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Abstract
Lexical-semantic resources such as wordnets
and multilingual dictionaries often suffer from
significant coverage issues, especially in lan-
guages other than English. While improving
their coverage manually is a prohibitively ex-
pensive undertaking, current approaches to
the automatic creation of such resources fail
to investigate the latest advances achieved in
relevant fields, such as cross-lingual annota-
tion projection. In this work, we address these
shortcomings and propose LEXICOMATIC, a
novel resource-independent approach to the au-
tomatic construction and expansion of multilin-
gual semantic dictionaries, in which we formu-
late the task as an annotation projection prob-
lem. In addition, we tackle the lack of a compre-
hensive multilingual evaluation framework and
put forward a new entirely manually-curated
benchmark featuring 9 languages. We evalu-
ate LEXICOMATIC with an extensive array of
experiments and demonstrate the effectiveness
of our approach, achieving a new state of the
art across all languages under consideration.
We release our novel evaluation benchmark at:
https://github.com/SapienzaNLP/lexicomatic.

1 Introduction

Lexical-semantic resources, like wordnets and com-
putational lexicons, play a key role in a wide range
of Natural Language Understanding (NLU) tasks
(Navigli, 2018) such as Word Sense Disambigua-
tion (Bevilacqua et al., 2021, WSD), Semantic Role
Labeling (Gildea and Jurafsky, 2000, SRL), Seman-
tic Parsing (Martinez Lorenzo et al., 2022), when
investigating semantic biases in Machine Trans-
lation (Campolungo et al., 2022, MT), and in a
broad spectrum of NLU approaches. For instance,
in WSD not only do these dictionary-like resources
enable an explicit representation of words and their
meanings, leveraged in many knowledge-based ap-
proaches (Agirre et al., 2014; Moro et al., 2014;
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Scozzafava et al., 2020), but they have also proven
to be highly beneficial when integrated into neural
systems (Bevilacqua and Navigli, 2020; El Sheikh
et al., 2021; Conia and Navigli, 2021). For the
purposes of this work, we refer to such resources
as multilingual semantic dictionaries, and differ-
entiate between these and the bilingual dictionar-
ies typically used in MT (Klementiev et al., 2012;
Irvine and Callison-Burch, 2014). In fact, bilingual
dictionaries contain a list of possible translations
in a target language for each word in a source lan-
guage, with no distinction between the different
meanings conveyed by such words.

Notably, a crucial limitation affecting multilin-
gual semantic dictionaries is their insufficient cover-
age, especially when scaling to multiple languages
or when considering mid- and low-resource ones.
While, on the one hand, creating such resources
manually is a very expensive endeavour, on the
other hand, current automatic approaches have
failed to investigate the benefits derived from re-
cent breakthroughs achieved in relevant fields, such
as cross-lingual label propagation (Procopio et al.,
2021), WSD (Barba et al., 2021b) and word align-
ment.

In this paper we address these shortcomings and
propose LEXICOMATIC, a novel approach to the
automatic construction of multilingual semantic
dictionaries. Starting from a monolingual semantic
dictionary D in language L0 and a set of target lan-
guages {L1, . . . , Ln}, we first build a synthetic L0-
centric parallel corpus and, then, leveraging WSD
and word alignment, generate, for every sense in
D, its corresponding lexicalizations in each target
language. We use the wordnet creation task (Neale,
2018), i.e. the computational task of automatically
constructing a wordnet, either from scratch, or by
leveraging an already existing one, as our main
test case. Since, to the best of our knowledge,
no comprehensive multilingual evaluation suite is
currently available, we propose a novel manually-

https://github.com/SapienzaNLP/lexicomatic


821

curated framework comprising 9 languages, in-
cluding mid- and low-resource ones. For each of
these, we find that our approach achieves signifi-
cantly better performances than its state-of-the-art
alternatives in terms of both F1 score, F0.5 score
and WordNet core coverage.1 Furthermore, since
LEXICOMATIC also generates silver WSD datasets
for each language considered, we investigate their
quality in our experiments.

Our contributions are therefore as follows:

1. We propose a novel approach to the automatic
construction of multilingual semantic dictio-
naries.

2. We put forward a new manually-curated mul-
tilingual evaluation suite for the wordnet cre-
ation task, covering 9 languages, ranging from
mid- to low-resources ones.

3. We evaluate our approach extensively and
carry out a performance analysis. Further-
more, we demonstrate the scalability of
LEXICOMATIC when adopting a sense in-
ventory different from Princeton WordNet2

(Miller, 1995, PWN) (see Appendix A).

We release our novel evaluation benchmark at:
https://github.com/SapienzaNLP/lexicomatic.

2 Related Work

Among lexical-semantic resources, wordnets are
arguably the most popular and widely used. Their
automatic creation has been addressed by several
approaches put forward during the course of recent
decades (Neale, 2018). Depending on the strategy
adopted, such approaches have been divided into
two main paradigms (Vossen, 1998):

1. Expand or extend approaches, in which trans-
lations of PWN synsets are used to create new
wordnets in other languages;

2. Merge approaches, which, instead, create
wordnets independently and then map them to
PWN.

While the merge approaches are able to overcome
several linguistic issues, the expand or extend ap-
proaches have become the de facto standard in lit-
erature, thanks to their speed gain and ease of con-
nection with PWN.

