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Abstract
NLP models excel on tasks with clean inputs,
but are less accurate with noisy inputs. In par-
ticular, character-level noise such as human-
written typos and adversarially-engineered
realistic-looking misspellings often appears in
text and can easily trip up NLP models. Prior
solutions to address character-level noise of-
ten alter the content of the inputs (low fidelity),
thus inadvertently lowering model accuracy on
clean inputs. We proposed FiRo, an approach to
boost NLP model performance on noisy inputs
without sacrificing performance on clean inputs.
FiRo sanitizes the input text while preserving
its fidelity by inferring the noise-free form for
each token in the input. FiRo uses finite-context
aggregation to obtain contextual embeddings
which is then used to find the noise-free form
within a restricted output space. The output
space is restricted to a small cluster of probable
candidates in order to predict the noise-free to-
kens more accurately. Although the clusters are
small, FiRo’s effective vocabulary (union of all
clusters) can be scaled up to better preserve the
input content. Experimental results show NLP
models that use FiRo outperforming baselines
on six classification tasks and one sequence
labeling task at various degrees of noise 1.

1 Introduction

Extensive use of pretrained language models (Rad-
ford et al., 2018; Devlin et al., 2019; Liu et al.,
2019) has led to impressive performance on clean
text. However, these models are not robust to natu-
ral noise (e.g. irregular capitalization, misspellings,
creative mix of characters and digits) and adver-
sarial noise (Pruthi et al., 2019). Thus, they often
underperform when facing noisy inputs (e.g. social
media text) during deployment (Rosenthal et al.,
2017; Belinkov and Bisk, 2018).

Deployed models which analyze user inputs
need to do well on both clean and noisy inputs.

∗This work was initiated during internship at A∗STAR.
1Code is available at https://github.com/mnhng/FiRo

Figure 1: FiRo has better better fidelity-robustness trade-
off pre-processing text than other approaches do (includ-
ing not doing pre-processing, i.e. raw). Thus, NLP
models when using FiRo pre-processed text do better
on both clean and noisy inputs than when using text pre-
processed by other approaches. Text pre-processed by
low-fidelity approaches may lead to poor performance
on clean inputs while not doing pre-processing may
lead to poor performance on noisy inputs. Also see Sec-
tion 5.2 for actual fidelity-robustness estimation.

Thus, models need to balance between the trade-
offs of (1) sensitivity to semantic differences and
(2) robustness to noise. A model sensitive to even
minor input changes can differentiate semantic
changes but is also not very robust. A model that
always output the same prediction regardless of the
inputs is extremely robust (Jones et al., 2020) yet is
of little use because it can only make trivial predic-
tions. Models can be robustified by training with an
additional denoising objective (e.g. BART (Lewis
et al., 2020)). However, they may need to be re-
trained to cope with additional types of input noise
(e.g. noise faced when adapting to text input in
new domains) and retraining could be costly be-
cause of the large number of parameters in these
models. In contrast, lightweight methods such as
Spell correctors (Pruthi et al., 2019) and Robust En-
coding (Jones et al., 2020) can be adapted quickly,
cheaply, and independently of the NLP models to
cope with additional types of input noise.

Spell correctors (Pruthi et al., 2019) and Robust
Encoding (Jones et al., 2020) modify the inputs

https://github.com/mnhng/FiRo
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Original Alex Trebek, host of Jeopardy!, is recovering from a minor heart attack in Los Angeles.
RobEn alex think, heart of jeopardy!, is recovering from a mother heart attack in less angeles.
scRNN [U] [U], host of [U]!, is [U] from a minor heart attack in a los angeles.

Original Tom testified against John. Tom refused to turn on his friend. (NLI label: Contradiction)
Perturbed Tom testified against John. Tim refused to turn on his friend. (NLI label: Neutral?)

