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Abstract

Recent large pre-trained vision-and-language
models have achieved strong performance in
natural language generation. However, most
previous generation tasks neither require coher-
ent output with multiple sentences nor control
the output text by grounding the output in the
input. We propose a shared task on visually
grounded story generation, where the input is
an image sequence, and the output is a story
that is conditioned on the input images. This
task is particularly challenging because: 1) the
output story should be a narratively coherent
text with multiple sentences, and 2) the pro-
tagonists in the generated stories need to be
grounded in the images. We aim to advance
the study of vision-based story generation by
accepting submissions that propose new meth-
ods.

1 Introduction

Vision-based language generation (VLG) is to gen-
erate text from visual input. It is a challenging
but interesting task because it requires joint vi-
sion and language modeling. Recent large pre-
trained vision-and-language models (VLMs) like
GPT-4 (OpenAl, 2023) or MiniGPT-4 (Zhu et al.,
2023) have shown great success on several multi-
modal tasks, such as image captioning (Vinyals
et al., 2016), visual question answering (Goyal
etal., 2017) and visual dialog generation (Das et al.,
2017).

Despite recent breakthroughs, current tasks only
require models to predict a label or generate short
texts (i.e., less than 30 words). It is unclear whether
the newest VLMs can generate coherent texts with
multiple sentences from visual input. On the con-
trary, humans can produce long and localy coherent
texts from the same visual input. To investigate
machine intelligence, we need a task that is more
similar to human behavior (Bubeck et al., 2023).

Several previous tasks have been proposed to
test the capabilities of VLMs to handle longer
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output, such as visual paragraphs (Krause et al.,
2017), localized narratives (Pont-Tuset et al., 2020),
and video captioning (Voigtlaender et al., 2023).
However, these tasks are designed for literal de-
scriptions where sentences are independent of each
other, rather than for coherent text. Coherence is
a fundamental property of human language. In
particular, local coherence, which refers to the rela-
tions between entities in context, affects language
comprehension and production. Local coherence is
essential for vision and language (V&L) research
because: 1. It has many applications in vision and
language tasks. For example, a better model of
local coherence can improve the performance of
text-to-image retrieval (Park and Kim, 2015). 2.
Modeling coherence is a prerequisite for modeling
event knowledge as events center around entities.
Better event modeling improves vision and lan-
guage pre-training (Zellers et al., 2021, 2022).

Story generation is a well-studied task in nat-
ural language generation, widely used for testing
whether large pretrained models can track entities
(Paperno et al., 2016) and generate locally coher-
ent texts. Unlike image captions, stories contain
several characters and events involving recurrent
characters and their interactions with each other
and the environment. In addition, characters and
relevant content are among the most critical aspects
of story writing (Goldfarb-Tarrant et al., 2020). We
argue that story generation is a suitable benchmark
for testing whether VLMs can generate coherent
texts.

In this work, we propose a new shared task, Vi-
sually Grounded Story Generation (VGSG), which
requires the VLMs to generate stories with protago-
nists grounded on images. We aim for coherent and
visually grounded stories with high diversity. This
task is particularly challenging for two reasons: 1.
The protagonists in the generated stories need to
be grounded in the images, meaning that their ac-
tions and descriptions should be consistent with the
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Visual Writing Prompts (Ours)
: Jack was on a call

{ with a client,

i getting stressed

i over a business

i deal that wasn't

i going well.

i Jack put the phone
i down after an

i unsuccessful deal
¢ and decided to go
i get a coffee at

i the nearby coffee.

i At the coffee

i shop, he started
i talking to the

| waiter Will about
¢ the unfortunate

i call.

i Will told him he

i would convince the
i client to accept

i the deal if he

i could work for

i Jack.

i Will then called
! the client and

i successfully

i struck the deal.

Figure 1: Example of Visual Grounded Story Gener-
ation on Visual Writing Prompts dataset. The dataset
has recurring characters across all five images and sub-
stories. Each occurrence of a character in a sub-story
has a bounding box in the corresponding image, which
grounds the textual appearance to visual input.

visual information provided. 2. The output story
needs to be a coherent text, meaning that it should
have a clear beginning, middle, and end, and flow
logically from one sentence to the next.

We hope that this task will help the exploration
of VLG by encouraging participants to propose
new methods that generate coherent and visually
grounded stories. We welcome submissions from
researchers around the world who are interested in
tackling this exciting challenge. We also seek for
researchers who are interested to join the organiza-
tion of this shared task.

