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Abstract

Prompt tuning (PT) is an effective approach to
adapting pre-trained language models to down-
stream tasks. However, prompt tuning doesn’t
perform well under few-shot settings due to
the poor initialization. So pre-trained prompt
tuning (PPT) (Gu et al., 2022) is proposed to
adapt prompt tuning to few-shot settings by
initializing prompts with source data. We pro-
pose Meta-learned Prompt Tuning (MetaPT)
to further improve PPT’s few-shot learning per-
formance by considering latent structure within
the source data. Specifically, we introduce the
framework by first clustering source data into
different meta-training tasks in an unsupervised
manner. Then we leverage these tasks to meta-
train prompts with a meta-learning algorithm.
Such a process enables prompts to learn a bet-
ter initialization by discovering commonalities
among these meta-training tasks. We evaluate
our method on seven downstream sentiment
tasks. The results demonstrate that our MetaPT
achieves better performance and stability than
the state-of-the-art method.

1 Introduction

Pre-trained language models (PLMs) have
demonstrated outstanding performances in various
downstream NLP tasks (Devlin et al., 2019, Kale
and Rastogi, 2020, Brown et al., 2020). Full model
tuning (FT) adapts PLMs to downstream tasks by
introducing task-specific training objects and fine
tuning all parameters of PLMs. Prompt tuning
(PT) (Lester et al., 2021) is an efficient alternative
to FT by only tuning a small number of parameters.
PT adds a series of tunable tokens (soft prompts) at
the beginning of the sequence to modulate the be-
havior of the language model. When adapting pre-
trained language models to downstream tasks, PT
freezes all parameters of pre-trained language mod-
els and only trains the soft prompts. PT achieves
comparable performance to FT with sufficient data.
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But it performs poorly under few-shot settings due
to its sensitivity to the initialization of soft prompts.

To adapt PT to few-shot settings, pre-trained
prompt tuning (PPT) (Gu et al., 2022) pre-trains
soft prompts with a self-supervised source task and
then apply pre-trained prompts to few-shot down-
stream tasks. PPT generally groups all text classifi-
cation tasks into three formats and designs a self-
supervised source task for each format to pre-train
prompts. PPT demonstrates its effectiveness when
using large-scale PLMs. However, PPT mixes all
source data points together and ignores the latent
structure among them. PPT updates prompt pa-
rameters at every data point, it learns more about
the specific feature of each data point rather than
the general features of the entire task. As a result,
PPT retains too much redundant information only
relevant to the source task in the initialization of
soft prompts, which consequently impedes model
performance on downstream tasks.

To further improve the few-shot adaption ca-
pability of prompt tuning, we incorporate meta-
learning into prompt tuning. We first propose to use
unsupervised methods to create meta-training tasks
for prompts and then adopt a model-agnostic meta-
learning method to meta-train prompts. By our un-
supervised clustering method, the latent structure
of source data is represented by the distribution of
meta-training tasks. Through meta-learning, gen-
eral features are incorporated into the initialization
of the soft prompts. Our meta-learned prompts
achieve faster and more stable adaptation to down-
stream tasks. We named our method Meta-learned
Prompt Tuning (MetaPT). Our experimental re-
sults show that MetaPT outperforms full-model
tuning and pre-trained prompt tuning on the TS
model (Kale and Rastogi, 2020).

2 Related Work

Prompts There are two types of prompts that can
probe the knowledge in PLMs without updating
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the parameters of PLMs: hard prompts and soft
prompts. Hard prompts (Brown et al., 2020)
are human-designed discrete tokens while soft
prompts are continuous embeddings of language
models. Soft prompts methods train efficient
parameters to perform prompting directly into the
continuous embedding space of the model to get
better representation ability and avoid involving
human efforts. These efficient parameters can
be prepended to each layer in the encoder stack
(Li and Liang, 2021), input embedding (Lester
et al., 2021), or both (Liu et al., 2021). Though
the above soft prompts methods perform well
with sufficient training data, they all become
much worse under few-shot learning settings.
Pre-trained prompt tuning (Gu et al., 2022) is the
current state-of-the-art soft prompts method under
few-shot settings.