1https://wordnetcode.princeton.edu/standoff-files/
core-wordnet.txt

2https://wordnet.princeton.edu/

Broadly speaking, expand approaches present a
common structure consisting of two steps: i) can-
didate retrieval, where a list of candidate words
in the target language to be assigned to a given
PWN synset is produced; ii) candidate selection,
where a scoring function is used to discard or as-
sign candidate words to a given PWN synset. For
example, Lee et al. (2000) propose the construction
of a Korean wordnet by linking words in Korean de-
rived from a bilingual machine-readable dictionary
to PWN. Semantic ambiguities are then removed
by combining 6 different heuristics with decision-
tree learning. Instead, Montazery and Faili (2010)
rely on different word similarity scores, such as the
mutual information and other measures based on
WordNet, to link words in Persian to PWN synsets.
Along these lines, Lam et al. (2014) leverage pub-
licly available wordnets, machine translation and
bilingual dictionaries to translate synsets derived
from existing wordnets into different languages, in-
cluding endangered languages, such as Dimasa and
Karbi. Finally, a scoring method is used to iden-
tify the best translations. Instead, Taghizadeh and
Faili (2016) propose the automatic construction
of a Persian WordNet, by leveraging a bilingual
dictionary and a monolingual corpus as resources
and unsupervised WSD to disambiguate candidate
words.

With the advent of word embeddings, several
approaches started using these new representations.
For instance, Al Tarouti and Kalita (2016) use
word2vec (Mikolov et al., 2013) to improve the
candidate selection step. Instead, Khodak et al.
(2017) compute word and synset representations
to score the association between a candidate word
and a given synset, discarding (word, synset) pairs
below a certain threshold.

More closely related to our work, some ap-
proaches rely on WSD, parallel corpora and word
alignment systems to retrieve, for each synset, a
list of words in the target language. For instance,
Sagot and Fišer (2008) use five different parallel
corpora and disambiguate each aligned word by
intersection of its possible senses in its correspond-
ing inventories. Finally, closest to our work, Oliver
(2014) leverages a WSD system on the English side
of a parallel corpus and retrieves all the possible
translations in the target language by using a word
alignment system. More recent research works,
however, did not investigate this promising direc-
tion further. To fill this gap, in this work we aim

https://github.com/SapienzaNLP/lexicomatic
https://wordnetcode.princeton.edu/standoff-files/core-wordnet.txt
https://wordnetcode.princeton.edu/standoff-files/core-wordnet.txt
https://wordnet.princeton.edu/
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to demonstrate that recent neural breakthroughs in
WSD (Barba et al., 2021a) and cross-lingual la-
bel projection via word alignment (Procopio et al.,
2021) allow us to achieve a new state of the art in
the wordnet creation task.

3 LexicoMatic

In this section, we introduce LEXICOMATIC, our
approach to the automatic construction and expan-
sion of multilingual semantic dictionaries. First,
we outline our overall process (Section 3.1). Then,
we focus on the core modules of our approach, de-
scribing the systems we adopt for WSD (Section
3.2) and word alignment (Section 3.3). Finally, we
detail our data aggregation strategy (Section 3.4).

3.1 Formulation
Starting from a monolingual dictionary in language
L, we frame the automatic expansion of this dictio-
nary towards a set of target languages as a 3-stage
process over L-centric parallel corpora.3 Formally,
let D be a dictionary in language L, comprising a
list of lexemes l1, . . . , lm, with each li ∀i ∈ [1,m]
associated with a collection of c(li) textual defini-
tions δ(li) = {dli1 , . . . , d

li
c(li)

} expressing its possi-
ble meanings; both l1, . . . , lm and their definitions
are in language L. Then, given a list of target lan-
guages L̃1, . . . , L̃k, we formulate our objective as
follows: for each target language L̃, we wish to
yield the lexemes in L̃ corresponding to every pair
(li, d

li
j ) ∀i ∈ [1,m]∀j ∈ [1, c(li)].

To achieve this objective, we put forward the
following approach: denote by s1, . . . , sn a list of
sentences in language L, and by t1, . . . , tn its par-
allel counterparts in a target language L̃. Then, for
each (li, d

li
j ), we generate the corresponding lex-

emes in L̃ as follows: we first disambiguate the
words in s1, . . . , sn against D, that is, we pair each
word with its most suitable meaning in D. Subse-
quently, we perform word alignment on each pair
of parallel sentences (sj , tj) ∀j ∈ [1, n]. These
two steps essentially yield a corpus where words
in language L are paired with their meanings in
D and linked to their counterparts in language L̃.
With this data at our disposal, we conclude our pro-
cess by employing an aggregation strategy over the
processed parallel sentences, producing, for each

3As will be seen, note that L-centric parallel corpora are
not a strict requirement for LEXICOMATIC, which can also
simply rely on (non L-centric) standard parallel corpora. We
highlight this requirement at this point only for presentation
simplicity and computational efficiency.