Table 1: Impacts of altering input. (Above) Information lost due to robustification. RobEn replaces words with
non-synonyms (e.g. host to heart). scRNN replaces infrequent words with UNK ([U]) tokens. (Below) Label flips
due to adversarial noise altering a single word (invalid constant ground-truth label assumption).

to remove variations due to noise (see Table 1).
Such modification may reduce semantic fidelity
and make NLP models unable to perceive the se-
mantic differences between text inputs. For exam-
ple, spell correctors often have limited vocabulary
so they replace low-frequency and OOV words with
UNK (unknown) tokens while Robust Encoding
may map non-synonymous words to the same to-
ken. This could lower the accuracy of downstream
NLP models. Figure 1 illustrates this fidelity-
robustness trade-off. Robust approaches (red and
blue) lead to better downstream performance on
noisy inputs while high-fidelity approaches (red
and green) are more suitable than low-fidelity ones
for clean inputs. A high-fidelity and robust ap-
proach leads to good performance across the noise
spectrum and would be ideal for deployment.

We propose FiRo (stands for Fidelity-
Robustness), a fidelity-preserving neural
pre-processor that helps NLP models cope
with input character-level noise. Given a noisy
sequence of words, FiRo predicts the words’ iden-
tities. FiRo can help downstream models achieve
high accuracy on both clean and noisy inputs.
Instead of using a common softmax covering all
vocabularies, FiRo’s output space is input-specific
and is restricted to only probable vocabularies. The
restricted output space makes FiRo’s output less
susceptible to input noise. Although the vocabulary
size at each position is small, the effective model’s
vocabulary size (union of all softmaxes) can be
sufficiently large. Since FiRo can scale up the
effective vocabulary size with minimal penalty on
robust lexical prediction accuracy, FiRo covers
more low-frequency and OOV words than prior
models, thus better maintains input fidelity.
FiRo indexes into the restricted output spaces using
contextual input token embeddings. However,
context window is finite instead of spanning the
whole sequence so as to localize the effect of input
noise. Experiment results show that models that

use FiRo achieve better results on six classification
tasks and one sequence labeling task at various
levels of character-level noise.

2 Background

2.1 Realistic Imperceptible Character-Level
Noise

Adversarial noise can flip models’ prediction while
being imperceptible to humans (Szegedy et al.,
2014). Since the noise is imperceptible to humans,
humans’ prediction is invariant to the existence
of the noise. Thus, if models change their pre-
diction as the result of the injected imperceptible
noise, they are not robust. However, if adversarial
noise was perceptible, this type of robustness eval-
uation based on the invariant humans’ prediction
assumption might be invalid. This is because hu-
mans’ prediction could have changed as humans
perceive the input difference (see Table 1). In
NLP, it is non-trivial to design imperceptible ad-
versarial noise (Zhao et al., 2018), since sentence-
level noise (Jia and Liang, 2017) or word-level
noise (Glockner et al., 2018) are perceptible to hu-
mans (Alzantot et al., 2018). In contrast, character-
level noise (Ebrahimi et al., 2018; Belinkov and
Bisk, 2018) could be imperceptible to humans, as
psycholinguistic studies demonstrated that humans
may not be affected by jumbled internal charac-
ters (Rawlinson, 1976; McCusker et al., 1981).

Yet, experts disagree about what level of
character-level noise would qualify as percepti-
ble. Rawlinson (1976) and Perea and Rosa (2002)
suggested that humans are unaffected by character-
level noise created by permuting internal characters,
altering font size, or mixing cases (capitalization).
However, Mayall et al. (1997); Davis (2003), and
Rayner et al. (2006) showed that mixing cases and
character swaps would be perceptible since it some-
time causes humans to fail to comprehend the text.
When noise that may cause comprehension failure
is injected into the text, it is unreasonable to expect
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the same prediction from both humans and mod-
els. Given the lack of consensus, evaluation at one
level of noise is inadequate since the chosen level
may result in comprehension failure in humans, re-
sulting in misleading conclusions. We evaluated
our models using multiple levels of character-level
noise to analyze model performance when faced
with noisy input.

2.2 Controlled Noise Injection
As it is difficult to gather human-written text at
different noise levels, we conducted experiments
using data injected with different levels of adver-
sarial noise. Adversarial noise is generated based
on human error patterns (see Section 3.4) so it can
appear naturalistic. However, results at high noise
level must be interpreted with caution as ground-
truth labels may flip unknowingly (see Table 1).

