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Abstract

Despite the success of pretrained masked lan-
guage models (MLM), why MLM pretraining
is useful is still a question not fully answered.
In this work we theoretically and empirically
show that MLM pretraining makes models ro-
bust to lexicon-level spurious features, partly
answering the question. Our explanation is
that MLM pretraining may alleviate problems
brought by simplicity bias (Shah et al., 2020),
which refers to the phenomenon that a deep
model tends to rely excessively on simple fea-
tures. In NLP tasks, those simple features
could be token-level features whose spurious
association with the label can be learned easily.
We show that MLM pretraining makes learn-
ing from the context easier. Thus, pretrained
models are less likely to rely excessively on
a single token. We also explore the theoreti-
cal explanations of MLM’s efficacy in causal
settings. Compared with Wei et al. (2021),
we achieve similar results with milder assump-
tions. Finally, we close the gap between our
theories and real-world practices by conduct-
ing experiments on real-world tasks.

1 Introduction

The question “why is masked language model
(MLM) pretraining (Devlin et al., 2019; Liu et al.,
2019) useful?” has not been totally answered. In
this work, as an initial step toward the answer, we
show and explain that MLM pretraining makes the
model robust to lexicon-level features that are spu-
riously associated with the target label. It gives
the model a better generalization capability under
distribution shift.

Previous studies have empirically shown the
robustness of MLM pretrained models. Hao
et al. (2019) show that MLM pretraining leads to
wider optima and better generalization capability.
Hendrycks et al. (2020) and Tu et al. (2020) show
that pretrained models are more robust to out-of-
distribution data and spurious features. However,

Figure 1: The pitfall of simplicity bias: The solid line
is a simple (linear) decision boundary that utilizes only
one dimension, while the dashed line is a more com-
plex decision boundary that utilizes two dimensions
and maximizes the margin.

it remains unanswered why pretrained models are
more robust.

We conjecture that models trained from scratch
suffer from the pitfall of simplicity bias (Shah et al.,
2020) (Figure 1). Shah et al. (2020) and Kalimeris
et al. (2019) showed that deep networks tend to
converge to a simple decision boundary that in-
volves only a few features. The networks may not
utilize all the features and thus may not maximize
the margin, which results in worse robustness. A
consequence of this could be that a model may
excessively rely on a feature that has spurious asso-
ciation with the label and ignore the other features
that are more robust. In the studies of Shah et al.
(2020) and Kalimeris et al. (2019), they investi-
gated networks with continuous input. Lovering
et al. (2021) discovered similar results on synthetic
NLP tasks, where the inputs are discrete. We will
further explore this discrete setting in this work.

We start the exploration with the following as-
sumptions: Let the sentence, label pair be X,Y .

Assumption 1. We assume that from X , we can
extract two features X1 and X2.

Assumption 2. X1 is a spurious feature that has
strong association with Y . Specifically, it means
that, solely relying on X1, one can predict with
high accuracy over the data distribution, but can-
not be 100% correctly.
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Assumption 3. X2 is a robust feature based
on which Y can be predicted with 100% accu-
racy. Namely, there exists a deterministic mapping
fX2→Y that maps X2 to Y .

The assumptions above are realistic in some NLP
tasks. In NLP tasks, the inputX is a sequence of to-
kens. Some tasks satisfy Assumption 1: X can be
decomposed into X1 and X2, where X1 is the pres-
ence of certain tokens, and X2 is the context of the
token. Thus, X2 has a much higher dimensionality
than X1. As shown by the analysis of Gardner et al.
(2021), there are indeed datasets where Assump-
tion 2 is true. However, if Assumption 3 is true,
we would desire the model to rely on X2, which
contains the semantics of the input X .

With these assumptions, in Section 2 we empiri-
cally demonstrate that spurious features in discrete
inputs can cause problems as in the continuous
cases (Shah et al., 2020; Kalimeris et al., 2019).
We show that, possibly due to the simplicity bias,
a deep model is likely to excessively rely on X1

and to rely on X2 less. In Section 3.1 and Sec-
tion 3.2 we provide a theoretical explanation of how
MLM pretraining makes a model robust to spuri-
ous features. Let Π1 be the conditional probability
P (X1|X2). We show (1) the relation between the
mutual information I(Π1;Y ) ≥ I(X1;Y ) and that
(2) the convergence rate of learning from Π1 is of
the same order as learning from X1. That is, when
the MLM model can perfectly model the probabil-
ity P (X1|X2) and thus generate perfect Π1, learn-
ing from Π1 is as easy as learning from X1. As a
result, the model will be more likely to rely on Π1.
Since Π1 is estimated based on X2, higher reliance
on Π1 also implies higher reliance on the robust
feature X2. This avoids the pitfall of simplicity
bias that the model relies excessively on X1. To
relax Assumption 3, we make one step further by
considering causal settings in Section 3.3.