(li, d
li
j ), a list of corresponding lexicalizations in

language L̃.

3.2 Word Sense Disambiguation

The first step in our approach aims at disambiguat-
ing the words in the sentences s1, . . . , sn against
D. That is, ∀j ∈ [1, n], we need to link each word
form in sj , whose lexeme we denote by l̃, to the
definition in δ(l̃) that best expresses its meaning.
Note that these word forms might be single tokens
(e.g., nouns) or multi-words (e.g., phrasal verbs);
henceforth, we will use σj,1, . . . , σj,|σj | to denote
the |σj | word forms occurring in sentence sj .

To perform this task, previous WSD approaches
(Bevilacqua and Navigli, 2020; Conia and Nav-
igli, 2021) adopt supervised classifiers that require
training corpora sense-tagged against D. How-
ever, often such corpora labeled with D are not
available across languages and, since manually pro-
ducing them is prohibitively expensive, using these
approaches would restrict the applicability of our
process to a limited number of dictionaries. Thus,
in order to drop this requirement, we focus here
on the recent trend in literature of models tackling
WSD via definition-selection formulations (Huang
et al., 2019; Blevins and Zettlemoyer, 2020; Barba
et al., 2021a): given a word in context, models
dynamically receive a pool of textual definitions
and are trained to select the most suitable one from
among these. This framing allows us to perform
disambiguation against D even in cases where D
has either scarce or no sense-tagged data. Indeed,
in these scenarios, we can train on already existing
WSD corpora, annotated with some D′ ̸= D, and,
then, zero-shot over D.

3.3 Word Alignment

As our second step, we perform word align-
ment between each pair of parallel sentences
(sj , tj) ∀j ∈ [1, n]. To this end, we build on
top of the Transformer-based discriminative model
for word alignment introduced by Procopio et al.
(2021) and employ a framework consisting of 2
steps inspired by the Expectation-Maximization
algorithm (Dempster et al., 1977).

Given a list of parallel sentences (sj , tj) ∀j ∈
[1, n], first we use the discriminative model
to perform word alignment, pairing the to-
kens sj,1, . . . , sj,|sj | in sj to their counterparts
tj,1, . . . , tj,|tj | in tj . Subsequently, since the dis-
ambiguation is performed over word forms that
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might span over multiple tokens, we bring together
the alignments produced at span level. Note that,
however, since the discriminative model may emit
non-contiguous alignments (e.g., sj,1 aligned to
tj,1 and tj,4), ∀k ∈ [1, |σj |], this operation involves
choosing the most suitable option for σj,k from
among the multiple aligned spans τj,1, . . . , τj,|τj |
identified over tj .

To address this issue, we adopt a strategy consist-
ing of 2 passes. We first employ a simple heuristic,
processing σj,1, . . . , σj,|σj | by increasing number
of spans aligned over tj and selecting each time
the first target span that does not overlap with any
of those previously chosen. Once this pass is com-
pleted, we leverage the aligned parallel sentences to
compute a score for each proposed possible align-
ment:

f(σ, τ) =
# sentences with (σ, τ) aligned

# sentences with (σ, τ)

where σ and τ are two possible word forms in
languages L and L̃, respectively. We now perform
a second pass over the parallel sentences, using
the computed score in the selection process: ∀k ∈
[1, |σj |], we select the target span aligned to σj,k
with the highest score, enforcing a minimum of
α to reduce potential noise. We use α = 0.5 in
all our experiments since it expresses the condition
where both the prior probability and the conditional
probability given by the classifier4 line up.

3.4 Aggregation Strategy
Once completed, the disambiguation and word
alignment steps of our process produce a corpus
where each source span σj,k ∀j ∈ [1, n] ∀k ∈
[1, |σj |] is paired with its most suitable definition,
and either associated with its counterpart span τj,k′ ,
with k′ ∈ [1, |τj |], occurring in sentence tj or
marked as unaligned.5

Therefore, to conclude our process, we first
group the collection of successfully aligned
target spans by the lexeme-definition pair as-
signed to their source counterparts; this pro-
cess results in a set of translation candidates
T(li, d

li
j ) = {τ1, . . . , τp} for each lexeme-

definition pair (li, d
li
j ). Then, we sort these can-

didates and produce T̂(li, d
li
j ) = [τ̂1, . . . , τ̂p] s.t.

4For a given (σ, τ) pair to be considered, the classifier
must have yielded a probability for their alignment that is
> 0.5.

5This might occur if the selection process filters out all
possible alignments, or no alignments have been provided.

g(li, d
li
j , τ̂z) > g(li, d

li
j , τ̂z+1) ∀z ∈ [1, p], where

g(li, d
li
j , τ̂z) represents the number of times τ̂z was

aligned in the bitext to li with the meaning ex-
pressed by dlij . Finally, to reduce the amount
of noise introduced by spurious alignments and
wrong disambiguation, we apply a simple method
to remove the translation candidates that are most
likely to be wrong: for each lexeme-definition pair
(li, d

li
j ), we apply an L1-normalization on the vec-

tor v =
〈
g(li, d

li
j , τ̂1), . . . , g(li, d

li
j , τ̂p)

〉
and se-

lect the first h candidates such that their normalized
scores sum up to a hyperparameter β. Besides fil-
tering out potential noise, this hyperparameter also
allows us to bias LEXICOMATIC towards a more
precision- or recall-oriented behavior.