Adversarial noise can be created using white-
box attacks or black-box attacks. In white-box
attacks (Goodfellow et al., 2015), attackers have
access to either (a) the attacked model architecture
and parameters, or (b) unlimited number of exam-
ples labeled by the attacked model. In black-box
attacks (Papernot et al., 2017), attackers have no
access to the attacked model parameters and only a
limited number of examples labeled by the attacked
model. Due to this constraint, an auxiliary model
is usually needed to craft black-box attacks. In this
work, we consider both black-box and white-box
attacks since they are complementary. White-box
attacks is harder to execute since the attackers must
first gain access to the targeted ML model or col-
lect a large labeled training set (Papernot et al.,
2017). Black-box attacks are easier to execute but
may be less effective. Nevertheless, commercial
systems have been attacked successfully using only
black-box attacks (Liu et al., 2017).

2.3 Robustify Against Character-Level Noise
Although adversarial training can theoretically ro-
bustify models against character-level noise (Liu
et al., 2020b; Li et al., 2020; Zhao et al., 2021;
Si et al., 2021), in practice its impact can be lim-
ited (Pruthi et al., 2019; Jia et al., 2019) as old
weaknesses can resurface during training. An al-
ternative is to integrate inductive biases such as
character-permutation invariant representation (Be-
linkov and Bisk, 2018; Wang et al., 2020; Liu et al.,
2020a; Sankar et al., 2021) into models. For ex-
ample, RoVe (Malykh and Lyalin, 2018; Malykh,
2019; Malykh et al., 2023) generates word embed-

dings that are invariant to character swaps by en-
coding each word as a bag of characters. Another
example is Robust Encoding (Jones et al., 2020),
a representation that is invariant to most perturba-
tions within one-character edit distance. Neverthe-
less, both lines of work require re-training the mod-
els (Eshel et al., 2017; Michel and Neubig, 2018;
Ribeiro et al., 2018) which may be inconvenient
or costly, especially as NLP models grow rapidly
in size. General plug-and-play robustification tech-
niques (Contractor et al., 2010) are more appealing
since they can be deployed right away, regardless
of the tasks or the models. Pruthi et al. (2019) pro-
posed a plug-and-play model to sanitize the input
text, obviating the need for re-training downstream
models. However, this model struggles with unseen
words due to its limited vocabulary. While Pruthi
et al. (2019) did propose back-off strategies to han-
dle unseen words, such strategies may work only
in specific tasks and may compromise fidelity.

Input my auet stays at 10 first street

E1 E2 E3 E4 E5 E6 E7

Character Embedding

my aunt stays at 10 first street

Word Repr.

Contextual
Word Repr.

(1) Finite-Context
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Output
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Figure 2: FiRo. (1) Construct contextual embedding
by finite-context aggregation. (2) Retrieve cluster of
words similar to input words (restricted output spaces).
Predict output word from cluster using contextual input
embedding. The cluster sizes (<100) are much smaller
than the vocabulary size (100k).

3 Method

3.1 Proposed Approach

Figure 2 outlines FiRo which processes noisy in-
puts in two steps: (1) Finite-Context Aggregation
and (2) Restricted Output Space Indexing. Al-
though FiRo operates at the word-level internally,
FiRo outputs text sequences (by concatenating the
output words) that can be analyzed by both word-
based or subword-based NLP models.
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Finite-Context Aggregation: First, the input
string is tokenized into words and the words are
turned into embeddings using the same approach
used by Sakaguchi et al. (2017). Specifically,
all characters in a word are mapped into charac-
ter embeddings. Subsequently, the first charac-
ter’s embedding, the last character’s embedding,
and the average of the internal characters’ embed-
dings are concatenated to form the word’s embed-
ding. Unlike word embeddings constructed us-
ing CNN or RNN, these word embeddings are
invariant to noise induced by letter swaps (Sak-
aguchi et al., 2017; Belinkov and Bisk, 2018). Con-
textual input embeddings are then weighted aver-
ages of adjacent word embeddings (finite-context).
Let hi be the word embedding at position i, the
contextual embedding at position i is defined as
αhi +0.5(1−α)(hi−1 + hi+1). The coefficient α
is learned during FiRo training.

