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Abstract

This paper documents the approach of Team
NTR for the Second Shared Task on Automatic
Minuting (AutoMin) at INLG 2023. The goal
of this work is to develop a module for au-
tomatic generation of meeting minutes based
on a meeting transcript text produced by an
Automated Speech Recognition (ASR) system
(Task A). We consider minuting as a super-
vised machine learning task on pairs of texts:
the transcript of the meeting and its minutes.
We use a two-staged minuting pipeline that
consists of segmentation and summarization.
We experiment with semantic segmentation
and multi-language approaches and Large Lan-
guage Model Dolly, and achieve Rouge1-F of
0.2455 and BERT-Score of 0.8063 on the En-
glish part of ELITR test set and Rouge1-F of
0.2430 and BERT-Score of 0.8332 on the Eu-
roParl dev set with the submitted Naive Seg-
mentation + Dolly7b pipeline.

1 Introduction

Discussions and meetings are an integral part of
any human activity that involves a group of peo-
ple. On important meetings, an audio recording
is often made, and specially appointed people cre-
ate a brief summary of the most important things
that happened at the meeting. This process is quite
laborious.

The ability to produce high-quality documen-
tation of business meetings decisions without al-
locating additional human resources can improve
the productivity of the organizations. This way
important points and decisions made will not be
lost due to an information overflow. Thus, auto-
mated minuting of business meetings is becoming
an increasingly desirable solution.

An automated minuting system can be useful
not only for businesses but also for government
agencies and educational institutions. Hundreds of

meetings are held daily, and the ability to automat-
ically generate a summary of the most important
decisions made can significantly reduce the time
and resources spent on documenting. Thanks to an
automatic minuting system, meeting participants
can focus on important points without spending
time on note-taking.

The goal of this work is to develop a module for
automatic generation of meeting minutes based on
a meeting transcript text produced by an Automated
Speech Recognition (ASR) system (AutoMin 2023
Task A, (Ghosal et al., 2022b, 2023)).

2 Related work

Meeting summarization as a scientific problem
came to light in the early 2000s (Ghosal et al.,
2022a). ISCI Meeting Project (Morgan et al., 2001;
Janin et al., 2004) resulted, among other outcomes,
in creating ICSI Meeting Corpus of audio recorded
from informal, natural, and even sometimes im-
promptu meetings (Janin et al., 2003). About si-
multaneously, Klaus Zechner’s work on summa-
rization of meeting speech and dialogues (Zechner,
2002) helped to shape the investigations in this
topic further. Augmented Multi-party Interaction
(AMI) project followed soon, producing The AMI
Meeting Corpus (McCowan et al., 2005).

It has been recognized early on that for a wide
spectrum of applications identifying and including
action items into minutes delivers the key business
value (Purver et al., 2007). Detecting decisions in
multi-party dialogues happened to be as important
for the minuting (Fernández et al., 2008b,a; Bui
et al., 2009). The CALO Meeting Assistant System
(Riedhammer et al., 2010) that appeared soon after
that was an important step, but the overall level of
NLP at the time limited (with a few exceptions, for
example, (Wang and Cardie, 2012; Liu et al., 2018))
proliferation of minuting research and applications
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until recently.
Scientific interest to minuting reemerged about

2018, sparked both by an important review by
Nedoluzhko and Bojar (Nedoluzhko and Bojar,
2019) and overall technology readiness. The in-
terest came into a full swing in 2021 when many
works have appeared (Koay et al., 2021; Shang,
2021; Fu et al., 2021; Chen and Yang, 2021; Fab-
bri et al., 2021; Zou et al., 2021; Cho et al., 2021;
Chen et al., 2021; Zhong et al., 2021) and the first
AutoMin competition was held at INTERSPEECH
(Ghosal et al., 2022a).

The works that are the most close to ours are
likely those by AutoMin 2021 winners (Shinde
et al., 2021) and Borisov and Mikhaylovskiy
(Borisov and Mikhaylovskiy, 2023). The authors
of the former use a BART model and train it
on the SAMSum dialogue summarization dataset.
Their pipeline first splits the given transcript into
blocks of smaller conversations, eliminates redun-
dancies with a specially-crafted rule-based algo-
rithm, summarizes the conversation blocks, re-
trieves the block-wise summaries, cleans, struc-
tures, and finally integrates the summaries to pro-
duce the meeting minutes. The authors of the
latter introduce a Russian minuting dataset and
use an approach similar to (Shinde et al., 2021).
They also introduce semantic segmentation that
improves ROUGE and BERTScore metrics of min-
utes on the above dataset by 1%-10% compared to
naive segmentation.