4 Wordnet Construction

We now assess the effectiveness of LEXICOMATIC,
using the wordnet creation task as our test case.
We first present a novel evaluation suite compris-
ing 9 languages that we propose for this task.
Subsequently, we describe the experimental setup
which we use in this setting and, finally, evaluate
LEXICOMATIC with current state-of-the-art alter-
natives.

4.1 Evaluation Suite

To the best of our knowledge, no comprehensive
multilingual evaluation suite is currently available
for the wordnet creation task. Therefore, we ad-
dress this limitation and propose a novel frame-
work partially inspired by ML50 (Tang et al., 2020)
and spanning over 9 languages, namely, Arabic,
Chinese, French, German, Italian, Korean, Rus-
sian, Spanish and Swedish. Since parallel corpora
are the main requirement on target languages for
LEXICOMATIC,6 we follow the same classifica-
tion adopted by Tang et al. (2020) and divide these
languages into three groups depending on the avail-
ability of such resources: low-resource (Swedish),
mid-resource (Arabic, Italian and Korean) and high-
resource (Chinese, French, German, Russian and
Spanish).7

For each of these languages, we manually create
a test set as follows. First, we lemmatize and label
with the part of speech (POS) the corresponding

6While the alignment model needs manually-aligned data,
a few hundred sentences suffice (Procopio et al., 2021).

7Corresponding to 10k−100K, 100K−1M and 10M+
groups in Tang et al. (2020).



824

Wikipedia corpus8 using Stanza9 (Qi et al., 2020)
and compute the absolute frequency ϕ of each lex-
eme, that is, each (lemma, POS) pair.10 Then, we
discard lexemes with ϕ ≤ 1000, to reduce potential
noise, and divide those remaining into three fre-
quency classes, depending on their ϕ value: specif-
ically, denoting by ϕ25th and ϕ50th the 25-th and
50-th percentiles, the three classes are comprised of
samples such that ϕ ≥ ϕ50th, ϕ25th ≤ ϕ < ϕ50th

and ϕ < ϕ25th, respectively. For each class, we
manually validate all extracted lexemes, discarding
spurious ones,11 and, then, randomly sample 200
elements. Finally, for each of these, we retrieve
the corresponding synsets from BabelNet (Navigli
and Ponzetto, 2012), a large multilingual semantic
network built by combining a number of heteroge-
neous resources including PWN, and ask profes-
sional linguists to manually validate each (lexeme,
synset) pair. These final pairs over the three classes
constitute the test set for the language under con-
sideration. Table 1 reports coverage statistics of
our test sets on each language, both per POS class
and aggregated. Further information regarding the
annotation process and guidelines can be found in
the next subsection.

4.2 Annotation Process and Guidelines
The manual creation of our comprehensive multi-
lingual evaluation suite is carried out by six profes-
sional linguists or translators. We require each pro-
fessional annotator to work in a language in which
they have a C2 level of proficiency according to the
Common European Framework of Reference for
Languages, as well as proven experience in the cre-
ation and expansion of lexical-semantic resources.
All annotators are paid at an agreed hourly rate
which is higher than the legal minimum pay per
hour in their country of residence, if available.

In order to ensure data consistency across lan-
guages, we devise and adopt specific annotation
guidelines. In this way, shared linguistic criteria
are adopted to perform the manual annotation and
validation. For instance, we use hypernyms to de-

8https://en.wikipedia.org/. We use the dump of December
2021.

9https://stanfordnlp.github.io/stanza/index.html
10In order to include both single tokens and multiword

expressions, we create a vocabulary of multiword expressions
from titles of Wikipedia pages and a manually-selected set of
common multiword expressions.

11Lexemes are considered to be incorrect and thus discarded
if one or more of the following issues can be identified: i)
lexicalization issues; ii) wrong language, i.e., a lemma is in a
language other than the one under consideration.

Low Mid High
POS SV AR IT KO DE ES FR RU ZH

NOUN 1543 1768 1672 801 1352 2021 1703 1178 1076
ADJ 94 213 646 16 324 524 506 - -
VERB 151 581 503 40 641 910 596 516 445
ADV 21 5 112 53 21 94 84 - 30

TOTAL 1809 2567 2933 910 2338 3549 2889 1694 1551

Table 1: Number of distinct synsets, divided by POS, in
LEXICOMATIC test sets.

termine whether a (lemma, POS) pair should be
associated with a given synset, i.e. lemmas per-
taining to a given synset should share the same
hypernym according to reputable lexicographic re-
sources such as WordNet for the English language.
Importantly, during the annotation process, we en-
counter some language-specific peculiarities and
exceptions, e.g. verb aspects in Russian or com-
pounds (Komposita) in German. Such cases are
discussed and subsequently addressed in joint an-
notation sessions.