In humans, accurate word recognition also re-
quires identifying constituent characters and sur-
rounding context (Whitney and Grainger, 2004).
Higher-order linguistic knowledge and lexical con-
text can refine the representation of individual char-
acters in words and correct for perturbations in-
duced by noise (Heilbron et al., 2020). While
global self-attention (Vaswani et al., 2017) is often
used for contextual embeddings (a word attending
to all other words), it will allow perturbation from a
single position to potentially spread to all positions,
leading to low robustness. Even though local self-
attention (Yang et al., 2018) is more robust than
global self-attention as the effect of noise is cur-
tailed to only local words, perturbations may still
result in noisy keys that cause self-attention to fail
to aggregate information from neighbors. By using
local weighted averages, finite-context aggregation
localizes the impact of perturbation while ensur-
ing that contextual information from neighboring
words is always considered (also see Section 5.1).

Restricted Output Space Indexing: At each po-
sition, the output space is restricted to a small
variable-size cluster containing words similar to
the input word. Like Jones et al. (2020), similarity
is defined as one edit distance apart. In particu-
lar, for an input word A, all words that are within
one edit distance of A are put into the cluster. In-
dexing into the output space is done by taking the
softmax of the dot product of the input word’s con-
textual embedding and the embeddings of words
in the cluster. FiRo then outputs the word in the

cluster with the highest probability. As the cluster
sizes vary, so do the softmax sizes. As the clusters
are much smaller in size than the full vocabulary
(<100 vs 100k), perturbing input words leads to
limited and more predictable change to FiRo’s out-
put. Despite using small clusters, FiRo’s effective
vocabulary (union of all clusters) is considerable
and can be scaled up (with minimal increase in clus-
ter sizes) to avoid predicting UNK for infrequent
and OOV words. Thus, FiRo can preserve input fi-
delity better while being robust to perturbations. In
contrast, while Robust Encoding also use clusters
to map input words to output words, its mapping
ignores context, leading to input fidelity loss.

3.2 Baselines
We compared FiRo against 4 baselines: adversar-
ial training, two variants of the scRNN spell cor-
rectors (Pruthi et al., 2019), and a variant of Ro-
bust Encoding called Agglomerative Cluster En-
codings (Jones et al., 2020).

• AdvT: Adversarial training

• scRNNu: scRNN, predict UNK for OOV

• scRNNp: scRNN, let OOV pass through

• RobEn: Robust Encoding

Adversarial training is an end-to-end approach that
fine-tunes the NLP model to make it more accurate
when facing noisy inputs. In contrast, FiRo and
the spell correctors do not change the NLP model’s
weights. Between the spell correctors, scRNNp is
less robust since it lets OOVs pass through unmod-
ified, exposing downstream models to (adversar-
ial) noise. However, scRNNu is has lower fidelity
since it maps OOVs to UNK. Among the baselines,
RobEn is the most robust but also has the lowest
fidelity (also see Section 5.2). Due to RobEn’s low
fidelity, a downstream model would not work out-
of-the-box on text encoded using RobEn. Hence,
for RobEn specifically, downstream models are
fine-tuned using RobEn encoded text instead of
original text (similar to Jones et al. (2020)). Al-
though RoVe (Malykh et al., 2023) and FiRo share
some architectural similarities (Sakaguchi et al.,
2017), using RoVe to robustify pretrained language
models is much harder. This is because RoVe’s
outputs are sequences of embeddings instead of
sequences of words. Thus, combining RoVe with
pretrained language models requires replacing the
input embeddings of the pretrained language mod-
els which may lead to low performances for tasks
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Figure 3: Average GLUE accuracy as the number of adversarial changes introduced into the input text varies.
“+raw”: BERT fine-tuned using raw text. “+pp”: BERT fine-tune using pre-processed text. Best approach from top
panels are included in bottom panels for comparison. Using FiRo leads to higher accuracy than baselines in general.

with limited data for finetuning. Given this limita-
tion, RoVe was not chosen as a baseline.

3.3 Implementation Details

We used PyTorch (Paszke et al., 2019) and trans-
formers (Wolf et al., 2020) libraries in this work.
BERT is the NLP model and is fine-tuned for
3 epochs using a learning rate of 2e−5 and a
batch size of 8 with AdamW (Loshchilov and
Hutter, 2018). FiRo and scRNN are trained us-
ing Adam (Kingma and Ba, 2014) using a batch
size of 50 until convergence (about 10 hours using
an NVIDIA TitanXp GPU). We used the GLUE’s
training sets as data for training FiRo and scRNN.

