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Abstract

Multi-party conversations (MPC) are a more
practical and challenging scenario involving
more than two interlocutors. This research
topic has drawn significant attention from both
academia and industry, and it is nowadays
counted as one of the most promising research
areas in the field of dialogue systems. In
general, MPC algorithms aim at addressing
the issues of Who saying What to Whom,
specifically, who speaks, say what, and address
whom. The complicated interactions between
interlocutors, between utterances, and between
interlocutors and utterances develop many vari-
ant tasks of MPC worth investigation. In this
tutorial, we present a comprehensive survey
of recent advances in MPC. In particular, we
summarize recent advances on the research of
MPC modeling which is categorized by Who
saying What to Whom. Finally, we highlight
the challenges which are not yet well addressed
in MPC and present future research directions.

1 Introduction

The development of intelligent dialogue systems
that are able to engage in conversations with
humans, has been one of the longest running
goals in artificial intelligence (Kepuska and Bo-
houta, 2018; Berdasco et al., 2019; Zhou et al.,
2020). Thanks to breakthroughs in sequence mod-
eling (Sutskever et al., 2014; Vaswani et al., 2017)
and pre-trained language models (PLMs) (Radford
et al., 2019; Devlin et al., 2019; Lewis et al., 2020),
researchers have proposed various effective models
for conversations between two participants (Serban
et al.,, 2016; Wen et al., 2017; Zhang et al.,
2020). Recently, researchers have paid more
attention to a more practical and challenging
scenario involving more than two participants,
which is well known as multi-party conversations
(MPC) (Ouchi and Tsuboi, 2016; Zhang et al.,
2018; Le et al., 2019; Hu et al., 2019; Kummerfeld
et al., 2019; Gu et al., 2021, 2022a,b, 2023; Li and
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Figure 1: Ilustration of the two-party (one-on-one chat)
and multi-party (group chat) conversation instances.

Zhao, 2023). Figure 1 presents instances of two-
party and multi-party conversations, corresponding
to the common scenarios of one-to-one chat and
group chat respectively in daily life. Utterances in
a two-party conversation are posted between two
interlocutors alternately, constituting a sequential
information flow. On the other hand, each utterance
in an MPC can be spoken by anyone and address
anyone else in this conversation, which constitutes
a graphical information flow.

Modeling Who saying What to Whom in MPC
poses unique research challenges, specifically,
who speaks, say what, and address whom. All
these have been revisited by researchers since the
emergence of neural approaches as the dominant
approach for solving MPC problems. The emer-
gence of large language models (LLMs) (Brown
et al., 2020; Ouyang et al.,, 2022), especially
ChatGPT!, has enabled more engaging conver-
sations in the form of two-party conversations,

"https://chat.openai.com/
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Slot Theme

Session 1:

14:15 — 14:20 Tutorial presenters introduction

14:20 — 14:35 Introduce the task, history and application
14:35 — 14:45 Introduce the part of datasets

14:45 — 15:05 Introduce the part of “WHO Speaks”

15:05 — 15:35 Introduce the explicit part of “Address WHOM”
15:35 - 15:45 Q&A

15:45 — 16:15 Coffee break

Session 2:

16:15 — 16:45 Introduce the implicit part of “Address WHOM”
16:45 — 17:15 Introduce the part of “Say WHAT”

17:15 - 17:30 Challenges and open questions

17:30 — 17:35 Conclusion

17:35-17:45 Q&A

Table 1: Tutorial schedule.

i.e., a conversation between an agent and a user.
However, the open questions of whether ChatGPT
still shows great performance in group chat, and
can be adapted to the form of MPC effectively and
efficiently are worth investigation. Furthermore,
whether these chat-style LLMs are capable of
simulating human interactions e.g., conversation
and perception, among multiple agents in a virtual
environment (Park et al., 2023) remains research-
worthy. This tutorial will survey the cutting-
edge methods for MPC, introducing key sub-areas
whose combination is needed for a successful
solution, which have not been covered in any
previous Al & NLP conference tutorial.

2 Tutorial Outline

This will be a three-hour tutorial devoted to the
cutting-edge topic of MPC. This tutorial will
include two sessions. Each session will be 1.5h,
followed by 10 minutes for Q&A and 30 minutes
for a break. Each part includes an overview of the
corresponding topic, widely used methods and a
deep dive into representative research. The detailed
tutorial schedule is shown in Table 1.

The complicated interactions between interlocu-
tors and utterances develop many variant tasks
of MPC worth investigation. For example, there
are scenarios where multiple people may want
to interact with a chatbot or one person interacts
with several chatbots at the same time, as in a
chat group, to coordinate among themselves and
achieve a common goal. Thus, the ability to predict
which agent in the conversation is the most likely
to speak next, and conversely, when an agent must
wait before interacting, is important for conducting
engaging and social conversations (Pinhanez et al.,
2018; de Bayser et al., 2019). Furthermore,
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detecting who is being addressed, i.e., who the
current speaker is talking to, is also non-trivial in
these conversation scenarios (Ouchi and Tsuboi,
2016; Zhang et al., 2018; Le et al., 2019; Gu et al.,
2021, 2023). Last but not least, only after knowing
a speaker and an addressee at the current dialogue
state, can the system return an appropriate response
following the conversation (Hu et al., 2019; Wang
et al., 2020; Gu et al., 2022a; Li and Zhao, 2023).