4.3 LexicoMatic Setup

Word Sense Disambiguation As our disam-
biguation system, we use ESCHER (Barba et al.,
2021a), a Transformer-based architecture that
frames WSD as a text extraction problem. Specif-
ically, since the dictionary under consideration is
PWN, we employ the model released by the au-
thors12 that is trained on SemCor (Miller et al.,
1993), a large manually-annotated English dataset
featuring 33 362 sentences and 226 036 tagged in-
stances. Our choice of this system is motivated
by the strong performance which ESCHER attains
both when evaluated on the same sense inventory
used at training time and in zero-shot scenarios.

Word Alignment To train the word alignment
model, we use the manually-annotated datasets
made available by Procopio et al. (2021) cover-
ing English and one or other of the following lan-
guages: French, German, Spanish and Italian. In-
stead, as far as the remaining languages are con-
cerned, we leverage proprietary in-house datasets,
which are created with the same method as that
adopted for the aforementioned datasets: approxi-
mately 300 sentences are collected from WikiMa-
trix (Schwenk et al., 2019) and professional lin-
guists are asked to manually annotate them.

Parallel Corpora LEXICOMATIC relies on par-
allel corpora to transfer sense annotations and

12https://github.com/SapienzaNLP/esc

https://en.wikipedia.org/
https://stanfordnlp.github.io/stanza/index.html
https://github.com/SapienzaNLP/esc
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gather different lexicalizations for each synset.
However, the quality and the coverage of the re-
sources created is directly proportional to the het-
erogeneity and number of source sentences con-
sidered. This is especially troublesome for low-
and mid-resource languages, where the amount of
gold parallel data is relatively low (<1M sentences).
Therefore, to cope with this issue, we here adopt
synthetic parallel sentences, that is, sentences trans-
lated via MT systems. Specifically, we use the
neural machine translation system presented by
Tang et al. (2020, mBART50). This strategy allows
us to generate an arbitrarily large amount of paral-
lel sentences for each language in our evaluation
suite. To ensure a good coverage, we use a sample
of 1M randomly selected sentences from English
Wikipedia as the source corpus.

4.4 Comparison Systems

As our baseline, we consider a simple approach
(PWN + MT) where we use mBART50 to trans-
late the lexicalizations of each synset in PWN. For
each language, in order to give more context to the
MT systems, we postpend the synset definition to
the comma-separated list of its lexicalizations. For
example, to get the lexicalizations for the synset
{fire, flame, flaming} with definition the process
of combustion of inflammable materials producing
heat and light, we input to the model the sequence
fire, flame, flaming: the process of combustion of
inflammable materials producing heat and light,
and extract, from the translated sentence, the lexi-
calizations in the target language. As comparison
systems, we consider Universal Wordnet (De Melo
and Weikum, 2009, UWN), an expand approach
built upon bilingual dictionaries and an ensemble
of statistical heuristics, and Extended Open Multi-
lingual Wordnet (Bond and Foster, 2013, EOWN)
which merged Open Multilingual Wordnet (Bond
and Paik, 2012) with data collected automatically
from Wiktionary;13 both these works cover all lan-
guages in our evaluation suite. Furthermore, we
consider Sagot and Fišer (2008, WOLF) for French
and the system recently proposed by Khodak et al.
(2017, AWCWE) for French and Russian.

4.5 Results

Table 2 shows the performances achieved by the
systems under consideration over our evaluation
suite. In particular, besides precision, recall and F1

13https://www.wiktionary.org/

score, we further report as in Khodak et al. (2017)
the F.5 score, a variant of F1 score that is more
biased towards precision, and the coverage statistic,
that is, the percentage of synsets in core WordNet14

that are present in the resource under evaluation.
As a first result, we note the significant perfor-

mances that the MT baseline attains, particularly
in terms of recall and coverage. This is especially
interesting since the only discerning signals the
models receive as regards the desired meaning of a
given term are the definition and the other English
lexicalizations of the corresponding synset.

Moving to our actual system, we consider here
how LEXICOMATIC fares for different β values,
namely [0.7, 0.9, 1.0]. Indeed, differently from the
other systems that are skewed towards precision
by design since it is more useful in practical sce-
narios (Khodak et al., 2017), our approach enables
us to select the desired trade-off, which might de-
pend upon the use case under consideration, by
adjusting β: lower values result in more conserva-
tive selection strategies that favour precision over
recall, whereas higher ones produce the opposite
behavior. We can see this trend in Table 2, where
moving from β = 0.7 to β = 1.0 causes precision
to decrease and recall to increase.

Finally, compared to its competitors, LEXICO-
MATIC surpasses all its alternatives considered
here across the board in terms of F1 score and
F.5 score. Interestingly, even with β = 0.7,
LEXICOMATIC is still more oriented towards recall
than the majority of its alternatives. These findings
suggest that LEXICOMATIC is indeed an effective
option for the automatic creation of wordnets. As
a matter of interest, we investigate the scalability
of LEXICOMATIC when adopting a sense inven-
tory different from PWN and report the results in
Appendix A.