The above results partly explain why MLM pre-
trining is useful for NLP. Denote a sequence of
tokens as X = 〈X1, X2, · · · , XL〉. During the
MLM pretraining process, each token is masked
randomly at a certain probability, and the training
objective is to predict the masked tokens with the
maximum likelihood loss. As a result, the model
is capable of estimating the conditional probability
P (Xi|X\Xi) for all i = 1, 2, · · · , L. Even though
which of the tokens is spurious is unknown, as long
as the spurious token has a non-zero probability to
be masked during pretraining, MLM can estimate

its distribution conditioned on the context and thus
can reduce the reliance on it.

Finally, we close the gap between our theories
and reality. One major gap is that, in reality, we
do not use the conditional probability for down-
stream tasks. Instead, we feed the input X without
masking any token and fine-tune the model along
with a shallow layer over its output. Regardless of
that, we hypothesize that the robustness brought
by MLM pretraining still exists. To prove that, in
Section 4 we use the toy example and verify the
effect of MLM pretraining when using the common
practice for fine-tuning. In Section 5, we validate
our theories with two real-world NLP tasks.

To sum up, our study leads to new research di-
rections. Firstly, we provide a new explanation
of MLM pretraing’s efficacy. Unlike the previ-
ous purely theoretical studies (Saunshi et al., 2021;
Wei et al., 2021), our assumptions are milder and
more realistic. Secondly, we study NLP robust-
ness from the perspective of self-supervised model.
Since self-supervised trained embeddings have
been widely used since Word2vec (Mikolov et al.,
2013), it is indispensable to the generalization to
unseen data. We reveal the mechanism that leads
to its robustness, which may enable us to further
reinforce it in the future.

2 A Toy Example

To show that spurious association can cause diffi-
culty of convergence, we construct a toy example
with variables X1, X2, Y that satisfy the assump-
tions. We make X1 depends only on X2, so it is
not a causal feature of Y . Let the dimension of
the random variables X1 and X2 be 2 and d2 re-
spectively. Their value x1 ∈ X1 = {e1, e2} and
x2 ∈ X2 = {e1, · · · , ed2}, where ei is the one-
hot vector whose ith element is 1. We control the
strength of the association between X1 and Y with
ν < 0.5, making X1 = Y with probability 1 − ν.
Specifically, denote with Ẋ2 the middle 2νd2 di-
mensions of X2, i.e. the bd2/2 − νd2cth to the
bd2/2 + νd2cth elements in X2. We consider the
following random process:

X2 = ei, i ∼ Uniform(1, d2)

Y =

{
−1 if X2 = ei for some i < d2/2

+1 otherwise

X1 =

{
ei, i ∼ Uniform(1, 2) If ẋ2 6= 0

f(X2) Otherwise
,

(1)
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1 layer 2 layers 3 layers
d2 ν w/o w/o pre w/ pre w/o pre w/ pre

50

0.04 3680 (189.5) 691 (55.8) 614 (169.1) 302 (47.2) 249 (53.7)
0.10 2664 (121.2) 530 (30.6) 441 (134.9) 242 (27.6) 180 (37.5)
0.25 1420 (96.0) 352 (23.8) 300 (62.0) 179 (13.8) 148 (28.7)
0.50 306 (79.8) 141 (40.7) 118 (33.4) 106 (23.1) 89 (24.0)

100

0.04 5466 (170.1) 945 (57.2) 689 (225.3) 431 (51.1) 275 (72.1)
0.10 3789 (99.2) 677 (32.2) 478 (142.9) 317 (30.3) 208 (44.3)
0.25 1952 (64.9) 428 (13.1) 330 (85.0) 214 (16.2) 169 (32.5)
0.50 330 (78.0) 156 (34.0) 133 (41.2) 128 (28.2) 112 (36.1)

500

0.04 11127 (265.9) 1953 (112.5) 857 (442.6) 792 (69.8) 431 (88.4)
0.10 7912 (169.2) 1279 (67.5) 657 (234.9) 550 (46.7) 402 (97.0)
0.25 4321 (152.3) 772 (35.5) 501 (133.5) 399 (42.3) 391 (66.0)
0.50 576 (150.0) 392 (70.2) 407 (81.1) 367 (69.1) 386 (80.0)

Table 1: The number of iterations a model w/ or w/o pretraining requires to converge. The number is the average
of 25 runs with different random seeds, and the number in parentheses is the standard deviation.

where f(X2) = e1 if X2 = ei for some i < d2/2,
and f(X2) = e2 otherwise 1. In this way, predict-
ing Y solely based on the spurious feature X1 can
achieve accuracy 1− ν.

We conduct experiments to inspect the effect
of the strength of spurious association between
X1 and Y . We train linear networks by drawing
batches of i.i.d. ([X1;X2], Y ) pairs from the ran-
dom process defined in Equation 1. We use Adam
optimization with learning rate 0.001 and the cross-
entropy loss. In addition to single-layer linear net-
works, we also try over-parameterized 2-layer and
3-layer linear networks. The hidden size is [10, 32].
Since it is a linearly separable problem, we can
check whether the learned weight can lead to 100%
accuracy in the defined distribution. We check it
every 25 iterations. We say a model has converged
if it is 100% accurate for 5 consecutive checks. We
report the number of the iterations required before
it converges for different ν and d2.