Meta-Learning Meta-Learning, also known
as learning to learn, is famous for its effectiveness
to extract domain-invariant features (Sahoo et al.,
2018) and enforces models to adapt to downstream
tasks (Finn et al., 2017). Model-Agnostic Meta-
Learning (MAML) proposed by Finn et al. (2017)
is a popular optimization-based meta-learning
algorithm, which is adopted in various NLP tasks
(e.g. Qian et al., 2021, Gu et al., 2018, Yin, 2020,
Qian and Yu, 2019, Dou et al., 2019). Following
MAML, works like REPTILE (Nichol et al., 2018),
MetaOPT (Lee et al., 2019) and TAML (Jamal
et al., 2019) etc. are proposed to further improve
the model’s learning capability. In this work, we
focus more on exploring how soft prompts benefit
from meta-learning. Therefore, we adopt the most
widely used MAML algorithm.

3 Background: Prompt Tuning

Prompt tuning modifies the embeddings of soft
prompts prepended to the input sequence to adapt
PLMs to downstream tasks. Specifically, let (z, y)
be a sample from a downstream classification task
Tdown where x is the input text while ¥ is its cor-
responding label. We first map the label y into
a concrete token z in the vocabulary of the PLM.
Next, we use H(-) to fit input text = to a hard
prompt template. Take sentiment classification as
an example, H (“I like this movie”) =TI like this
movie. It was (X) ”, where (X) is the mask token.
Then, we prepend soft prompts P to the beginning
of input sequence [P; H(x)]. Finally, we freeze the
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parameters of the PLM and optimize the following
log-likelihood objective:

argglaleogp((x> = 2|[P;H(z)}; P)

4 Meta-learned Prompt Tuning

In this section, we describe our self-supervised
model training pipeline. We first gather source data.
Then, we utilize an unsupervised method to cluster
source data into different groups as meta-training
tasks. Finally, we use Prompt-MAML algorithm to
train and find a good initialization for soft prompts.

Our algorithm helps the model adapt faster to
downstream tasks in two ways. On one hand,
the meta-learning method simulates the adapta-
tion step during training, which provides an easily-
optimized parameter initialization. On the other
hand, training across different clusters allows the
model to focus more on the task’s general features
rather than domain-specific features.

4.1 Constructing Source Data

We construct source data by creating pseudo labels
for sentences from open-domain corpus. For sen-
tence classification, we first train a small model
based on an existing dataset which shares similar
label space to the downstream datasets. Then we
use that model to annotate pseudo labels for the
sentences in a large corpus.

4.2 Designing Meta-training Tasks

After constructing source data, we use K-means
to group the data into different clusters as meta-
training tasks. We first implement sentence-BERT
(Reimers and Gurevych, 2019) to derive semanti-
cally meaningful sentence embeddings from source
data samples. Then we apply unsupervised K-
means to cluster source data into different classes
according to their sentence embeddings.

K-means clustering group samples with similar
sentence embeddings into the same task and reveal
the latent structure within source data. Based on
that structure, prompts could learn to incorporate
some common internal features to the initialization
through meta-learning. With such general informa-
tion encoded in the initialization of prompts, the
model can achieve great performance with limited
training data from downstream tasks.

4.3 Prompt-MAML Algorithm

After we get a set of meta tasks 7 obtained via an
unsupervised method, we utilize MAML to learn



This awesome restaurant serves

1 want to move

Figure 1: Pipelines of meta-learned prompt tuning. First, we prepare source data used for meta-learning. Second,
we cluster source data into different groups as meta-training tasks (aka meta tasks). Then, we train prompts with
model-agnostic meta-learning algorithm. Finally, we evaluate meta-learned prompts on downstream tasks.

general features among these meta tasks. We first
randomly initialize the parameter of soft prompts
P. For each meta task 7;, m training samples are
sampled from that task. Taking in m samples, the
model output fp. Then we calculate the average
loss L7;(fp) of these m samples and temporarily
update soft prompts with gradient descent, where
« is the learning rate for the inner loop.

