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Abstract

Peer review is a fundamental component of
the academic publishing process, ensuring the
quality and validity of research findings. How-
ever, predicting peer-review aspect scores ac-
curately can be challenging due to the small
size of publically available datasets on the
target aspect of scores. To address this is-
sue, we propose an intermediate-task transfer
learning method to further improve the perfor-
mance of pre-trained models. The method as-
sumes an intermediate task that is related to
the target task to learn beneficial features be-
fore fine-tuning it on a target task. Our ex-
periments demonstrate that intermediate-task
transfer learning helps improve the perfor-
mance of the pre-trained model on peer re-
view score prediction. Our code is available
at https://github.com/panitan-m/
peerreview—-intermediate-trans.

1 Introduction

In recent years, there has been a surge volume of
submissions to Al-related international conferences
and journals. This upsurge has consequently inten-
sified the difficulties of the review process. To
alleviate the burgeoning reviewers’ workload, em-
ploying an approach to reject papers with evidently
low quality serves as a practical strategy. On the
other hand, constructive critique extended to au-
thors about the shortcomings in their submissions
can encourage refinement and enhancement of their
work. In response to this challenge, the develop-
ment of automatic Peer Review Score Prediction
systems has emerged. These systems score a nu-
merical evaluation of academic papers, assessing a
spectrum of aspects like “clarity" and “originality".

A pioneering contribution to the field comes in
the form of the PeerRead dataset. This publicly
accessible corpus of scientific peer reviews, intro-
duced by Kang et al. (2018), serves as a valuable
resource for researchers with diverse objectives.
These objectives are ranging from classification of

paper acceptance (Ghosal et al., 2019; Deng et al.,
2020; Maillette de Buy Wenniger et al., 2020; Fytas
et al., 2021), prediction of review aspect scores (Li
et al., 2020; Wang et al., 2020; Muangkammuen
et al., 2022), to citation recommendation (Jeong
et al., 2019), and predicting citation counts (van
Dongen et al., 2020). In this paper, we focus on
review aspect score prediction.

Unsupervised pre-training SCIBERT (Beltagy
et al., 2019) was utilized on various downstream
scientific NLP tasks, including biomedical domain
(Li et al., 2016; Nye et al., 2018), computer sci-
ence domain (Luan et al., 2018; Jurgens et al.,
2018), and multiple domains (Cohan et al., 2019).
One promising approach for further enhancing pre-
trained models that have been shown to be broadly
helpful is to first fine-tune a pre-trained model on an
intermediate task, before fine-tuning again on the
target task, also referred to as Supplementary Train-
ing on Intermediate Labeled-data Tasks (STILTSs)
(Phang et al., 2019; Pruksachatkun et al., 2020).
STILTs explore the potential of incorporating a
secondary phase of pre-training using data-rich in-
termediate supervised tasks, with the aim of im-
proving the effectiveness of the resulting target task
model. In this work, we perform comprehensive ex-
periments using the Aspect-enhanced Peer Review
(ASAP-Review) dataset (Yuan et al., 2022) that we
extract review aspect sentiments for our intermedi-
ate task training. The ASAP-Review dataset is a
collection of peer-reviews with fine-grained anno-
tations of review aspect information. For example,

“The paper is well-written and easy to follow" shows

a positive sentiment of clarity aspect and a high
score of clarity aspect. These aspect sentiments can
be beneficial for the review aspect score prediction.
We extract the review aspect sentiment from the
review texts of a paper and use it as a target label
for that given paper. We ran our experiments on 6
intermediate tasks and 7 target tasks, resulting in a
total of 42 intermediate-target task pairs.
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Figure 1: Overview of our pipeline framework. It comprises aspect sentiment extraction, intermediate-task training,

and fine-tuning on the target task.

In summary, our main contributions are:

e This work is the first to introduce an
intermediate-task transfer learning method to
peer-review score prediction.

* We propose a method to extract aspect senti-
ments for intermediate-task training for peer-
review score prediction.

* We conduct experiments to demonstrate the
efficacy of each intermediate task, resulting in
performance gains across every review aspect
score prediction.