Even though it is a linear-separable convex opti-
mization problem, our results in Table 1 show that
the strength of the spurious association can impact
the number of iterations required to converge. We
observe that when ν < 0.5, the models tend to be
trapped by the spurious feature, sticking at accu-
racy 1−ν for iterations. When the spurious relation
between X1 and Y is stronger, i.e. ν is smaller, the
number of iterations required to converge is larger.
In addition, the number of iterations is also larger
when the d2 is larger. An intuitive explanation is

1Uniform(a, b) is the uniform distribution over {n}bn=a.

that the learning signal from X2 is more sparse
when d2 is larger.

3 A Theoretical Explanation of the
Efficacy of MLM Pretraining

3.1 P (X1|X2) is More Informative Than X2

The toy example above motivates us to consider
the information contained in P (X1|X2). In the
toy example, when predicting P (Y = 0|X), if we
simply output P (X1 = e1|X2), then the accuracy
of our prediction of Y will be as high as predicting
Y solely based onX1. It motivates us to inspect the
reliability of the estimated P (X1|X2) as a feature
for the prediction of Y compared to X1. Let Π1 be
a |X1|-dimensional random variable whose value is
P (X1|X2) 2. We can prove that when P (X1|X2)
is estimated perfectly, Π1 is at least as informative
as X1.

Lemma 1. When X1, X2 are discrete, if Π1 per-
fect, namely the value of Π1 is exactly P (·|X2),
then the mutual information I(X1; Π1) =
I(X1;X2). (Proof: Appendix A.1)

Compared to previous works (Hjelm et al., 2019;
Belghazi et al., 2018; Oord et al., 2018; Kong et al.,
2020) that show some self-supervised training ob-
jectives are lower bounds of the mutual information
I(X1;X2), we directly show that the output of the
MLM, Π, maximizes the mutual information, since
I(X1; f(X2)) ≤ I(X1;X2) for any f . Moreover,

2We will omit the subscript of Π1 when there is no ambi-
guity.
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instead of explaining the efficacy of pretraining
with the infomax principle (Linsker, 1988; Bell
and Sejnowski, 1995), our theories below provide
a different perspective.

Theorem 1. If Π is perfect,

I(Π;Y ) ≥ I(X1;Y ) (2)

Proof. Since Π is perfect, by Lemma 1, we have

I(X1;X2) = I(X1; Π). (3)

By data processing inequality, Equation 3 implies
I(X1;X2|Π) = 0. By Assumption 3, a determinis-
tic mapping fX2→Y fromX2 to Y exists. Applying
data processing inequality again, we have

I(X1, X2|Π) ≥ I(X1, fX2→Y (X2)|Π)

= I(X1, Y |Π) ≥ 0,
(4)

which implies I(Y,X1|Π) = 0. Accordingly,

H(Y |Π) = H(Y |X1,Π) ≤H(Y |X1) (5)

Theorem 1 shows that Π is a more informative
feature than X1. However, a model does not neces-
sarily rely more on a more informative feature. We
will discuss more in the next section.

3.2 Learning from Π is Easy
It is important that learning from Π is easy. Be-
cause of simplicity bias, a neural network model
is likely to rely on the easy-to-learn features (Shah
et al., 2020; Kalimeris et al., 2019). We conjec-
ture that a model excessively relies on the spurious
feature X1 when learning from X1 is easier than
learning from the robust feature X2. If learning
from Π is easy, then the model will rely on Π more
and thus will rely on X1 less. However, features
with higher mutual information to Y are not nec-
essarily easy to learn. For instance, although X2

is more informative, models tend to rely on X1 in-
stead of X2 at the beginning of the training process.
To show that MLM can mitigate the issue brought
by simplicity bias, we need to show learning from
Π is easy.

Therefore, we have the following theorem that
implies learning from Π is at least as easy as learn-
ing from X1:

Theorem 2. Let h̃(Dn)
X1

: X1 → Y be the
classifier trained with MLE loss using n data

Z X2

X1

Y

(a) Causal setting

Z Y

Q

X2

X1

(b) Anticausal setting

Z X2

X1

Y

X3

(c) A case where I(Π3;Y ) ≥
I(Π1;Y ) is possible.