2 Related Work

VLG with Coherence. One relevant task is Vi-
sual Storytelling (Huang et al., 2016), where the
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input is a sequence of images and the output is a
coherent story. Another task that requires some
sort of coherence in the generated text is movie
description (Rohrbach et al., 2015), where the in-
put is a video clip from the movie and the output
is the corresponding text description of the scene.
Chandu et al. (2019) propose a dataset of proce-
dural text from recipes with instructional images,
but characters are not explicitly annotated. Unfor-
tunately, the local coherence of the generated text
is not evaluated in either of these tasks (Mitchell
et al., 2018).

Visual Story Generation. Most of the previous
tasks for visual story generation have several limi-
tations: there is no sequence of events behind the
images (Park and Kim, 2015; Huang et al., 2016) or
the dataset is limited in scale (Xiong et al., 2019).
None of them can be used for evaluating visual
grounding. Mitchell et al. (2018) hosted the first
shared task of visual story generation. But there
are no automatic evaluations of either coherence
or visual grounding. Our shared task is the first to
jointly evaluate the coherence and visual grounding
of generated stories.

3 Task Description

We define the VGSG task as follows: given a se-
quence of images (like the first column of Figure
1) the system needs to generate a coherent short
story conditioned on the image sequence (like the
second column of Figure 1). In addition, the gener-
ated story should contain the characters seen in the
image sequence.

The VGSG shared task focuses on coherent and
visually grounded stories with high diversity.

3.1 Datasets

To evaluate the submissions, we will use two
datasets that provide grounding annotations for
characters:

Visual Writing Prompts (VWP; Hong et al.,,
2023b), a vision-based dataset that contains 2K
image sequences aligned with 12K human-written
stories in English.! Each image is corresponding to
a part of a story. Instances of each protagonist are
annotated with the character’s name (see Figure 1).

VIST-Character by Liu and Keller (2023) which
has visual and textual annotations for recurring
characters in 770 stories from the test split of the

"https://vwprompt.github.io/
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Name Image Story Story # Story # image # token

Genre Genre Source per Story per Story
VWP movie  short story crowdworker 12K [5, 10] 83.7
VIST photo  short story crowdworker 50K 5 57.6
Travel blogs | photo  blog blogger 10K 1 222.3%
MSA movie movie synopsis fan 5K 92 129

Table 1: Statistics of datasets. Numbers with i are obtained from a small sample of the Disney split of the dataset

that is available in their repository.

VIST dataset (Huang et al., 2016), along with an
importance rating of all characters in any story.”
We only use it for evaluation.

We also evaluate on these datasets:

Visual Storytelling (VIST; Huang et al., 2016) is
a widely used dataset with 50K image-story pairs.

Travel blogs (TB; Park and Kim, 2015) are two
datasets with 10K image sequence-story pairs ex-
tracted from travel blogs of visiting New York City
or Disneyland.

Movie Synopses Associations (MSA; Xiong et al.,
2019) contains movie synopses from 327 movies
where there are 4494 scenes aligned with corre-
sponding paragraphs in synopses.

These data sets are publicly available so there’s a
risk of exposure to the participants. To ensure a fair
comparison and make the task more challenging,
we collect additional data following the data collec-
tion process of these works combine with selected
subsets as blind test sets. The statistics of all the
datasets are in Table 1.

3.2 Tracks

The VGSG shared task contains three tracks: Strict

Track focuses on exploring Language and Vision
Mapping methods and Language Generation mod-
els through a controlled experiment. We provide
extracted visual features from a pre-trained vision
model, which participants can only use as input to
train their models with the provided dataset.

Open Track aims to test the state-of-the-art of the
task. Participants can use all kinds of resources,
including pre-trained models and additional text
or vision-only datasets. However, they cannot use
other vision and language datasets apart from the
provided dataset.

Grounding Track is based on the Open Track,
but participants are required to submit a mapping

https://github.com/iz2late/
VIST-Character
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of all entities in the generated text and provided
characters (see Figure 2 for an example). The sub-
missions to this track will be evaluated on the VIST-
Character dataset (Liu and Keller, 2023).

3.3 Schedule

We propose the following tentative schedule:

Dec 1st, 2023 We will announce the joint task at
the INLG 2023 conference (if accepted), with data
available on the task’s dedicated website. This is
the point when individuals can sign up for the task.