2 Related Work

Artificial Intelligence is a crucial tool for academic
peer review, and it is a rapidly growing field that
demands more attention from the academic commu-
nity. The renowned Toronto Paper Matching sys-
tem, developed by Charlin and Zemel (2013), was
designed to match papers with appropriate review-
ers. Notably, Price and Flach (2017) conducted
an in-depth examination of the diverse methods
for harnessing computational support in the peer
review system. Mrowinski et al. (2017) explored
the application of evolutionary algorithms to en-
hance editorial strategies within the peer review
process. Ghosal et al. (2018a,b) delved into an
investigation of the impact of various features in
the editorial pre-screening process. Wang and Wan
(2018) explored a multi-instance learning frame-
work for conducting sentiment analysis on peer
review texts. Ghosal et al. (2019) investigated the
impact of reviewer sentiment expressed in peer re-
view texts on the outcome of the review process.
Li et al. (2020) proposed a multi-task learning ap-
proach that automatically selects shared structures
and auxiliary resources for peer review prediction.
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More recently, Muangkammuen et al. (2022) ex-
plored a semi-supervised learning for improving
peer review score prediction.

Our investigations are currently centered on a
portion of the PeerRead dataset that has been made
available to the public (Kang et al., 2018). Our ap-
proach achieves performance improvement on the
peer review aspect score prediction task compared
to Kang et al. (2018). We attribute this to the use
of intermediate task training and the extraction of
aspect sentiment in our approach.

3 Methods

We present a simple intermediate-task transfer
learning for peer review score prediction. Figure
1 illustrates the method pipeline that consists of
the following steps: aspect sentiment extraction,
intermediate-task training, and fine-tuning on the
target task.

3.1 Aspect Sentiment Extraction

To further train the pre-trained model SCIBERT on
the intermediate tasks, we extract aspect sentiments
from the ASAP-Review dataset (Yuan et al., 2022)
to utilize them for our intermediate-task training.
The ASAP-Review dataset comprises peer-review
data from ICLR and NeurIPS. We use only ICLR
data as it contains both accepted and rejected pa-
pers which are the same as the target task dataset,
PeerRead.

Originally, this dataset contained review texts
with sequence labels of fine-grained annotation of
aspect information. An example of the review anno-
tations is shown in Table 1. We utilize 6 aspects in
the dataset, which are Clarity (CLA-i), Meaningful
Comparison (COM-i), Motivation/Impact (MOT-i),
Originality (ORI-i), Soundness/Correctness (SOU-



Summary Soundness +

Motivation + Clarity +

The authors prove a generalization guarantee for deep neural networks with ReLU activations, in terms
of margins of the classifications and norms of the weight matrices. They compare this bound with a
similar recent bound proved by Bartlett, et al. While strictly speaking, the bounds are incomparable in
strength, the authors of the submission make a convincing case that their new bound makes stronger
guarantees under some interesting conditions. The analysis is elegant. It uses some existing tools but
brings them to bear in an important new context, with substantive new ideas needed. The mathematical
writing is excellent. Very nice paper. I guess that networks including convolutional layers are covered
by their analysis. It feels to me that these tend to be sparse, but that their analysis still my provides
some additional leverage for such layers. Some explicit discussion of convolutional layers may be

helpful.

Table 1: An example of review annotations of ASAP-Review dataset.

sentiment does not occur in this example.

Aspects | Negative | Positive Total
CLA-i 1,560 1,003 2,563
COM-i 1,738 180 1,918
MOT-i 525 1,453 1,978
ORI-i 1,257 1,186 2,443
SOU-i 1,789 933 2,722
SUB-i 1,726 505 2,231

Table 2: Statistics of the aspect sentiments of ASAP-
Review dataset for the intermediate-task training.

i), and Substance (SUB-i). Each aspect is also
marked with a sentiment, positive or negative. We
count the number of positives and negatives of each
aspect in the reviews. We use the majority polarity
as a label for the reviewed paper since one paper
consists of multiple reviews. We further remove
the samples having a positive aspect label with a
reject decision and having a negative aspect label
with an accept decision to amplify the characteris-
tic in the data. The statistics of the ASAP-Review
dataset after aspect sentiment extraction are shown
in Table 2. To distinguish it from the target tasks,
i.e., review aspect score predictions, we add "-i" to
each intermediate task.