The architecture of scRNN follows that in prior
studies (Pruthi et al., 2019; Jones et al., 2020) with
the vocabulary size set at 10,000. scRNN is based
on a bidirectional LSTM (Graves and Schmidhuber,
2005) with one layer of size 50. Similar to Jones
et al. (2020), the 100,000 most frequent words
from the COCA corpus (Davies, 2008) are used
as RobEn’s vocabulary. FiRo’s vocabulary is the
same as RobEn’s. For the adversarial training base-
line, the fine-tuned BERT model is further trained
using a equal mixed of normal and adversarial ex-

amples until there is no further increase in accuracy
for a hold-out adversarial set of data.

3.4 Parameters of Character-Level Attacks

Assume that the attacked model is represented by a
function f . For an input x with ground truth label y,
the model predicts f(x) as the label. An adversar-
ial input x∗ is an instance close to x, such that x∗

has the same ground truth as x, while f(x∗) ̸= y
(Szegedy et al. (2014); Liu et al. (2017)). The
‘closeness’ between x and x∗ is denoted as d(x, x∗),
the number of words that differ between x and x∗

due to some character perturbations. Let A denote
the search for an adversarial example, Equation 1
and 2 show the two types of attacks. The auxil-
iary model used by the black-box attack is denoted
faux. Both attacks need to satisfy the ‘closeness’
constraint in Equation 3. The level of adversarial
noise can be controlled by choosing the choice of
character perturbations and the value of D (number
of allowable modified words).

x∗white−box = A(f, x, y) = argx′f(x′) ̸= y (1)

x∗black−box = A(x, y) = argx′faux(x′) ̸= y (2)

d(x, x∗) ≤ D (3)
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Adversarial attacks are valid when x and x∗ have
the same ground-truth label (Szegedy et al., 2014;
Liu et al., 2017). For tasks like natural language
inference (NLI), even a single letter substitution
could violate the label-invariant assumption (see
Table 1). Thus, the types of character perturbations
and the constant D must be chosen carefully to
avoid drawing invalid conclusions.

We followed Gao et al. (2018); Pruthi et al.
(2019); Jones et al. (2020) by crafting character-
level attacks using four basic operations: (1) charac-
ter substitution, (2) character deletion, (3) character
insertion, and (4) swapping of two adjacent charac-
ters. The operations must not cross word-boundary
and the characters are picked at random. The as-
sumption that x and x∗ have the same ground-truth
label is more likely to be violated for larger D, so
we evaluated for D in the range from 0 to 7.

3.5 Quantifying Robustness and Fidelity
We can empirically estimate (1) Robustness and (2)
Fidelity of FiRo by comparing its denoised outputs
against the clean input. For each clean input x, a
set of perturbed inputs X∗ = {x∗} is generated.
For each noisy input x∗ in this set, FiRo outputs a
denoised version z. This results in a set of denoised
outputs Z = {z} for each x. The identity (i.e. x)
is also included in Z. Robustness quantifies how
similar the denoised outputs are (Equation 4), while
Fidelity quantifies how closely denoised outputs
match the clean input (Equation 5). Let |Z| be the
size of Z; L be the length of z; uniq(Z) be the
set of unique elements in Z; 1 be the indicator
function; and zi be the ith token in z.

Robustness =
|Z|+ 1− |uniq(Z)|

|Z|
(4)

Fidelity =
1

|Z|
∑
z∈Z

1

L

∑
1≤i≤L

1{zi=xi} (5)

Robustness and Fidelity range from 0 to 1.
Robustness is maximized when all elements in Z
are identical. Fidelity is maximized when all ele-
ments in Z are the same as x. For multiple x, the
Robustness and Fidelity values are averaged. The
same estimate can be calculated for the baselines.

Specifically, we estimated the empirical robust-
ness and fidelity using the GLUE data. For each
input x, 10 noisy copies x∗ are created sequentially
by sampling 10 positions in x and inject character-
level noise into the tokens at these positions. Thus,
the inputs x∗ have increasing level of noise.