2.1 WHO Speaks

A multi-party conversation may involve the interac-
tion between human-human, human-machine, and
machine-machine. Different speakers have differ-
ent characteristics, with diverse styles, emotions,
and opinions. The task of speaker segmentation,
also known as speaker diarisation or speaker
change detection, aims at finding speaker changing
points in a conversation. Specifically, a speaker
change occurs when the current and the previous
utterances are not uttered by the same speaker.
Meng et al. (2017) formulate this task as a binary
utterance-pair classification to judge whether the
speaker changes before and after a certain decision
point. Meng et al. (2018) propose another surrogate
task for general speaker modeling. This task is
defined by segmenting an MPC into several parts
according to speakers, each segment of which
comprises one or a few consecutive sentences
uttered by a particular speaker. A candidate set
of speakers is also given and models are required
to identify the speaker of each segment. Gu
et al. (2021) propose an utterance semantics-based
speaker searching task where models are asked to
search for a speaker in history that shares the same
speaker with the expected conversation turn.

2.2 Address WHOM

Existing methods on detecting who is being ad-
dressed can be generally categorized into explicit
and implicit ones.

Explicit Addressee Recognition This task ex-
plicitly determines the intended addressee of an
utterance. Previous studies mainly focus on pre-
dicting the addressee of only the last utterance of a
conversation (Ouchi and Tsuboi, 2016; Zhang et al.,
2018), while recent studies pay more attention
to predicting the addressees of all utterances of
a conversation (Le et al., 2019; Gu et al., 2021,
2023). Le et al. (2019) propose a who-to-whom
(W2W) model to recognize and complete the
addressees of all utterances in a conversation to



help understand the whole conversation, given an
MPC where part of the addressees are unspecified.
Gu et al. (2021) propose a pre-trained MPC-BERT
language model for universal MPC understanding
by designing self-supervised tasks, and test it on
addressee recognition. Gu et al. (2023) present
graph-induced fine-tuning (GIFT) which can adapt
various Transformer-based LMs by designing four
types of edges to integrate graph-induced signals
into attention mechanisms.

Implicit Dialogue Disentanglement The mes-
sages from different interlocutors on different
topics are heavily interwoven. Therefore, it is
necessary to disentangle a whole conversation into
several threads from a data stream so that each
thread is about a specific topic. Basically, most
of the existing methods are designed to find out
which previous utterance in the history the current
utterance is replying to. Thus, this task is in essence
modeling addressees implicitly. Kummerfeld et al.
(2019) create a large-scale #Ubuntu IRC corpus
that is 16 times larger than all previously released
datasets combined. Yu and Joty (2020) formalize
the link prediction of disentanglement as a pointing
problem following pointer networks. Each pointing
operation is modeled as a multinomial distribution
over the set of previous utterances. Ma et al. (2022)
propose characteristic features of speaker property
and reference dependency for dialogue structure.

2.3 Say WHAT

Generating appropriate responses in the context of
MPC is challenging due to the diverse intent topic
transition and information temporality. Existing
methods enabling MPC systems to decide what
to say can be generally categorized into retrieval-
based and generation-based methods.

Retrieval-based The retrieval-based methods
aims at selecting the best-matched response from
a set of candidates, given the context of a multi-
turn conversation. The key to this task is to rank
the set of response candidates according to the
semantic matching between the context of an MPC
and a response candidate. Ouchi and Tsuboi (2016)
propose jointly modeling the tasks of response
selection and addressee selection to capture what is
being said to whom at each time step in a context.
Zhang et al. (2018) follow this framework and
improve it by updating the interlocutor embeddings
role-sensitively. Gu et al. (2021) propose jointly
learning who says what to whom in a unified
framework by considering addressee- and speaker-
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related tasks as complementary signals for response
selection during the pre-training stage.

Generation-based The generation-based meth-
ods synthesize a response with generative models
by maximizing its generation probability given the
previous conversation history. Hu et al. (2019)
propose a graph-structured neural network, the
core of which is to encode utterances based on
the graph topology rather than the sequence of
their appearances in a conversation, to model the
information flow as graphical. Gu et al. (2022a)
propose to model complicated interactions between
utterances and interlocutors with a heterogeneous
graph, where two types of graph nodes and six
types of edges are designed to model heterogeneity
in MPC. Li and Zhao (2023) propose an EM
approach that iteratively performs the expectation
steps to generate missing addressees, and the
maximization steps to optimize a generative model.