P =

K3

P —aVpLr(fp) (1

After optimizing the prompts, we sampled another
m samples and calculated the loss with the updated
prompts. We add loss for 7; to total loss and repeat
the same process for other meta tasks until we go
over all the meta tasks. Finally, we update the
prompts by minimizing the final total loss, where
5 is the learning rate for the outer loop.

P« P-pVp Y Lr(fp)
Tir~p(T)

2

This is a complete process of one-step updates for
prompts. We keep optimizing the prompts until
the validation accuracy of meta tasks stop grow-
ing. During meta-training, we simulate the adapta-
tion step and therefore provide an easily-optimized
soft prompts initialization. During the evaluation,
the meta-learned prompts will be further tuned on
downstream tasks and then make predictions.

5 Experiments

5.1 Setup

Our experiments are built on the T5-base model
from HuggingFace (Wolf et al., 2020).
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Downstream Datasets We focus on the senti-
ment classification tasks. Specifically, the down-
stream datasets include SST-5 (Socher et al., 2013),
SST-2 (Socher et al., 2013), Amazon-5 (Zhang
et al., 2015), Amazon-2 (Zhang et al., 2015), Senti-
hood (Saeidi et al., 2016), and SemEval-2016 (Pon-
tiki et al., 2016). SemEval-2016 has two tasks
in different domains: SemEval, (restaurant) and
SemEval;(laptop). Detailed information on these
datasets could be found in Appendix C. We ran-
domly select 40 samples from the original dataset
for both few-shot training and validation.

Source Data we first train a RoBERTa-base model
on YelpS. Then we randomly sample 10GB of data
from OpenWebText (Gokaslan and Cohen, 2019)
and apply the trained ROBERTa model to annotate
labels for the sampled data. We only keep data
samples with high confidence and throw away the
samples which the model is unsure about. After
balancing pseudo data, we get 1,000,000 balanced
training samples with open domains.

See Appendix A for detailed hyperparameters.

5.2 Main Results

As shown in Table 1, we mainly compare the per-
formance of full-model tuning (FT), pre-trained
prompt tuning (PPT) and meta-learned prompt tun-
ing (MetaPT) on different sentiment classification
tasks. We also include results of MetaPT y in the
table, which is directly meta-trained on Yelp5.
First, MetaPT consistently achieves higher ac-
curacy than PPT (7/7 tasks) and FT(6/7 tasks).
MetaPT also shows better stability facing differ-
ent training samples. Second, MetaPT y- also out-



Model \ Methods \ SSTS SST2 Amazon5 Amazon2 Sentihood SemEval, SemEval;
FT 43.57+256 88.27+1.03 48404148 92.35+0.68 82.11471.30 71.01+1.16 62.48+3.23

T5-base PPT 42.904+1.08 87.42+1.15 51.154156 93.2840.21 80.0643.31 62.044334 56.3744.11
MetaPT 45.2640.39 89.474+0.12 55.4710.34 94.43+0.08 80.38+0.46 76.93+1.19 70.86+1.95
MetaPT<y> 46.2410,42 87.26+0.73 58.7310.13 95.3940.03 78.27+1.17 80-72:|:0.60 72-32:i:0.66

T5—1arge ‘ MetaPT ‘ 47.31;{:0,21 89.61:‘:()‘09 55‘76:&0&5 95.23:&0_03 85.78;{:010 85.96;{:0_08 77.49:‘:()‘11

‘ !

Table 1: Classification accuracy results on seven downstream tasks. FT denotes full-model tuning. PPT denotes
pre-trained prompt tuning. MetaPT denotes meta-learned prompt tuning. MetaPT is meta-trained on pseudo-labeled
data while MetaPT y) is meta-trained on Yelp5 directly. Our methods outperform the two other methods for most
of the datasets. MetaPT not only achieve higher accuracy than PPT consistently, but also have a more stable

performance with lower variance.