3.2 Intermediate Task Training

We fine-tune SCIBERT model on each interme-
diate task, following the standard procedure of
fine-tuning a pre-trained model on a target task
as described in Devlin et al. (2019). Instead of
multi-task training (Liu et al., 2019), we use single
intermediate-task training to examine the effect of
each intermediate task independently. The objec-
tive of these intermediate tasks is to predict the
sentiment for each review aspect. We train the
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“+" denotes positive sentiment. Negative

Aspects Total
Clarity (CLA) 136
Meaningful Comparison (COM) | 132
Impact (IMP) 132
Originality (ORI) 136
Soundness/Correctness (SOU) 136
Substance (SUB) 136
Overall Recommendation (REC) 136

Table 3: Statistics of the PeerRead ACL 2017 dataset
for the target tasks.

model to minimize the Binary Cross-Entropy loss.

3.3 Target Task Fine-tuning

After intermediate-task training, we fine-tune our
models on each target task individually. Our target
task is peer-review score prediction, which con-
sists of 7 aspects shown in Table 3. The PeerRead
dataset contains peer-review datasets from several
conferences. Among them, we chose the ACL 2017
dataset for our experiment as it includes aspect
scores that are fully annotated. In this dataset, an
input paper has multiple review scores, we use the
rounded average score of each aspect as the target
score ranging from 1 to 5. We fine-tune the models
to minimize the Categorical Cross-Entropy loss of
five classes.

4 Experiments

4.1 Experimental settings

We used the pre-trained model scibert-
scivocab-uncased in all experiments. For
each intermediate and target task, we used a peak
learning rate at 5 x 107> and a dropout rate of
0.1. We used a batch size of 8 and a maximum se-
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Figure 2: Performances on intermediate tasks in accu-
racy at each checkpoint.

quence length of 512. We trained our models using
the AdamW (Loshchilov and Hutter, 2019) with
linear decay and 0.2 warm-up ratio. We performed
our experiments on NVIDIA GeForce RTX 3090
GPUs.

A pipeline with one intermediate task works as
follows: First, we split the extracted ASAP-Review
data into training and validation sets with a 9:1
ratio. We fine-tuned SCIBERT on the intermediate
task for 10 epochs and saved a checkpoint at the
end of each epoch, resulting in 10 checkpoints. The
performance of each intermediate task evaluated
on the validation set is shown in Figure 2. The
performances were quite stable during fine-tuning,
except for SUB-i. We then fine-tuned copies of
the resulting models separately on each of the 7
target tasks. We chose the result of the checkpoint
that performs best on the target task. Because the
test set of the PeerRead dataset is very small, i.e.,
only 7 samples, most of the results reported by
Wang et al. (2020) can be obtained by just using
the majority score as a prediction, and it could lead
to inappropriate evaluation. Instead of using the
original sets to perform the experiments, we ran
the same pipeline on 5-fold cross-validation three
times. This gave us 15 observations for each result
in our experiments.

We compared our method to the PeerRead (Kang
et al., 2018). We re-implemented their model
based on CNN and kept the same hyperparame-
ters. GloVe 840B embeddings (Pennington et al.,
2014) were utilized as input word representations,
without tuning. The outputs from the CNN model
are fed into a max pooling layer and the final linear
layer. We evaluated their model in our experimen-
tal settings.
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Aspects | PeerRead Ours

CLA 67.4 (22.5) | 69.3 (27.4)
COM 55.0(20.4) | 62.1(33.9)
IMP 80.2 (30.3) | 82.0(37.2)
ORI 47.8 (21.5) | 56.9 (50.7)
SOU 50.2 (21.6) | 60.5 (41.9)
SUB 67.1 (21.1) | 68.6 (31.2)
REC 58.8(23.5) | 64.0 (36.4)
Avg. 60.9 (23.0) | 66.2 (37.0)

Table 4: Results compared with the method in PeerRead
(Kang et al., 2018). Each cell indicates accuracy (macro
F1). Bold indicates the best result.

