean count and standard deviation of tokens, out-of-vocabulary tokens, singleton trigrams (where the set
of tokens within the trigram is a singleton), and shot breakdowns per-text.

consuming. Each sentence is parsed token-wise,
and once a known noun-phrase (from a global list)
is started, it must be able to continue within that
view (‘14’ can continue as ‘14 points’ or ‘14 -
point’), or conclude (‘14 - point’ must conclude
as there is no possible continuation), otherwise it
is an error. There will be a small number of cases
where the grounding cannot be narrowed down to
1 or 2 compatible views. However, all we require
is enough correctly grounded views to introduce a
training signal. When there is ambiguity, a model
can be instructed to not update weights.

We conclude the view set selection procedure
by selecting the smallest one, i.e. in this case the
singleton of Westbrook’s <Whole-Game> view
(which had zero errors).