4 Experiments

4.1 GLUE Experiment Setup
Followed Jones et al. (2020), we experimented on
six GLUE (Wang et al., 2019) tasks: MRPC, MNLI,
QNLI, QQP, RTE, and SST-2. Approaches are
evaluated using average task accuracy. We used the
BERT (Devlin et al., 2019) base uncased model as
the backbone for all six classification tasks.

For each task, BERT is fine-tuned using the train-
ing set and evaluated on the validation set. For
evaluation, the input text is first processed by FiRo,
scRNN, or RobEn before being passed to BERT.
There are two ways to fine-tune BERT. The first is
to fine-tune BERT using the raw GLUE text. Thus,
BERT is oblivious to the text pre-processor (i.e.
FiRo, scRNN, or RobEn) and fine-tuning does not
have to be redone every time the text pre-processor
is changed or improved. The second is to fine-tune
BERT using the pre-processed text (output of FiRo,
scRNN, or RobEn). This allows BERT to adapt to
the idiosyncrasies of the text pre-processor, result-
ing in more robust models although at the expense
of frequently redoing fine-tuning. We evaluated the
approaches using both ways of fine-tuning.

Adversarial examples are found using beam-
search with a beam size of 5 similar to Jones et al.
(2020). For black-box attacks, beam search uses
the backbone BERT model. For white-box attacks,
beam search uses the combined model compris-
ing of the backbone and a defender (e.g. FiRo or
RobEn). The latter are white-box attacks because
the combined model is queried without any limit
(scaling linearly with the number of test examples).

4.2 Results from GLUE Experiment
Figure 3 shows the average accuracy of 6 GLUE
tasks under different adversarial attacks. Left pan-
els show performance under black-box attacks.
Right panels show performance under white-box
attacks. BERT is fine-tuned using the raw GLUE
text in the top panels while it is fine-tuned using
the pre-processed text in the bottom panels.

For brevity, in this section, FiRo refers to the
BERT model using FiRo preprocessed text and so
on. FiRo outperforms scRNNp, scRNNu and ad-
versarial training baselines in all scenarios. FiRo is
better than RobEn when under black-box attacks.
When under white-box attacks, FiRo is better when
the noise is low (D ≤ 5 top right panel; D ≤ 3
bottom right panel), but RobEn is better when the
noise is high. FiRo and scRNNp preserve the fi-
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Figure 4: CoNLL-2003 NER performance as a function of D. “+raw”: BERT fine-tuned using raw text. “+pp”:
BERT fine-tune using pre-processed text. BERT using FiRo pre-processed text obtains higher F1 and recall.

delity of the input well since they did well on clean
text (D = 0). However, as scRNNp lets unrec-
ognized words (e.g. OOVs or words modified by
adversarial attacks) pass through unmodified, it is
less robust. In contrast, by supporting a large vo-
cabulary using the scope output layer, FiRo can
cover more infrequent words while also being quite
robust. FiRo and RobEn are more robust than the
other approaches since their accuracy drops less
rapidly as the noise level increases.

Another advantage of FiRo is that it can be used
out-of-the-box. When BERT is not adapted to the
pre-processor models (top panels), FiRo is gener-
ally better than baselines. In addition, the bottom
panels show that FiRo’s performance when BERT
is fine-tuned using raw GLUE text (dotted red line)
is quite close to FiRo’s performance when BERT is
instead of processed GLUE text (solid red line). Be-
ing able to use FiRo straight away without having
to redo fine-tuning the BERT model could lower
the cost of NLP model deployment.

4.3 NER Experiment Setup

We use the CoNLL-2003 named entity recogni-
tion (NER) dataset (Sang and De Meulder, 2003)
for this experiment. We compare FiRo against

scRNNu, scRNNp, and RobEn. We also use the
BERT (Devlin et al., 2019) base uncased model as
the backbone and reuse the models (FiRo, scRNNu,
and scRNNp) trained using the GLUE data. Train-
ing of the backbone model is done similar to the
procedure in the sequence classification experiment.
For sequence tagging, we only explore black-box
attacks since, as far as we know, there is no prior
work on conducting adversarial attack for tasks
that are not classification. Similar to the GLUE
experiment, adversarial examples are found using
beam-search with a beam size of 5. For sequence
tagging, the beam search’s objective is maximiz-
ing the non-overlapped named entities between the
ground truth entity set and the predicted entity set.