3 Datasets

Two main datasets are considered in the AutoMin
2023 Task A:

• ELITR Minuting Corpus – a dataset of meet-
ing transcripts and minutes (Nedoluzhko et al.,
2022).

• EuroParlMin v1.0, introduced specifically for
AutoMin 2023 (Ghosal et al., 2023)

In addition, we experiment with the following
corpora:

• SamSum – a dataset of messenger dialogues
with their summaries (Gliwa et al., 2019).

The datasets are compared in Table 1. The sum-
mary compression ratio θ in the Table 1 is calcu-
lated using the following formula:

θ = (1− TA

TT
) ∗ 100, (1)

where TA is the number of tokens in the abstract
and TT is the number of tokens in the transcript.
Thus, the smaller the abstract compared to the orig-
inal transcript text is, the closer θ is to 100%.

4 Methods

All Transformer (Vaswani et al., 2017) language
models have a limit on the size of the input context
window and do not work well with long texts, such
as transcripts of long meetings. Thus, to make it
possible to apply Transformer-based models to the
transcript text summarization, we, similarly to the
winners of the AutoMin 2021 competition (Shinde
et al., 2021) decompose the task of minuting into
two subtasks:

• Text Segmentation – dividing the transcript
text into segments of reasonable size.

• Segment Summarization – generating an ab-
stract of the transcript segment.

In addition to the naive segmentation just fitting
the chunk to the model’s window size, we explore
semantic segmentation in a hope to obtain higher
quality reporting. The pipeline for the semantic
segmentation is as follows:

• For utterances vectorization, the transformer
all-MiniLM-L6-v2 from the sentence trans-
formers library (Reimers and Gurevych, 2019)
was used. Each utterance was vectorized se-
quentially using the Mean Pooling (Reimers
and Gurevych, 2019): initially, each utterance
is broken down into sentences, then, using
Mean Pooling, a vector of sentences is ob-
tained, finally, the average of the sentence
vectors is taken as the utterance vector.

• For dimensionality reduction, the UMAP
(Uniform Manifold Approximation and Pro-
jection) algorithm was used (McInnes et al.,
2018). The resulting compressed vector rep-
resentations retain the necessary information
to create clusters of semantically similar utter-
ances. Thus, in the clustering of utterances,
the use of UMAP allows you to preserve
the quality of the segments obtained by clus-
tering, while generally increasing the speed
of segmentation due to working with lower-
dimensional vectors.

• For clustering the obtained utterance vec-
tors, the density-based HDBSCAN algorithm
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Name Transcripts Domain Compression ratio, %
ELITR 179 project meetings 95.65
EuroParlMin Dev 187 corpus of European Parliament debates 53.08
SamSum 16369 dialogues from messengers 81.12

Table 1: Datasets
Model Rouge1-F Rouge2-F RougeL-F BERT-Score
Naive segmentation 0.1977 0.0375 0.1624 0.6806
Semantic Segmentation 0.1791 0.0339 0.1370 0.6768
Semantic Segmentation with UMAP 0.1771 0.0341 0.1431 0.6304

Table 2: Segmentation methods performance metrics on the Engilsh part of ELITR test set

(Campello et al., 2013) is used. It allows to
detect clusters in data without knowing their
exact number initially, and is also resistant to
noise and outliers, which allows to filter out
utterances that are not relevant to the topics
of discussion at the segmentation level. The
BERTopic library (Grootendorst, 2022) was
used to implement the clustering algorithm in
the semantic segmentation module.

• Transcript Segments Summarization. We ex-
plore several models for abstractive summa-
rization, as described below.

5 Experiments

5.1 Metrics

The key indicators of the effectiveness of a text
summarization algorithm we use are the ROUGE
(Lin, 2004) and BERTScore (Zhang et al., 2020).

5.2 Comparing segmentation approaches on
ELITR English test set

We compared naive and semantic segmentation ap-
proaches with and without UMAP dimensionality
reduction on this dataset. In all the cases we have
used open source version of MBART finetuned on
SamSum dataset.1

Table 2 shows the performance of the approaches
listed above on the English test part of the ELITR
dataset. One can see that in the domain of meet-
ings of distributed teams most similar to day-to-day
work discussions, semantic segmentation did not
provide significant improvement. The semantic
segmentation works worse than the naive one. The
effect of the UMAP dimensionality reduction is
also mixed.