4.2 Results and Discussion

Figure 3 shows the differences in target task perfor-
mances between the baselines and models trained
with intermediate-task training, each averaged
across three 5-fold cross-validations. A positive
result indicates a successful transfer.

We observed that transfer learning, almost ev-
ery intermediate-task training, helps improve the
performance of the target task. The Sound-
ness/Correctness score prediction gains more per-
formance from intermediate-task training with
around 10% on both accuracy and macro F1. Over-
all our best results are better than those of the
baselines around 4.1% and 8.4% on average, in
accuracy and macro F1, respectively. The best im-
provements in accuracy are from ORI-i on Sound-
ness/Correctness at 9.6%. The best improvement
in macro F1 score is up to 13.9% from ORI-i on
Overall Recommendation. On average across ev-
ery target task, the ORI-i is the most successful
intermediate task that increases 3.7% and 5.8% in
accuracy and macro F1, respectively.

Interestingly, we did not find the largest improve-
ment from the same aspect of the intermediate task
(sentiment prediction) and the target task (score
prediction), except for the Originality on the ac-
curacy metric. Instead, the score prediction task
gains more performance from other aspects of the
intermediate task.

We also compared our method to the PeerRead
(Kang et al., 2018) which is shown in Table 4. Our
method performed better than the PeerRead model
on every task and increased 5.3% and 14% on av-
erage, in accuracy and macro F1, respectively. It
outperformed the PeerRead model by 10.3% on
Soundness/Correctness in term of accuracy and by
29.2% on Originality in term of macro F1.



Intermediate
ORI SOuU

CLR COM MOT SuUB Baseline Our Best
CLR 0.9 0.7 0.4 0.0 0.4 1.6 67.7 69.3
com 0.5 0.7 0.3 3.5 2.7 1.0 58.6 62.1
IMP 1.5 1.3 0.8 1.0 1.0 1.0 80.5 82.0
e ORI 2.9 1.7 3.7 2.0 49.8 56.9
S sou s I 4> 50.9 60.5
SuB 0.5 0.7 0.2 0.5 0.1 0.7 67.9 68.6
REC 1.4 0.9 3.9 4.1 2.7 m 59.1 64.0
" Avg.Target 19 15 19 37 23 2.3 T 621 66.2
(a) Accuracy
Intermediate
CLR COM MOT ORI Sou SuUB Baseline Our Best
CLR 2.5 1.1 2.3 0.4 3.1 3.6 23.8 27.4
coM 5.1 2.5 0.3 2.6 26.7 33.9
IMP 5.2 4.9 2.3 5.5 5.0 3.5 31.7 37.2
g ORI 5.6 0.2 2.1 10.3 0.9 40.4 50.7
G sou IEE 43 7.0 5.1 317 41.9
suB 3.4 1.7 1.9 3.9 2.8 23.2 31.2
" Avg. Target . 52 2.4 3.7 5.8 5.8 3.7 286 370
(b) Macro F1

Figure 3: Transfer learning results between intermediate and target tasks. Baselines on the second rightmost
column are models that are fine-tuned without intermediate-task training. Our best results from the models with
intermediate-task training are on the rightmost column. Each cell shows the difference in performance between
the baseline and model with intermediate-task training. The cool and warm tone colors indicate improvement, and

deterioration, respectively.

4.3 Ablation Study

Our approach to extracting the ASAP-Review
dataset for intermediate-task training contains two
strategies, i.e., aspect sentiment extraction from
review text and removing a sample that has a pos-
itive label with a reject decision and vice versa.
To examine how each strategy contributes to the
performance of the target task, we consider the
following variants of our intermediate task:

a) Decision - Using decision prediction as an in-
termediate task. Here, the decision prediction
task predicts whether a paper gets accepted
or rejected. The statistics of decision data are
shown in Table 5.

b) Aspect - Using aspect sentiment data without
removing a sample. Here, the sample has a
positive label with a reject decision and vice
versa. The statistics of the data are shown in

Table 6.

¢) Aspect + Decision - Our full method using
two strategies altogether. By incorporating
two strategies, the quantity of data is de-
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Total
5,150

Accept
3,295

Reject
1,855

Table 5: Statistics of the decision data.