Figure 2: The causal settings of the (X,Y ) pairs.

pairs (x
(1)
1 , y(1)), (x

(2)
1 , y(2)), · · · (x(n)

1 , y(n)), and
the converged classifier be h̃∗X1

. There exists a

learning algorithm, which generates h̃(Dn)
Π : Π→

Y using (Π1, y
(1)), (π(2), y(2)), · · · , (π(n), y(n)),

such that the following three properties are satis-
fied: (1)

E
[
DKL

[
h̃

(Dn)
Π

∥∥∥ h̃∗Π]] = O

(
1

n

)
, (6)

which is asymptotically at the same rate as
E
[
DKL

[
h̃

(Dn)
X1

∥∥∥ h̃∗X1

]]
. (2) Over the distribution

of (X,Y ), the expected loss of the converged clas-
sifier h̃∗Π is not greater than the expected loss of
h̃∗X1

. (3) h̃∗Π is a linear model, whose input is Π.
(Proof: Appendix A.2)

The remaining question is whether deep learning
models used in common practices can perform at
least as well as the algorithm in Theorem 2. Indeed,
without any knowledge of deep learning models,
it is impossible to theoretically prove that a model
will necessarily rely on Π instead of X1. There-
fore, in Section 4 and Section 5 we will empirically
validate that our theorems are applicable in the real
world scenarios.

3.3 Extending with Causal Models
We make a step further by relaxing Assumption 3.
We do so by treating X1 as a confounder, and then
we can see how MLM pre-training is helpful in the
causal and anticausal settings as in Kaushik et al.
(2021).
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Ours Wei et al. (2021)

structural assumption X,Y follow Figure 2b. X,Y follow an HMM.
linear independence assum. {P (X1|y)|y ∈ Y} {P (X0|H0 = h)|h ∈ H}
implication I(P (X1|X2);Y ) = I(X2;Y ) I(P (H0|X);Y ) = I(X;Y )

Table 2: Comparison between Theorem 4 in this work and Theorem 3.3 in Wei et al. (2021).

Theorem 3. Even if Assumption 3 is not true, The-
orem 1 still holds if X1, X2, Y follow the causal
setting in Figure 2a.

Proof. By the structure of X1, X2, Y , inequality 4
holds even if the deterministic mapping fX2→Y
does not exist.

Theorem 4. Assume that the set of vectors
{P (X1|Y = y)|y ∈ Y} is linear independent,
and if X1, X2, Y follow the anticausal setting in
Figure 2b, then I(Π;Y ) ≥ I(X2;Y ).

Proof. The assumption is a special case of the one
in (Lee et al., 2020), so similar techniques can be
used: According to the structure of X1, X2, Y , we
have

P (X1|X2) =
∑
y

P (X1|y)P (y|X2). (7)

Therefore, if {P (X1|Y = y)|y ∈ Y} is linearly
independent, P (y|X2) can be recovered from Π =
P (X1|X2).

Note that this theorem is very similar to Theo-
rem 3.3 in Wei et al. (2021). However, the assump-
tions required in ours are weaker and more realistic,
and the implication is very similar (Table 2): (1)
Structure assumption: Wei et al. (2021) assumed
that X is generated from a HMM process with
hidden variables H0, H1, · · · , which is stronger as-
sumption than our assumption that X1, X2 follow
the anticausal setting. (2) Independence assump-
tion: Wei et al. (2021) assumed that the vectors in
{P (X0|H0 = h)|h ∈ H} need to be linearly inde-
pendent. In comparison, we require only the inde-
pendence in {P (X1|Y = y)|y ∈ Y}. Our assump-
tion is more realistic because the number of hidden
states |H| must be very large if X is generated
from the HMM model, and |Y| tends to be much
smaller than |H|. For example, in binary classifica-
tion cases, our assumption holds as long as P (X1)
is not independent of P (Y ). (3) Implication: If
we further assume that I(X2;Y ) = I(X;Y ), then
we reach a similar conclusion that P (Y |X) can

be recovered from Π = P (X1|X2) by applying a
linear function.

3.4 Limitations of Our Theorems

Our theories do not ensure that Π1 is the most in-
formative feature to learn from. Consider tokens
in a sentence X = 〈X1, X2, · · · , XL〉 and let Πi

be the conditional probability P (Xi|X \ Xi). A
token with spurious association with the label can
locate arbitrary position in the sentence, and its
location is unknown during pretraining. That is,
the pretrained model is able to generate Πi for all
i. Without loss of generality, assume X1 is the
spurious token. It is possible that there exists some
i such that I(Π1;Y ) < I(Πi;Y ), and that Πi is
predicted relying on X1. Concretely, here is an ex-
ample for the causal setting with three features: X3

is independent of X1 and X2 given Y (Figure 2c).
Using the results in Theorem 4, there is a linear
mapping that can recover P (Y |X1, X2) from Π3.
Therefore, it is possible that I(Π3;Y ) > I(Π1;Y )
if I(X1, X2;Y ) > I(Π1;Y ) depending on the dis-
tribution of the data. We leave the study of I(Πi;Y )
for future work.

Another limitation is that, in practice, NLP prac-
titioners do not use the conditional probability pre-
dicted by the pretrained model. Instead, people
stack a simple layer over the pretrained model, and
fine-tune the whole model on downstream tasks.
Regardless of this, we conjecture that the repre-
sentation encoded by an MLM pretrained model
still contains the information of {Πi}ni=1 and thus
is robust to spurious lexicon-level feature.