2.4 Open Challenges

Robustness to Addressee Scarcity Existing
methods rely heavily on the necessary addressee
labels and can only be applied to an ideal setting
where each utterance must be tagged with an
addressee label. In practice, statistics show that
addressees of 55% of the utterances in the Ubuntu
IRC dataset (Ouchi and Tsuboi, 2016) are not
specified. Given an MPC with a few addressee
labels missing, existing methods fail to build a
consecutively connected conversation graph, but
only a few separate conversation fragments instead.
Despite Li and Zhao (2023) make preliminary
exploration on the scarcity of addressee, the cost
of missing addressee inference is too high, and
currently only the silver label for the last utterance
in a conversation is affordable to infer. A future
research direction could be ensuring message
passing between these conversation fragments and
enhancing the robustness to addressee scarcity.

Universal MPC Understanding Most existing
studies design models for each individual task in
MPC separately. Intuitively, the complicated inter-
actions between interlocutors and utterances might
make these tasks complementary among each other.
Making use of these tasks simultaneously may
produce better contextualized representations of
interlocutors and utterances, and would enhance
the conversation understanding. Gu et al. (2021)
focus on modeling only interlocutor structures and
utterance semantics. A future research direction
could be designing better supervised tasks for



augmenting LLMs with more abilities, and being
tested on more tasks to evaluate model robustness
and generalization. With the rapid growth of
LLMs, machine-machine interaction also becomes
an important direction, where the machines may
collaborate, debate, and evolve via MPC.

Topic Transition Despite the remarkable ability
of LLMs to comprehend and generate language,
the performance would drop significantly when its
comes to topic transition and long context. This
is precisely where a good MPC system excels.
An MPC system should be able to track topic
transitions and update the conversation structure
dynamically as a conversation proceeds, so that it
can understand deep semantics and structures of
an MPC. Modeling topic transitions in MPC which
tracks the specific flows of multiple ongoing sub-
conversations at a fine granularity could serve as a
surrogate task for complex context understanding.

3 Tutorial Presenters

Jia-Chen Gu is currently a Postdoctoral Re-
searcher at University of Science and Technology
of China. His research interests lie within machine
learning for dialogue systems. Homepage: http:
//home.ustc.edu.cn/~gujc/

Zhuosheng Zhang is currently an Assistant
Professor at Shanghai Jiao Tong University. His
research interests include natural language pro-
cessing, dialogue systems, and large language
models. He has given a tutorial on Machine Read-
ing Comprehension: The Role of Contextualized
Language Models and Beyond at IJCAI 2021.
Homepage: https://bcmi.sjtu.edu.cn/
~zhangzs/

Zhen-Hua Ling is a Professor with the Univer-
sity of Science and Technology of China. He was
a Visiting Scholar at the University of Washington
and a Marie Curie Fellow at the University of
Edinburgh. His research interests include speech
processing and natural language processing. He
was the recipient of the IEEE Signal Processing
Society Young Author Best Paper Award in 2010.
He was an Associate Editor of IEEE/ACM Transca-
tions on Audio, Speech, and Language Processing

from 2014 to 2018. Homepage: http://staff.

ustc.edu.cn/~zhling/

4 Diversity Considerations

The MPC techniques we introduce is language
agnostic. Thus, they can be applied to data in
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various languages and localities with some extent
of adaption to scale beyond English. Presenters
will share this tutorial with a worldwide audience
by promoting on social media. Presenters span
over junior (J.-C. Gu and Z. Zhang) and senior
researchers (Z.-H. Ling). Thus, we have diversified
instructors which will also help encourage diverse
audience. J.-C. Gu and Z. Zhang have experience
co-organizing NLP Workshops, and actively work
on inviting undergraduate students to research and
promoting diversity. We will work with *ACL
D&I teams, and consult resources to diversify our
audience participation.

5 Prerequisite

The prerequisite includes familiarity with basic
machine learning and deep learning models, espe-
cially those typically used in modern NLP for MPC,
including representation learning, Transformers,
etc. Furthermore, this tutorial assumes background
in basic probability, linear algebra, and calculus.
We will also provide introductory materials.
Reading List The presenters have survey papers
for comprehensive references (Gu et al., 2022b;
Zhang and Zhao, 2021). The following papers are
also recommended: Ouchi and Tsuboi (2016); Hu
et al. (2019); Kummerfeld et al. (2019); Gu et al.
(2021); Ma et al. (2022); Gu et al. (2022a); Li and
Zhao (2023); Gu et al. (2023).

Breadth While dozens of relevant papers over
the tutorial are provided, we plan to cover around
10-15 research papers in detail. Only 3-5 of the
“deep dive” papers come from the presenter team.

6 Tutorial Details

Audience Size Audience sizes for physical and
virtual meetings are expected to be around 100 and
150 respectively.

Open Access The slides, code and other teaching
materials will be released online for public access.
The video recording of our tutorial will also be
included in the ACL Anthology.

7 Ethics Statement

Certain conversation data might come from pri-
vate dialogues between people. Thus, privacy
considerations must be taken to ensure all data
that is released conforms to regulations and are
under consent. As conversations and pre-trained
language models may have bias in various forms,
MPC models may contain the same form of bias
and should be reviewed and modified if necessary.
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