5 Multilingual WSD

As a by-product of our first two steps, our process
results in the automatic creation of sense-tagged
corpora in languages L̃1, . . . , L̃k that can be used
to train WSD systems. This training operation, be-
sides naturally yielding models for each language
we cover, also acts as an interesting evaluation
proxy for the created wordnets. Indeed, the re-
sults attained on multilingual WSD benchmarks
provide hints as to the quality of the automatically-

14In order to enable multilinguality, we convert senses to
synsets.

https://www.wiktionary.org/
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Model Precision Recall F1 F.5 Synsets Senses Coverage

A
ra

bi
c

PWN + MT 41.5 6.8 11.7 20.6 117653 230851 93.4%
Universal Wordnet 5.8 5.4 5.6 5.7 5991 7791 27.2%
EOMWN 49.3 10.4 17.2 28.1 6891 7791 37.6%
LEXICOMATICβ=0.7 28.0 33.8 30.6 29.0 17038 21974 75.3%
LEXICOMATICβ=0.9 25.9 36.5 30.3 27.5 17038 28335 75.3%
LEXICOMATICβ=1.0 23.4 38.7 29.2 25.4 17038 38507 75.3%

C
hi

ne
se

PWN + MT 22.7 25.8 24.2 23.3 117653 156223 99.7%
Universal Wordnet 41.0 10.2 16.4 25.6 22665 104760 53.2 %
EOMWN 44.7 14.3 21.7 31.4 12128 19079 49.4 %
LEXICOMATICβ=0.7 31.3 36.3 33.6 32.2 20251 23124 83.7 %
LEXICOMATICβ=0.9 27.8 41.7 33.4 29.8 20251 27843 83.7 %
LEXICOMATICβ=1.0 22.7 45.0 30.2 25.2 20251 37622 83.7 %

Fr
en

ch

PWN + MT 36.8 35.6 36.1 36.5 117653 155751 99.6%
WOLF 46.7 30.2 36.6 42.1 59807 59087 92.3%
Universal Wordnet 48.2 27.8 35.3 42.1 39491 72009 74.9%
EOMWN 69.2 19.2 30.0 45.4 20447 27150 63.16%
AWCWE 42.1 40.5 41.3 41.8 53203 93121 91.5%
LEXICOMATICβ=0.7 55.6 39.1 45.9 51.3 30505 38595 93.4%
LEXICOMATICβ=0.9 50.2 42.5 46.1 48.5 30505 48743 93.4%
LEXICOMATICβ=1.0 43.0 45.9 44.4 43.5 30505 64916 93.4%

G
er

m
an

PWN + MT 29.6 25.0 27.1 28.6 117653 154979 99.6%
Universal Wordnet 41.5 22.1 28.8 35.3 50488 110496 76.0%
EOMWN 61.7 14.8 23.9 37.8 19673 29616 63.6%
LEXICOMATICβ=0.7 48.0 31.5 38.1 43.5 29543 37156 93.9%
LEXICOMATICβ=0.9 43.3 35.0 38.7 41.3 29543 45931 93.9%
LEXICOMATICβ=1.0 35.8 38.3 37.0 36.3 29543 60107 93.9%

It
al

ia
n

PWN + MT 36.8 39.8 38.3 37.4 117653 155323 99.6%
Universal Wordnet 55.8 24.0 33.6 44.1 37638 59805 72.6%
EOMWN 77.2 17.6 28.7 46.1 14603 18710 52.8%
LEXICOMATICβ=0.7 56.6 44.4 49.8 53.6 31215 37676 95.0%
LEXICOMATICβ=0.9 51.4 48.1 49.7 50.7 31215 45679 95.0%
LEXICOMATICβ=1.0 43.9 52.0 47.6 45.3 31215 61364 95.0%

K
or

ea
n

PWN + MT 8.3 23.4 12.3 9.6 117653 183471 94.4%
Universal Wordnet 27.6 14.1 18.7 23.2 37940 69080 31.5%
EOMWN 39.4 10.5 16.6 25.4 6287 9268 52.1%
LEXICOMATICβ=0.7 32.6 21.0 25.6 29.4 28564 30973 71.2%
LEXICOMATICβ=0.9 30.7 27.0 28.7 29.9 28564 46462 71.2%
LEXICOMATICβ=1.0 26.7 29.8 28.2 27.3 28564 65216 71.2%

R
us

si
an

PWN + MT 24.9 26.8 25.8 25.3 117653 156500 99.7%
Universal Wordnet 37.3 16.3 22.7 29.7 30009 57479 67.0%
EOMWN 44.3 17.2 24.8 33.7 19980 33716 64.3%
AWCWE 33.8 24.9 28.7 31.5 50844 102605 91.5%
LEXICOMATICβ=0.7 37.4 33.2 35.2 36.5 26065 33961 89.0 %
LEXICOMATICβ=0.9 32.1 37.3 34.5 33.0 26065 43054 89.0 %
LEXICOMATICβ=1.0 24.9 39.9 30.7 27.0 26065 57192 89.0 %