4 Toy Example with a Pretrained Model

As the first step to close the gap between our the-
ories and the real world, we repeat the toy exper-
iments with pretraining. Before fitting the model
with Y , we first pretrain the first layer to predict
X1 based on masked X . What we want to show is
that, after pretraining, the representation encoded
by the layer will have the equivalent role of Π even
when the input is not masked.
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Specifically, the experimental design is as fol-
lows: We use the two-layer and three-layer MLP
architectures same as in Section 2. When pretrain-
ing, we mask X1 in X by using X ′ = [0, 0;X2] as
inputs. Let the output from the first linear layer as
Z = WX ′. The loss function is the cross-entropy
between X1 and the softmax over [z1, z2]. After
pretraining, we fine-tune the pretrained model with
([X1;X2], Y ) pairs, and report the average number
of iterations required to converge for 25 different
random seeds.

We want to eliminate the possibility that the
faster convergence of the pretrained model is be-
cause of larger initial weights over X1. Therefore,
after pretraining, we manually create a path from
X1 to Z. We do so by initializing the weights of the
third and fourth row of W with [k,−k, 0, · · · , 0]
and [−k, k, · · · , 0, 0] respectively, where k is the
average of the absolute value of the weights in the
pretrained part, i.e. the weights of the first two rows
in W . In this way, the information from X1 has the
same scale as the pretrained representation [Z1, Z2],
and thus it can compete with [Z1, Z2] fairly.

Table 1 shows that pretraining can always reduce
the number of iterations required to converge when
ν < 0.50. The effect is more significant when d2

is larger. It could be because of the higher sparsity
of the learning signal from X2 when d2 is larger.

We further inspect how the importance over the
inputs changes in the process of training. The im-
portance can be inferred from the product of the
linear layers. We observe that if the model is not
pretrained, the weights over X1 grow faster than
the weights over X2 at the beginning (the first row
Figure 3). The model cannot converge to 100%
accuracy until weights on Ẋ2, the middle dν × d2e
dimensions ofX2, become greater than the weights
on X1. In addition, after the model converges,
weights over X1 is still greater than weights over
X2. On the other hand, if the model is pretrained,
weights over X1 stop growing after a few steps
(the second row in Figure 3). The above obser-
vations are aligned with our conjecture that the
pretrained representation mitigates the robustness
issue brought simplicity bias.

5 Experiments

We experiment on real world NLP tasks to verify
the relation between the capability of modeling the
distribution of spurious features Π1 and robustness.
We facilitate datasets with known spurious features.
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Figure 3: The average weights over the features dur-
ing training a two-layer model. The upper and the
lower rows are the curves of model without and with
pretraining respectively. From left to right, (d2, ν) =
(50, 0.04), (500, 0.04). Blue, green, purple curves rep-
resent the average weights over features inX1,X2, and
Ẋ2 (the middle part of X2) respectively. The orange
curve represents the accuracy.

We first pretrain models on the training dataset with
different masking policies. One of them does not
mask the spurious tokens, leading to the reduced
capability of modeling Π1. Afterward, we fine-
tune the model using the target label. We show that
the models are less robust on downstream tasks if
spurious tokens are not masked during pretraining,
which validates our theories.

5.1 Dowstream Tasks

Hate Speech Detection Previous study has
shown that hate speech detection datasets tend to
have lexical bias (Dixon et al., 2018). That is, mod-
els rely excessively on the presence or the absence
of certain words when predicting the label. Here
we follow the formulation of lexical bias in hate
speech detection proposed by Zhou et al. (2021).
We focus on the effect of non-offensive minority
identity (NOI) mentions, such as “woman”, “gay”,
“black”. Those mentions are often highly associ-
ated with hateful instances. However, it is more
desirable that a model does not rely on those men-
tions. Therefore, we can see the presence of NOI
as a spurious feature.

Name Entity Recognition (NER) Lin et al.
(2020) has shown that name entity recognition
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(NER) models perform worse when the name enti-
ties are not seen in the training data. In this case,
we can see the content of the name entities as a spu-
rious feature. Models may learn to memorize the
name entities when fitting the training data, while
we may desire the model to recognize name entities
according to the context.

5.1.1 Datasets
Hate Speech Detection We use a portion of the
dataset proposed by Founta et al. (2018). In their
original dataset, only a small number of hateful in-
stances contain NOI. Our preliminary experiments
show that the model without pretraining does not
suffer much from the bias of NOI when training
with the full data. Therefore, we create a dataset,
whose positive (hateful) instances are all the pos-
itive samples in the original dataset that contain
NOI. As for negative instances, we sample them
randomly from the original training set. We control
the number of negative instances so the ratio of
positive and negative instances is the same as the
original dataset. We create both the training and the
validation splits in this way, and use the original
full testing set for evaluation. We also evaluate the
models on a NOI subset where all the instances
contain NOI.

NER We use the standard NER dataset Conll-
2003 (Tjong Kim Sang and De Meulder, 2003). To
create a testing set with name entities unseen in the
training set, we replace the name entities in the orig-
inal validation and testing splits with the entities
from WNUT-17 (Derczynski et al., 2017). Specifi-
cally, we replace the LOC, ORG, PER entities with
the corresponding type of entities in WNUT-17,
while the MISC entities remain untouched.