Aspects | Negative | Positive Total
CLA-i 2,430 1,626 4,056
COM-i 2,889 264 3,153
MOT-i 773 2,655 3,428
ORI-i 1,837 1,984 3,821
SOU-i 2,700 1,357 4,057
SUB-i 2,901 760 3,661

Table 6: Statistics of the aspect polarity data without
removing a sample that has a positive label with a reject
decision and vice versa.

creased by over 30% from the Aspect.

Table 7 shows the results of different strategies
of the intermediate task training. We can see that
Decision helps improve the pre-trained model per-
formance in almost every target task except Sub-
stance on macro F1. Aspect further improves the
pre-trained model compared to Decision in almost



. Intermediate Task
Target Task |~ Baseline Decision Aspects Aspects + Decision
CLR 66.7 (23.8) | +0.4(+1.4) | +0.4(+1.3) +1.6 (+3.6)
COM 58.6(26.7) | +1.2(+4.8) | +2.3(+6.4) +3.5 (+7.2)
IMP 80.5(31.7) | +1.3(+5.8) | +2.0(+7.7) +1.5 (+5.5)
ORI 49.8 (404) | +42(+5.1) | +3.0(+3.7) +7.1 (+10.3)
SOU 509 (31.7) | +5.2(+6.8) | +4.2(+6.4) +9.6 (+10.2)
SUB 67.9(23.2) | +0.2(-0.2) +1.4 (+4.3) +0.7 (+8.0)
REC 59.1(22.5) | +1.9(+7.1) | +3.2(+9.2) +4.9 (+13.9)
Avg. 62.1 (28.6) | +2.1 (+4.4) | +2.4(+5.6) +4.1 (+8.4)

Table 7: Results on the variants of the intermediate task. The baseline column indicates the results without
intermediate-task training. The other columns show the difference in performance between the baseline and model
with intermediate-task training. Each cell indicates an improvement in accuracy (macro F1 score) compared with

the baseline. Bold indicates the best result.

every target task and has a better performance on
accuracy and macro F1 on average. This indicates
that the aspect sentiment data contains richer in-
formation for review aspect score prediction com-
pared to the decision data. In contrast, the decision
data shows more relevance on the Originality and
Soundness/Correctness score predictions than as-
pect sentiment data. One possible reason for this
is that they are the main aspect of the reviewer’s
judgment.

As we can see from Table 7 that combining as-
pect polarity data with a decision strategy leads to a
better result on almost every target task and the best
result on average in both accuracy and macro F1
score. Although the data size of Aspect + Decision
is smaller than that of Aspect, the average result
of Aspect + Decision is still better. This shows
that the characteristic is more important than the
quantity of the data for intermediate-task training.

4.4 Error Analysis

We plot the confusion matrix between truth and
model prediction on test data in Figure 4, which
shows that the prediction scores of our model tend
to be close to the true values. The model tends to be
biased to a score of 4, which is the most common
score in the dataset. The model was able to classify
some papers with a score of 2 or 3 correctly. In con-
trast, it was unable to correctly classify papers with
a score of 1 or 5. However, it still rated papers with
a score of 5 higher than a score of 1. The shortage
of training samples for scores 1 and 5 (less than
5 samples) complicates its prediction. Incorporat-
ing techniques to handle imbalanced datasets is an
interesting direction for future work.
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Figure 4: Confusion matrix of true and prediction of
Overall Recommendation scores.

5 Conclusion

In this study, we investigated the impact of
intermediate-task transfer learning on peer-review
score prediction. Specifically, we fine-tuned a pre-
trained model SCIBERT on an intermediate task
before fine-tuning again on the target task. We
proposed a method to extract the ASAP-Review
dataset for intermediate-task training to improve
peer-review score prediction. The experimental re-
sults showed the effectiveness of the intermediate-
task training as it attained a better result than the
baseline on every target task in both accuracy and
macro F1. Future work will include (1) extending
the method to process longer sequences to cover
the full length of the paper, and (2) incorporating
multiple tasks for the intermediate-task training to
exploit related information between intermediate
tasks.
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