Sp
an

is
h

PWN + MT 42.8 32.5 36.9 40.3 117653 155486 99.7%
Universal Wordnet 61.7 19.1 29.2 42.7 33920 53497 65.4%
EOMWN 72.4 15.8 25.9 42.1 18428 27868 60.2%
LEXICOMATICβ=0.7 59.8 34.3 43.6 52.0 31268 37629 94.3%
LEXICOMATICβ=0.9 55.0 37.4 44.5 50.3 31268 45749 94.3%
LEXICOMATICβ=1.0 47.1 40.8 43.7 45.7 31268 59954 94.3%

Sw
ed

is
h

PWN + MT 14.8 30.1 19.9 16.5 117653 161793 94.4%
Universal Wordnet 31.1 28.0 29.5 30.4 23848 33264 61.9%
EOMWN 37.3 19.6 25.7 31.6 11999 16226 50.1%
LEXICOMATICβ=0.7 32.5 33.4 33.0 32.7 28801 35720 93.5%
LEXICOMATICβ=0.9 29.7 35.9 32.5 30.8 28801 37119 93.5%
LEXICOMATICβ=1.0 26.0 38.7 31.1 27.8 28801 50599 93.5%

Table 2: Results on our evaluation framework. In bold the best scores per language for precision, recall, F1 and F.5.
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DE ES FR IT KO ZH
L

E
X

IC
O

M
A

T
IC # lexemes 21k 21k 23k 20k 21k 16k

# instances 5.2M 6.0M 6.0M 6.3M 2.0M 3.2M
# synsets 30k 31k 31k 31k 15k 20k

X
L

-W
SD

# lexemes 16k 22k 18k 24k - -
# instances 185k 393k 253k 385k - -
# synsets 16k 32k 22k 30k - -

Table 3: Statistics of the training sets from
LEXICOMATIC (top) and XL-WSD (bottom) in terms
of number of lexemes, instances and distinct synsets.

disambiguated sentences t1, . . . , tn produced for
each language. Therefore, in this section, we ex-
amine the performance on multilingual WSD that
a reference architecture achieves once trained on
the silver corpora that our process generated for the
experiments detailed in Section 4.

5.1 Experimental Setup

As the evaluation framework, we consider XL-
WSD, a benchmark recently proposed by Pasini
et al. (2021) that includes a set of language-
specific development and test sets in different lan-
guages. In particular, we now focus on German
(DE), Spanish (ES), French (FR), Italian (IT), Ko-
rean (KO) and Chinese (ZH)15 and use the corre-
sponding resources to assess the performances of
LEXICOMATIC on multilingual WSD. In what fol-
lows, we illustrate the architecture of our reference
model and provide an analysis of the silver training
corpora under consideration.

Model Architecture To be comparable with the
resources evaluated in Pasini et al. (2021), we use
the same architecture as the WSD classifier, that
is, a Transformer-based encoder, namely XLMR-
Large (Conneau et al., 2020), followed by a 2-layer
feedforward network with swish activation func-
tion, batch-normalization and a softmax layer on
top. We represent each subword in the input sen-
tence as the sum of the last 4 layers of the Trans-
former encoder and each word as the average of
the vectors corresponding to the subwords it was
split into. Finally, the model is trained to assign
each instance to its corresponding synset in PWN.

Training Data For each language in our eval-
uation suite, we use as the training corpus its
automatically-disambiguated sentences t1, . . . , tn.

15The choice of this language set is the result of the inter-
section between the languages we considered in Section 4 and
those included in XL-WSD.

Model DE ES FR IT KO ZH

MCS 76.0 55.6 59.3 52.8 52.5 29.6
∅-shot 83.2 75.8 83.9 77.7 64.2 51.6
T-SC+WNG 73.8 77.3 71.4 77.7 - -
ConSeC 84.2 77.4 84.4 79.3 - -
LEXICOMATIC 80.0 78.5 85.3 79.4 62.2 49.1

Table 4: F1 comparison of LEXICOMATIC against
the MCS, ∅-shot and T-SC+WNG systems reported in
Pasini et al. (2021). We highlight the best system in
bold.

We show in Table 3 the number of lexemes, in-
stances and distinct synsets for both our datasets
and the silver training resources included in Pasini
et al. (2021) for the four European languages.16

To counter possible excessive skewness towards
the most common sense that might occur for some
word sense distributions, we limit the number of
occurrences for each sense and randomly select up
to 10 000 instances when preprocessing this data.
Interestingly, besides the difference on the number
of instances caused by the bigger collection of sen-
tences we consider, our corpora cover an amount
of synsets that is either on par with their reference
counterparts (Spanish and Italian) or significantly
higher (German and French). Finally, note that,
as our purpose here is to further assess the qual-
ity of our process, we do not perform any kind
of inventory filtering, that is, we do not employ
the mapping from word to its possible synsets in-
cluded in XL-WSD in order to avoid the inclusion
of incorrect instances that our process might have
generated.