5.2 Masking Policies

For each sentence with ns spurious tokens, we
experiment with different masking policies: (1)
scratch: We do not pretrain the model before fine-
tuning. (2) vanilla: During pretraining, we mask
each token with 15% probability, which is same as
the original implementation in (Devlin et al., 2019).
(3) unmask random: This is similar to vanilla
MLM, but we uniformly randomly select ns tokens
from the whole sentence and unmask them if they
have been masked. (4) unmask spurious: This
is similar to vanilla MLM, but we unmask all the
spurious tokens. (5) remove spurious: We replace
spurious tokens with a special “[unk]” token, and

we unmask them. Note that this setting can be seen
as an oracle setting, since in most applications the
spurious features are unknown.

We will inspect the effect of masking spurious
tokens by comparing setting (3), (4), (5). Note
that these three setting have the same expected
number of masked tokens. Therefore, it rules out
the possibility that their downstream performance
differs because of the number of masked tokens.

5.3 Implementation Details

For both of the tasks and all the MLM settings,
including the scratch setting, we tokenize the in-
put with the bert-base-uncased tokenizer. We use
the bert-base-uncased architecture and also the pre-
trained embedding layer, which is frozen through
the pretraining process. We repeat each experiment
5 times. We include more details in Appendix A.4.

5.4 Result and Discussion

Results in Table 3 validate our theorems. For both
of the tasks, unmask random performs better than
unmask spurious under distribution shift. Specif-
ically, unmask random has higher F1 on the un-
seen set of the NER task, and unmask random has
a lower false positive rate (FPR) on the NOI set.
Also, unmask random performs similarly to vanilla.
This implies that modeling the condition distri-
bution of spurious tokens in the original random
masking pretraining can reduce models’ reliance
on them. Note that unmask random and unmask
spurious have similar in-distribution performance,
so the performance difference is not due to better
in-distribution generalization suggested by Miller
et al. (2021).

We also compare unmask random with the ora-
cle setting remove spurious. We notice that even
though remove spurious performs as well as ran-
dom, remove spurious hurts the performance in the
seen set. It indicates that modeling the conditional
distribution of spurious tokens has effects beyond
simply removing them from the model. On the
other hand, remove spurious performs better in the
hate speech detection task. A possible explanation
is that NOI mentions contain little useful informa-
tion for the task.

6 Related Work

Recently, there are efforts attempting to explain
the effectiveness of massive language modeling
pretraining. Theoretically, Saunshi et al. (2021)
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Mask Policy
NER Hate Speech Detection

Origin Unseen All (12893) NOI (602)
F1 ↑ F1 ↑ Accuracy ↑ F1 ↑ Accuracy ↑ FPR ↓

scratch 61.5 0.5 38.7 0.6 83.9 1.6 80.3 1.4 74.8 1.5 46.3 7.2

vanilla 74.2 0.4 56.5 1.3 83.1 0.8 78.5 0.8 75.8 0.5 25.1 1.8

unmask random 72.7 0.6 56.5 0.8 83.3 1.1 78.9 1.1 75.8 0.9 25.7 2.3

unmask spurious 72.9 0.5 53.2 0.8 84.1 0.7 79.8 0.6 73.7 1.0 32.5 2.1

remove spurious 69.8 0.5 56.7 0.8 82.4 1.0 77.8 1.0 77.3 0.6 21.7 2.0

Table 3: The performance on downstream tasks. For the hate speech detection task, we also report false positive
detection (FPR) on the NOI subset, which is a set of instances containing non-offensive minority identity mentions,
e.g. “women”, “black”. The results are the average of 5 runs, and the smaller number is the standard deviation.

explore why auto-regressive language models help
solve downstream tasks. However, their explana-
tion is based on the assumption that the downstream
tasks are natural tasks, i.e. tasks that can be re-
formulated as sentence completion tasks. Their
explanation also requires the pretrained language
model to perform well for any sentence completion
tasks, which is not likely to be true in the real world.
Wei et al. (2021) analyze the effect of fine-tuning
a pretrained MLM model. Nonetheless, they have
stronger assumptions as described in Section A.4.
Aghajanyan et al. (2020) show that pretrained mod-
els have lower intrinsic dimension, providing a
generalization bound based on Arora et al. (2018).
However, why pretrained models have lower intrin-
sic dimension is unknown. Merrill et al. (2021)
show that the parameter norm growth during train-
ing makes transformer a saturated model, which
can be described in terms of formal languages. Em-
pirically, Zhang and Hashimoto (2021) show that
the effectiveness of MLM pretraining cannot be
explained by formulating the downstream tasks
as sentence completion problems. Sinha et al.
(2021) find evidence supporting the hypothesis that
masked language models benefit from modeling
high-order word co-occurrence instead of word or-
der. There are also some theories explaining the
efficacy of non-MLM pretraining Lee et al. (2020);
Saunshi et al. (2019); Zhang and Stratos (2021).