4.4 Results from NER Experiment

Figure 4 shows the performance under varying
degrees of black-box attack (D = 0, 1, 2, . . . 7).
FiRo obtains higher F1 score and higher recall than
the baselines across all scenarios due to FiRo’s high
fidelity. In contrast, RobEn and scRNNu underper-
form in this task because they fail to preserve the
fidelity of the inputs. Although scRNNp does well
for clean inputs (D = 0), its performance degrades
quickly as the noise level increases.
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Figure 5: Average GLUE accuracy. Using finite-context
aggregation (FiRo) results in higher accuracy than using
local or global self-attention (SA).

4.5 Spell Correction Experiment

In the previous two experiments, FiRo was evalu-
ated on data with synthetic character-level noise.
Thus, we additionally evaluate FiRo’s performance
on a spell correction task with realistic character-
level noise. However, it must be emphasized that
although FiRo functions like a spell corrector with
the current cluster design (clusters are defined
based on textual edit distance; Section 3.1), FiRo is
more general than a spell corrector because the clus-
ter design can be adapted for other tasks (e.g. spo-
ken language processing tasks).

For this experiment, we use the GitHub Typo
Corpus (Hagiwara and Mita, 2020) which com-
prises of typos (character-level noise) and grammat-
ical errors collected from public code repositories
on GitHub. Since this corpus includes multi-lingual
text and diverse types of noise (e.g. character-level,
word-level, capitalization noise), we exclude sam-
ples that are not typos in English. Specifically, text
sequences that are kept must be: (1) written in
English, (2) with high probability of being typos,
(3) with low perplexity (≤ 5). Consequently, the
remaining 53,154 samples are used to test spell
correction performance. The models were trained
using the GLUE data (see Section 3.3).

Method Precision Recall F1
scRNNu 0.076 0.294 0.120
scRNNp 0.306 0.298 0.302
FiRo 0.514 0.463 0.487

Table 2: Spell correction performance evaluated using
word-level metrics (precision, recall, F1)

4.6 Results from Spell Correction Experiment
Table 2 shows the spell correction performance of
FiRo and scRNN. RobEn is excluded because it is
not devised as a spell corrector. Although these
models were trained using the GLUE data injected
with synthetic character-level noise, they managed
to achieve decent spell correction performance on
the GitHub corpus which contained typos made
by humans. FiRo obtains higher precision, recall,
and F1 score than scRNN. The performance of
FiRo could be improved further with better cluster
design since the clusters used are based on textual
similarity of one edit distance apart but the GitHub
corpus definitely contains more diverse typos.

5 Ablation

5.1 Finite-context Aggregation
Figure 5 shows that without context aggregation
(FiRo-ctx), FiRo performs worse. Using global self-
attention (Global-SA) or local self-attention with
the same neighborhood size as the finite-context ag-
gregation (Local-SA) results in less robust models.
Thus, finite-context aggregation seems to give the
best overall performance across noise spectrum.

Method Fi Ro Arith Geo Har
RobEn 0.678 0.931 0.794 0.804 0.784
scRNNu 0.863 0.811 0.837 0.837 0.837
scRNNp 0.938 0.684 0.801 0.811 0.791
FiRo 0.910 0.962 0.936 0.936 0.935

Table 3: Estimates of Robustness (Ro) and Fidelity (Fi).
Arith, Geo, and Har are the arithmetic, geometric, and
harmonic means of Robustness and Fidelity.