Accuracy

FT
—— PPT
MetaPT

10 40 160 640
Number of Sampled data

2560

Figure 2: Performance comparison among FT, PPT,
MPT on SST-5 as the number of training samples in-
creases from 10 to 2,560

performs PPT and FT. And it even achieves better
results than MetaPT on five tasks. Even though it
only trained on the restaurant domain, it can still
be generalized to other domains. This suggests
that our method can extract general features from
data. Finally, as we increased the size of the pre-
trained language model from base to large, the per-
formances of MetaPT become consistently better
on all seven tasks.

In addition, as shown in Figure 2, when the num-
ber of training samples of the downstream task
grows from 10 to 2,560, MetaPT is consistently
better than PPT and FT, while PPT also has a small
advantage over FT. All three methods will converge
to similar performance with sufficient training data.

5.3 Ablation Study

Scale of Source data As Figure 3(a) shows, when
we increase the number of source data points from
1,000 to 10,000, the accuracy grows rapidly. After
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Figure 3: Analysis about MetaPT. (a) The performance
of MetaPT varies when the number of pretraining sam-
ples changes from 1,000 to 3,000,000. (b)The perfor-
mance of MetaPT varies when the number of meta tasks
varies from 3 to 30

10,000 training samples, the performance does not
change much as the number of training samples
increases. This result suggests that more source
data samples do not necessarily lead to better per-
formance in our method. When the size of source
data reaches the level of 10,000, it is enough for
our model to get acceptable performance.
Number of clusters We examine the cluster num-
ber from 3-30 for K-means and compare perfor-
mance. As shown in Figure 3(b), the accuracy
grows rapidly at first as the cluster number in-
creases but later it converges. Considering both
effectiveness and efficiency, MetaPT is able to
achieve promising results when k=10. We also
visualize the result of K-means clustering and com-
pare K-means with other clustering methods. See
Appendix B for more details.

6 Conclusions

In this paper, we present the meta-learned prompt
tuning framework. Specifically, we propose to clus-
ter source data into different groups to create aux-



iliary tasks for meta-learning, and then meta-train
prompts with the Model-Agnostic Meta-Learning
method. Our method tunes only 0.02% parameters
but improves the accuracy by 3.8% compared with
full model tuning on seven downstream tasks.

7 Limitations

In this work, we mainly focus on sentiment clas-
sification tasks. Our method could be further ex-
plored on other natural language understanding
tasks like sentence-pair classification and multiple-
choice classification. Besides, our experiments
are conducted on T5-base and T5-large models
in this work. There are still other available larger
pre-trained language models like T5-x1 and T5-xxI.
The performance of our method on larger language
models needs to be further investigated. In the
future, we plan to apply our method to these two
larger pre-trained language models. We also plan to
extend our evaluation tasks from sentiment classifi-
cation to other general natural language processing
tasks, e.g. sentence pair classification, to explore
the generalizability of our method.

8 Ethical Considerations

We present a parameter-efficient method to adapt
the large language models (LLMs) to few-shot
learning tasks, which makes LLMs accessible to
more people. However, as LLMs become more
accessible, they are more likely to be used mali-
ciously. Our method might open up the potential
for scams and fraud on a large scale. For example,
a chatbot can be trained to extract sensitive infor-
mation from users by tuning a few parameters with
only a few labeled samples. As a result, a malicious
chatbot can be easily trained to deceive users and
extract their private information. Therefore, our
method can only be put into real life when mali-
cious goals of LLMs can be detected and the user
can be warned about potential dangers.
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A Training Settings

Hyperparameters Following Lester et al. (2021), we set the soft-prompt as 100 tunable tokens for all
methods. We provide detailed training settings used for full-model tuning (FT), pre-trained prompt tuning
(PPT) and meta-learned prompt tuning (MetaPT). Instead of following Gu et al. (2022), we find another
set of hyperparameters. Both FT and PPT achieve better performances on T5-base model than results
reported in Gu et al. (2022). We run FT, PPT and MetaPT on T5-base (220M). For MetaPT, we also run
experiments on T5-large (770M). All the models in our work could be fit in a single NVIDIA RTX A6000.
For few-shot settings, we randomly select 40 training samples and 40 validation samples from the data five
times with random seed in [1,2,3,4,5]. We report the averaged accuracy as well as the standard deviation.