1https://huggingface.co/philschmid/distilbart-cnn-12-6-
samsum

5.3 Experiments with a LLM
In addition to MBART, we have tested a large pre-
trained language model – Dolly v2 7b (Conover
et al., 2023), chosen for its permissive license
and competitive performance. We have tried the
prompts: ”Summarize” and ”Briefly extract Key
Points from the meeting transcript”, and settled for
the second as it provided somewhat better perfor-
mance and more interesting texts. Table 3 shows
the difference between two prompts on EuroParl
dev set.

Table 4 provides a comparison of Dolly with
MBART on English part of ELITR test set. We
have also tested Dolly v2 7b on EuroParl dev set,
the results provided in the Table 5

Given the above results, we have chosen to sub-
mit Naive Segmentation + Dolly results.

6 Conclusion and Future Work

In this work, we describe our system run for the sec-
ond AutoMin shared Task A on automatic minuting.
Our proposed system leverages a pretrained Large
Language Model Dolly to generate readable min-
utes from multi-party meeting proceedings. In the
future, we plan to implement similar pipelines for
different languages, including low-resource ones.
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Dolly v2 7b Promt Rouge1-F Rouge2-F RougeL-F BERT-Score
“Summarize” 0.2465 0.0751 0.1927 0.8251
“Briefly extract Key Points
from the meeting transcript” 0.2430 0.0694 0.1843 0.8332

Table 3: Performance metrics on the EuroParl dev set with different promts.

Model Rouge1-F Rouge2-F RougeL-F BERT-Score
BERTopic + MBART 0.244 0.0309 0.1756 0.7999
Naive + MBART 0.2022 0.0171 0.132 0.8019
Naive + Dolly7b 0.2455 0.0294 0.1656 0.8063

Table 4: Performance metrics on the English part of ELITR test set

Model Rouge1-F Rouge2-F RougeL-F BERT-Score
Naive + MBART 0.1539 0.0522 0.0843 0.8392
Naive + Dolly7b 0.2430 0.0694 0.1843 0.8332

Table 5: Performance metrics on the EuroParl dev set
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Minuting Corpus: A novel dataset for automatic
minuting from multi-party meetings in English and
Czech. In Proceedings of the 13th International
Conference on Language Resources and Evaluation
(LREC-2022), Marseille, France. European Language
Resources Association (ELRA). In print.

Matthew Purver, John Dowding, John Niekrasz, Patrick
Ehlen, Sharareh Noorbaloochi, and Stanley Peters.
2007. Detecting and summarizing action items in
multi-party dialogue. In Proceedings of the 8th SIG-
dial Workshop on Discourse and Dialogue, pages
18–25, Antwerp, Belgium. Association for Computa-
tional Linguistics.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

Korbinian Riedhammer, G. Tur, A. Stolcke, L. Voss,
S. Peters, D. Hakkani-Tür, J. Dowding, and F. Yang.
2010. The CALO Meeting Assistant System. IEEE
Transactions on Audio, Speech and Language Pro-
cessing, 2010(18(6)).

https://doi.org/10.21437/automin.2021-1
https://doi.org/10.21437/automin.2021-1
https://doi.org/10.21437/automin.2021-1
https://aclanthology.org/2022.inlg-genchal.1
https://aclanthology.org/2022.inlg-genchal.1
https://aclanthology.org/2022.inlg-genchal.1
https://aclanthology.org/2022.inlg-genchal.1
https://doi.org/10.18653/v1/D19-5409
https://doi.org/10.18653/v1/D19-5409
https://doi.org/10.18653/v1/D19-5409
https://doi.org/10.1109/ICASSP.2003.1198793
https://doi.org/10.18653/v1/2021.naacl-srw.10
https://doi.org/10.18653/v1/2021.naacl-srw.10
https://www.aclweb.org/anthology/W04-1013
https://www.aclweb.org/anthology/W04-1013
https://doi.org/10.1145/3286978.3286995
https://doi.org/10.1145/3286978.3286995
https://doi.org/10.21105/joss.00861
https://doi.org/10.21105/joss.00861
https://aclanthology.org/H01-1051
https://aclanthology.org/H01-1051
https://www.aclweb.org/anthology/2007.sigdial-1.4
https://www.aclweb.org/anthology/2007.sigdial-1.4
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410


137

Guokan Shang. 2021. Spoken Language Understanding
for Abstractive Meeting Summarization. Ph.D. the-
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