Many of the previous studies on robust NLP
focus on supervised learning (Wang et al., 2021;
Utama et al., 2020b,a; Karimi Mahabadi et al.,
2020; Chang et al., 2020; He et al., 2019; Sagawa*
et al., 2020; Kennedy et al., 2020; Chiang et al.,
2020). However, without self-supervised learn-
ing, a model can impossibly extrapolate to out-of-
distribution data when the domain shifts. Our work
also complements previous studies that focus on

the bias or robustness of a model generated by the
pretraining process (Kumar et al., 2020; Hawkins
et al., 2020; Vargas and Cotterell, 2020; Liu et al.,
2020; Gonen and Goldberg, 2019; Kurita et al.,
2019; Zhao et al., 2019). In this work we investi-
gate the pretraining process itself.

7 Implication and Conclusion

Our results provide possible explanations for some
common practices found effective empirically.
First, it could explain why continuing pretraining
on target dataset is useful (Gururangan et al., 2020).
It may be because continuing pretrained models
model the distribution of spurious features in the
target dataset better. Thus the model can better
avoid the simplicity pitfall. Second, it provides
reasons for more complex masking policies, such
as masking continuous random spans (Joshi et al.,
2020). It may improve the robustness to spurious
features that contain more than one token. Third,
if MLM can alleviate the simplicity bias and help
the model to achieve a greater margin, it may also
imply that the model has wider optima, explaining
the finding in Hao et al. (2019).

In sum, we show a benefit of MLM pretrain-
ing, which partly explains its efficacy. We first
empirically demonstrate the presence of simplicity
bias when the input is discrete. We then theoreti-
cally and empirically explain how MLM pretrain-
ing can alleviate the problem brought by it. Finally,
we close the gap between our theories and real-
world practices with experiments on real-world
NLP tasks. Our theories reveal a desirable mecha-
nism of MLM pretraining, suggesting that reinforc-
ing this mechanism could be a promising future
research direction.
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Figure 4: The average weights over the features during training a two-layer model without pretraining. From left
to right, ν = 0.04, 0.10, 0.25, 0.5. From top to bottom, d2 = 50, 100, 500. Blue, green, purple curves represent the
average weights over features inX1,X2, and Ẋ2 (the middle part ofX2) respectively. The orange curve represents
the accuracy.
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Figure 5: The average weights over the features during training a two-layer model with pretraining. From left to
right, ν = 0.04, 0.10, 0.25, 0.5. From top to bottom, d2 = 50, 100, 500. Blue, green, purple curves represent the
average weights over features inX1,X2, and Ẋ2 (the middle part ofX2) respectively. The orange curve represents
the accuracy.
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discrete and finite. So we have

H(X1|Π1)

=
∑
x1,π1

P (X1, π1) logP (x1|π1)

=
∑
x1,π1

∑
x2:P (X1|x2)=π1

P (x1, x2) logP (x1|x2)

=H(X1|X2)

Note that the assumption holds when X2 is a
sequence of tokens with bounded length. In prac-
tice, the input length of a MLM model is restricted
due to the number of position embedding. So the
assumption holds in general.

A.2 Proof of Theorem 2

The intuition of the proof is that we compare two
classifiers: (1) The one based on X1, which can be
constructed by counting the co-occurrence of X1

and Y (Eq 10). (2) The one based on Π. The con-
struction of this classifier can be seen as a relaxed
version of (1). In (1), we count the occurrence of
X1 based on the observation of X1. But in (2), we
count the occurrence of X1 based on the likelihood
of x1 for all x1 ∈ X1 (Eq 12).

We then show that (a) the convergence rates of
(1) and (2) are asymptotically equal. (b) the con-
verged classifier from (2) is not worse than (1).

To proof Theorem 2, we need a lemma
from Gibbs and Su (2002); Paninski (2003) for
the convergence rate of empirical measures.

Lemma 2. Given n samples x1, x2, · · · , xn of a
random variable X ∈ {1, 2, · · · ,m}. Let

q
(n)
i =

1

n

n∑
j=1

1[xj = i]. (8)

The expected convergence rate

E
[
DKL

[
q(n)

∥∥∥ p]] = O

(
1

n

)
, (9)

where pi = P (X = i).

Proof.

m∑
i=1

q
(n)
i log

q
(n)
i

pi

≤ log

 m∑
i=1

q
(n)
i

2

pi

 (By concavity of log)

= log

[
m∑
i=1

(q
(n)
i − pi)2

pi
+ 1

]

≤
m∑
i=1

(q
(n)
i − pi)2

pi

E

[
m∑
i=1

(q
(n)
i − pi)2

pi

]
= O

(
1

n

)

Lemma 3. Let q(a), q(b) be the empirical dis-
tribution estimated by counting n samples fol-
lowing p(a), p(b). If DKL

[
p(a)

∥∥ q(a)
]

=

O(f(n)) and DKL

[
p(b)

∥∥ q(b)
]

= O(f(n))
for some function f(n) (e.g. O( 1

n)), then
DKL

[
p(a)p(b)

∥∥ q(a)q(b)
]

= O(f).