A.1 Full-model Tuning

We implement AdamW as the optimizer. We search the learning rate in [3e-3, 3e-4, 8e5, 3e-5, 3e-6], max
epochs in [50, 100, 200, 300] and patience in [1,3,5,8]. Then we choose the set of hyperparameters with
best accuracy on validation set. We apply a linear scheduler with 20 warm up steps and set the learning
rate to 0.00003. We set batch size to 4, max epochs to 200. We evaluate results on validation set every
epoch and and set the patience for early stopping to 5. Full-model Tuning would take 1 hour in average.

A.2 Pre-trained Prompt Tuning

We apply source data created in section 5 as pre-training data for PPT. During the pre-training phase, we
implement AdamW as the optimizer. We apply the linear scheduler with 20 warm-up steps and set the
learning rate to 0.003. We search the evaluation steps in [20,000, 10,000, 5,000] and patience in [1,3,5].
Then we choose the best set of hyperparameters for the pre-training phase. We set the batch size to 4 and
the max epoch to 5 (1,250,000 max steps). We evaluate prompts on the validation set every 20,000 steps
after the first epoch and set the patience of the early stop to 5. Pre-training phase would take around 36
hours.

A.3 Meta-learned Prompt Tuning

During the meta-learning phase, we use AdamW as the optimizer for the outer loop. We search the
learning rate « in [0.8, 0.3, 0.08, 0.03, 0.008] and search the learning rate 5 in [0.3, 0.08, 0.03, 0.025,
0.008]. Then we choose the best set of hyperparameters for the meta-learning phase. We set the learning
rate « to 0.08, learning rate 3 to 0.025, batch size to 4, early stop patience to 6, and the max updating
step of MAML to 20,000. We evaluate the prompts every 500 steps. The meta-learning phase would
take around 12 hours. We also run MetaPT on T5-large. We adopt a similar setting as T5-base. The
meta-learning phase would take around 24 hours.

A.4 Downstream Prompt Tuning

After pre-training or meta-training the prompts, we adopt the same setting for prompt tuning on down-
stream tasks. We use the AdamW optimizer with a learning rate of 0.003. We apply the linear scheduler
with 20 warm-up steps. We set the batch size to 4 and the gradient accumulation steps to 8. We set the
max epoch to 200 and the patience of the early stop to 6.

B Clustering
B.1 Clustering Methods

We compare four different methods of clustering to get meta-training tasks. They are K-means clustering
(splitting data by K-means clustering based on sentence embeddings), LDA clustering (splitting data
by Latent Dirichlet Allocation topic modeling), random clustering (splitting the data randomly), and
label clustering (splitting data according to their pseudo labels). From the result shown in Table 2, we
notice that K-means clustering is the most effective and LDA is next to it. When we cluster randomly or
according to their labels, the performance of MetaPT degrades to the same level as PPT.
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Methods Accuracy
K-means  46.2440.42

LDA 44.10+0.83
random 42.95+1.05
label 42.8440.76
PPT 42.89+1.08

Table 2: Performance of different clustering methods on SSTS. “K-means” denotes and “LDA” denotes . “Random”
denotes the method which randomly splits the total source data into different groups. “Label” denotes the method
which clusters the data samples with the same label into the same group. Pre-trained Prompt Tuning(PPT) plays the
role as a baseline.

B.2 Visualization

We use TSNE to visualize the clustering results for K-means when the cluster number equals 3, 6, 10 in
Figure 4. From the t-SNE of our K-means clusters, we could see that data is well grouped into different
clusters according to their sentence embeddings. After we reduce the sentence features of different
samples to two-dimensionality, different samples in the same clusters are close to each other and are
distinguishable from samples in other clusters, which demonstrates that meta tasks derived from K-means
indeed contain useful common latent features.