5.2 Empirical Robustness-Fidelity Estimation
Table 3 reports the empirical Robustness and
Fidelity and their arithmetic, geometric, and har-
monic mean (also see Section 3.5). FiRo has the
best Robustness-Fidelity trade-off (highest arith-
metic, geometric, and harmonic means). FiRo’s
Fidelity leads to good performance for clean input
(D = 0) in Section 4.2 and 4.4. One limitation
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of the Robustness measure is that it cannot distin-
guish between “trivially” robust models and those
that are genuinely robust. A “trivially” robust but
vacuous model can achieve very high Robustness
by predicting the same output regardless of inputs.
Thus, Robustness should be considered in tandem
with Fidelity instead of considered as a standalone
metric. For models with similar Fidelity, those
with higher Robustness would perform better over-
all and under noisy condition in particular. For
example, FiRo and scRNNp have similar Fidelity
but since FiRo has higher Robustness, FiRo beats
scRNNp as the noise level increases (see Figure 3).

6 Discussion

In the tasks used to evaluate robustness, we only
used synthetic noise. However, the design of the
synthetic noise is motivated by observations from
naturally generated data, i.e. noisy text written by
humans. Besides, while it is true that the noise
characteristics do not change between training and
test, all methods evaluated exploit this understand-
ing about the noise characteristics in their model
architecture/algorithm to enable more robust text
processing. Thus, FiRo does not benefit from any
unfair advantages in this comparison setup. Fur-
thermore, Section 4.6 shows that FiRo trained on
synthetic noise can generalize to human typos.

Robustification methods should avoid informa-
tion loss (preserve fidelity) so as to be applicable to
many different tasks. Some tasks can be completed
using only a few clues from the input, therefore
loss of information does not affect task accuracy.
However, information loss can greatly affect per-
formance in tasks that require exact phrasing (e.g.
summarization, translation). Since FiRo can pre-
serve input fidelity better than other approaches, it
can be applied to a wider variety of tasks.

FiRo achieved a reasonable level of robust-
ness without sacrificing word recognition perfor-
mance chiefly due to its restricted output space.
This allows FiRo to scale up the vocabulary size
while still being robust to misspellings. Extend-
ing FiRo to natural noise would require expand-
ing the output space to cover phenomena such
as abbreviations and word play using phonetic
spelling (e.g. using ‘b4’ for ‘before’, ‘gr8’ for
‘great’). Orthographic and phonological similarity
constraints have been explored to improve accu-
racy of correcting character-level misspellings in
Chinese (Nguyen et al., 2021). However, this study

is only feasible because of the relatively clear or-
thographic and phonological relationships between
Chinese characters (Nguyen et al., 2018, 2020).
Such endeavors for English is beyond the scope of
the current study, though there are on-going efforts
to address the complex relationship between En-
glish spelling, pronunciation, and the presence of
different sources of natural noise.

NLP models’ lack of robustness to noise lim-
its their usage since user-generated inputs can be
noisy. Yet, sacrificing performance on clean in-
puts to increase robustness is also unacceptable as
user-generated inputs can also be clean. We pro-
pose a input-sanitizing model named FiRo to help
deployed NLP models process clean and noisy user-
generated text. By combining finite-context aggre-
gation with restricted output space, FiRo largely
preserves the semantic content of the input while
imparting reasonable robustness to NLP models.
Thus, FiRo can be applied to tasks other than clas-
sification, where task-completion requires precise
semantic content such as named entity recogni-
tion or summarization. Experimental results show
FiRo outperforming competitive baselines on six
classification tasks and one sequence labeling task
under various noise conditions. On-going work fo-
cus on extending FiRo to other noisy inputs such as
social media text (Derczynski et al., 2017) or con-
versation transcripts (Kaplan, 2020; Nguyen and
Yu, 2021; Fu et al., 2022).

Limitations

In this work, we focused on improving NLP mod-
els resistance to noisy input due to realistic ad-
versarial misspellings. However, natural noise in-
clude other types beyond misspellings. For exam-
ple, natural noise includes the use of emoticons
(e.g. <3), abbreviations (e.g. ‘lol’), wordplay us-
ing phonetic spelling, mixed casing (capitalization)
(e.g. ‘so COOOOL’), LEET words (Perea et al.,
2008) (e.g. ‘b4’, ‘R34D1NG’. . . ). Tackling natu-
ral noise would require integrating more explicit
visual, phonemic and linguistic knowledge into
modeling (Belinkov and Bisk, 2018). Besides, the
clusters used by FiRo are hand-crafted. Learning
the clusters from data may allow models to adapt
more quickly to noisy data.
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