With these two lemmas, we can prove Theo-
rem 2:

Proof. Proof sketch of Theorem 2: The
classifier that maximizes the likelihood of
(x

(1)
1 , y(1)), (x

(2)
1 , y(2)), · · · (x(n)

1 , y(n)) can be
attained by counting the co-occurrence of X1 and
Y .

h̃
(n)
X1

(y|X1 = x) =

∑n
i=1 1[y(i) = y]1[x

(i)
1 = x]∑n

i=1 1[x
(i)
1 = x]

(10)
It converges to

h̃∗X1
(y|X1 = x) = P (y|X1 = x). (11)

Based on Π1, a classifier can be attained by first
estimating P (Y ) and P (x1|y) for all x1 and y:

ρ
(n)
y|x1 =

∑n
i 1[y(i) = y]π

(i)
x1∑n

i π
(i)
x1

, (12)

where π(i)
x1 = Π(X1 = x

(n)
1 |X2 = x

(n)
2 ), and then

we can construct a classifier

h̃
(n)
Π (y|π) =

∑
x1

ρ
(n)
y|x1πx1 . (13)
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It converges to

h̃∗Π(y|π) =
∑
x1

P (y|x1)π. (14)

Based on Lemma 2 and Lemma 3, we
have E

[
DKL

[
h̃

(n)
X1

∥∥∥ h̃∗X1

]]
= O( 1

n) and

E
[
DKL

[
h̃

(n)
Π

∥∥∥ h̃∗Π]] = O( 1
n).

Then we show that h̃∗Π(y|π) is at
least as good as h̃∗X2

(y|π) by show-

ing DKL

[
P (Y |X)

∥∥∥ h̃∗X1
(Y |X)

]
≥

DKL

[
P (Y |X)

∥∥∥ h̃∗Π(Y |X)
]

with convexity:∑
x1

P (x1|x2)DKL[P (Y |x2) ‖ P (Y |x1)]

(15)

≥DKL

[
P (Y |x2)

∥∥∥∥∥∑
x1

P (Y |x1)P (x1|x2)

]
.

(16)

A.3 Elaboration on the Proof of Theorem 4
When X2 is discrete, we can represent the condi-
tional distribution as a matrix, e.g. P (X1|X2) ∈
R|X1|×|X2|, P (X1|Y ) ∈ R|X1|×|Y|, P (Y |X2) ∈
R|Y|×|X2|. Therefore, we have

P (X1|X2) = P (X1|Y )P (Y |X2). (17)

When the it holds that {P (X1|Y = y)|y ∈ Y} are
linearly independent, namely columns in P (X1|Y )
are linearly independent, there exists a matrix
A ∈ R|Y|×|X1| such that AP (X1|Y ) = I . By
left multiplying A on the both side of Equation 17,
we have

P (Y |X2) = AP (X1|X2). (18)

The similar technique is used in Lemma 3.1 of Lee
et al. (2020).

This implies that Y can predicted based on Π
as accurately as predicting based on X2. Thus,
I(Π;Y ) ≥ I(X2;Y ).

A.4 Implementation Details of the
Experiments

We pretrain the models until they converge, and
choose the checkpoint with the lowest MLM loss
on the validation set. For the hate speech detection
task, we use the implementation provided by Zhou

et al. (2021). Except that we use bert-base-uncased
instead of roberta-large, we use the other hyper
parameters provided in their script. For the NER
task, we use the implementation by Hugging Face
3.

A.5 Details of the Datasets
NER: The size of the training, validation and test-
ing set of Conll-2003 is 14986, 3466 and 2688 re-
spectively. This dataset consists of Reuters news ar-
ticles. We also use WNUT-17 which is distributed
under CC-BY 4.0. The language is English.

Hate Speech Detection: We use the version pre-
processed by Zhou et al. (2021). This dataset con-
sists of Twitter comments After filtering out in-
stances without NOI, there are 3491, 672 and 602
instances in the training, validation, testing set re-
spectively. The preprocessed version is distributed
under Apache License 2.0. The language is En-
glish.

A.6 Computational Budget
Model Size: We use the BERT-base-cased model.
The trainable part contains 85M parameters.

Infrastructure: Every experiment can be run
with a single NVIDIA GTX 2080Ti GPU. The
workstation used for the experiments is equipped
with 64G memory.

Computation Time: For the NER task, it takes
90 minutes for a run. For the hate speech detection
task, it takes 16 minutes for a run.

3https://github.com/huggingface/
transformers/blob/master/examples/
pytorch/token-classification/run_ner.py

https://github.com/leondz/emerging_entities_17
https://github.com/huggingface/transformers/blob/master/examples/pytorch/token-classification/run_ner.py
https://github.com/huggingface/transformers/blob/master/examples/pytorch/token-classification/run_ner.py
https://github.com/huggingface/transformers/blob/master/examples/pytorch/token-classification/run_ner.py