We conduct manual inspection on the resulting clusters of the source data (k=10). We find a few human-
interpretable structures. For example, some are more related to food, some have more numbers, dates, or
symbols, and some include more short sentences. The pattern of other clusters is less interpretable.

k=3, perplexity=50 k=6, perplexity=50 k=10, perplexity=50
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Figure 4: T-SNE of K-means meta tasks clustering results. Cluster number K equals to 3, 6, 10 respectively

C Dataset Examples

Here we provide detailed information and examples for all the datasets we used. Source dataset includes
Yelp5 (Zhang et al., 2015). The downstream datasets include SST-5 (Socher et al., 2013), SST-2 (Socher
et al., 2013), Amazon-5 (Zhang et al., 2015), Amazon-2 (Zhang et al., 2015), Sentihood (Saeidi et al.,
2016), and SemEval-2016 (Pontiki et al., 2016). SemEval-2016 has two tasks in different domains:
restaurant and laptop. These two tasks are denoted by SemEval,. and SemEval; respectively. Domains,
number of classes and examples of all datasets are shown in Table 3. All datasets are in English.
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Dataset Domain classes Example

Yelp-5 restaurant 5 “dr. goldberg offers everything i look for in a general practitioner. he’s nice and easy to
talk to without being patronizing; he’s always on time in seeing his patients; he’s
affiliated with a top-notch hospital (nyu) which my parents have explained to me is very
important in case something happens and you need surgery; and you can get referrals to
see specialists without having to see him first. really, what more do you need? i’m
sitting here trying to think of any complaints i have about him, but i’'m really drawing a
blank.” positive++

SST-5 movie 5 “unlike the speedy wham-bam effect of most hollywood offerings , character
development — and more importantly , character empathy — is at the heart of italian for
beginners” positive++

SST-2 movie 2 “jason X is positively anti-darwinian : nine sequels and 400 years later , the teens are
none the wiser and jason still kills on auto-pilot ” negative

Amazon-5  product 5 “nice screen for a nice price but..... i compared a few different flat panels with review
before i narrowed down my pick, which ended up with the sylvania as over well liked.
the picture got great reviews which yes it does have a good picture to look at but there
are other important qualities you enjoy that makes viewing tv all the better. for example:
sound... how was that forgotten?in this flat panel, it was. what a disappointment. if this
is consider stereo than why does it sound like its coming from a tin can with no base at
all. then too boot, if you play the dvd, the sound drops and you have to really turn up the

volume to hear.i want the whole package deal: space saving, great picture, and good
sound. i want to enjoy the whole experience of watching and listening. how about you?”
positive

Amazon-2  product 2 “not an ultimate guide. firstly,i enjoyed the format and tone of the book (how the author
addressed the reader). however, i did not feel that she imparted any insider secrets that
the book promised to reveal. if you are just starting to research law school, and do not

know all the requirements of admission, then this book may be a tremendous help. if
you have done your homework and are looking for an edge when it comes to admissions,
i recommend some more topic-specific books. for example, books on how to write your
personal statment, books geared specifically towards lsat preparation (powerscore books
were the most helpful for me), and there are some websites with great advice geared
towards aiding the individuals whom you are asking to write letters of recommendation.
yet, for those new to the entire affair, this book can definitely clarify the requirements for
you.” negative

Sentihood  neighbor 2 “a friend of mine lived in location]1 and she liked it, though other people have told me
it’s a bit rough” negative

SemEval,  restaurant 3 “if you’ve ever been along the river in weehawken you have an idea of the top of view
the chart house has to offer” positive

SemEval; labtop 3 “so if anyones looking to buy a computer or laptop you should stay far far away from
any that have the name toshiba on it” negative

Table 3: Detailed information about sentiment datasets, including domain, number of classes and a concrete
example
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