Feb 1st, 2024 The submission is opened. Partici-
pants can submit their systems to the organizers.

May 1st, 2024 Submission ends at this point and
organizers start the process of automatic evalua-
tion on blind test sets and human evaluation of the
systems.

Jun 1st, 2024 The VGSG shared task comes to
a conclusion. The organizers will submit reports
regarding participant performance and overall chal-
lenge outcomes to the INLG 2024 conference and
will present these findings at the event. The pre-
viously concealed test set will be released to the
public.

Jack Ewill
Jack was on a call with a client,
getting stressed over a business
deal that wasn't going well.

Jack put the phone down after an
unsuccessful deal and decided to go
get a coffee at the nearby coffee.

At the coffee shop, he started
talking to the waiter Will about
the unfortunate call.

Will told him he would convince the
client to accept the deal if he
could work for Jack.

Will then called the client and
successfully struck the deal.

Figure 2: Example a matching matrix between entities
in the generated story and the character in the images.
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4 Evaluation

We will perform both automatic and human eval-
uations for the submissions. The scripts for all
automatic metrics will be provided after the sub-
mission system is open; human evaluation will
be conducted after all submissions have been re-
ceived. We will release the annotator instructions
and source code of all metrics after the shared task.

4.1 Automatic Evaluation

We will use metrics in the following categories to
evaluate the submissions:

Reference-based metrics including unigram (B-
1), bigram (B-2), trigram (B-3), and 4-gram (B-
4) BLEU scores (B; Papineni et al., 2002), ME-
TEOR (M; Banerjee and Lavie, 2005), ROUGE-
L (R; Lin, 2004), and CIDEr (C; Vedantam et al.,
2015), which were used in the previous visual sto-
rytelling shared task (Mitchell et al., 2018). We
will also use BERTScore (BS; Zhang* et al., 2020)
which is effective in text summarization.

Grounding To measure the correctness of referring
expressions of human characters in stories, we will
use the character-matching (CM) metric defined in
(Hong et al., 2023a).

Event diversity we will use metrics used by Hong
et al., 2023b (based on (Goldfarb-Tarrant et al.,
2020)) including the unique number of verbs, verb-
vocabulary ratio, verb-token ratio, percentage of
diverse verbs not in the top-5 most frequent verbs
and unique:total ratios of predicate unigram, bi-
gram, and trigram.

Coherence following Hong et al., 2023b we will
use the generative Entity Grid model to calculate
the log-likelihood based on entity transitions in
system outputs.

4.2 Human Evaluation

In natural language generation tasks, automatic
metrics do not provide a full understanding of the
quality of the generated text. Reference-based met-
rics, in particular, have been shown to not correlate
well with human judgment. In addition, several
important aspects of narratives such as creativity,
and logical coherence are hard to judge using auto-
matic evaluation. Therefore, we will also conduct
a human evaluation for the submissions, focussed
on narrativity (whether the generation is a story or
simply a description of images), character ground-
ing (correctness of referring expressions, model
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hallucinations), and coherence. The scale of the
evaluation depends on the funding we have. We
also encourage participants to perform their own
human evaluation and include the results in their
reports.

4.3 Baselines

Our baselines are:

Seq2Seq (Huang et al., 2016) is a simple but pow-
erful model with an encoder-decoder architecture.
Visual features are first projected with an encoder
which is a feed-forward neural network, then fed to
the decoder which is a pre-trained language model.

TAPM (Yu et al., 2021) is a Transformer-based
model which adapts the visual features with pre-
trained GPT-2.

Other V&L models We also include other vision
and language models that are competitive on simi-
lar vision and language tasks like Cho et al. (VL-
T5; 2021), Li et al. (BLIP; 2022) and Zhu et al.
(MiniGPT-4; 2023).

5 Conclusions

This proposal introduces a novel shared task called
Visually Grounded Story Generation, which ne-
cessitates that Visual Language Models formulate
narratives with protagonists based on image in-
puts, ensuring the production of coherent and vi-
sually grounded stories with high diversity. The
task poses dual challenges: the need for protago-
nists’ actions and descriptions to align with the pro-
vided visual information and the requirement for
the output story to logically progress with a clear
beginning, middle, and end. By initiating this task,
the authors aim to foster advancements in Visual
Language Generation, inviting global researchers
to contribute new methodologies that facilitate the
creation of visually consistent, logically structured
stories.
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