5.2 Results
We report in Table 4 the results attained in terms
of F1 score by LEXICOMATIC over the languages
considered. For comparison, we consider three
systems reported in Pasini et al. (2021), namely
i) MCS, where words are always disambiguated
to their most common sense, ii) ∅-shot, where the
reference architecture is trained on English sense–
tagged resources and tasked to zero-shot over the
test languages, and iii) T-SC+WNG, where the
training is performed, instead, over the silver re-
sources released in the reference paper, i.e., an au-
tomatically-translated version of SemCor and the
Princeton WordNet Gloss Corpus. Furthermore,
we also include ConSeC (Barba et al., 2021b), a
recent extractive approach to WSD that is trained

16No silver resource was released for Korean and Chinese.
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on the silver resources released in XL-WSD and
that represents the current state of the art in this
benchmark.

As Table 4 highlights, training upon the corpora
which LEXICOMATIC generates results in perfor-
mances that are at least on par with the alternatives
reported. Specifically, we achieve a new state of
the art on 3 languages, namely Spanish, French
and Italian, and significantly close the gap between
∅-shot and silver resources on German. On Korean
and Chinese, we attain performances inferior to
plain zero-shot, but still competitive and signifi-
cantly higher than the MCS baseline. Therefore,
the first two steps of our process do generate high-
quality corpora and this finding has interesting ram-
ifications. Indeed, on the one hand, it suggests that
the aggregation strategy is similarly expected to
generate high-quality lexicalizations and, on the
other hand, the fact that our process produces a
competitive sense-tagged corpus on each language
it is applied upon, is a significant result in its own
right.

6 Conclusions

In this work, we introduce LEXICOMATIC, a novel
resource-independent approach to the automatic
construction and expansion of multilingual seman-
tic dictionaries. By leveraging recent advances in
WSD and word alignment, we frame this task as an
annotation projection problem over parallel corpora
and find this strategy to be particularly effective.
Using the wordnet creation task as our main test
case, we find that LEXICOMATIC surpasses its al-
ternatives by a large margin, in terms of both F1

score and F0.5 score, when testing against a new
evaluation suite covering 9 languages which we put
forward. Crucially, our new benchmark is intended
to address the current lack of a comprehensive mul-
tilingual alternative for this task.

As future work, we plan to further develop our
evaluation benchmark, especially so as to expand
the number of low-resource languages covered, and
investigate the applicability of LEXICOMATIC to
other resources beyond PWN.

Limitations

In this section we discuss some limitations that we
believe our work currently presents.

First, our method requires a Machine Translation
system to generate a translated silver corpus and hu-
man annotators to create the training data for word

alignment. This might constrain its applicability
for some mid-to-low resource languages.

Second, our evaluation requires the availability
of human annotators and a coverage with good
recall from lemmas to BabelNet synsets in order
to scale over a new language. Depending on the
language under consideration, the availability of
these resources might be limited and, paired with
the overall complexity of the task, this implies that
expanding our evaluation to span over more lan-
guages will be a costly process that requires time.

Finally, our framing as annotation projection
might not be applicable to languages that present
a high number of translation divergences (e.g., the
English adverb usually in John usually goes home
corresponds to the Spanish verb suele in Juan suele
ir a casa (Blloshmi et al., 2020)) as senses would
be paired with lemmas that have different syntactic
properties from their English counterparts.
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at their disposal. In these settings, LEXICOMATIC

has two possible strategies to work around this
obstacle. On the one hand, it can rely upon the
zero-shot capabilities of the WSD model under con-
sideration. On the other hand, as most dictionaries
contain examples for each meaning enumerated,
it may use these to generate silver training data.
In this section, we compare these two approaches
and highlight the key differences between them,
conducting our studies on Wiktionary. Wiktionary
presents a few major differences compared to PWN,
besides the lack of sense-tagged corpora. Most im-
portantly, it is less coarse-grained, with an average
of 2.70 senses per lemma in contrast to 1.67 in
Princeton WordNet17, and it has significantly more
senses (752 473 compared to the 206 941 in PWN).

A.1 LEXICOMATIC Setup
Word Sense Disambiguation Depending on the
strategy chosen, the disambiguation model, which
is the only dictionary-dependent component in
LEXICOMATIC, needs to be adapted as follows.
When resorting to sense inventory zero-shot, the un-
derlying model remains identical and the changes
only pertain to the definitions provided at infer-
ence time, which originate from Wiktionary rather
than PWN. Conversely, when using its meaning
examples, we first need to convert these into WSD
silver data. To this end, we retrieve the examples
provided for each sense s and process them so
as to tag the words corresponding to s. This op-
eration results in 66 570 annotated instances, for
as many sentences, and we partition them into 3
datasets, namely, train, validation and test, amount-
ing to 60 570, 3000 and 3000 instances, respec-
tively. Then, we replace the underlying disam-
biguation model with ESCHER trained on these
data. We report in Table 5 the F1 score ESCHER
achieves when trained with this configuration (Wik-
tionary), along with the score achieved, instead,
when trained on PWN and tasked to zero-shot on
Wiktionary (Wiktionaryzs). To better contextualize
these results, we further show the performances
ESCHER attains when trained and tested on PWN,
reporting the F1 score on the framework proposed
by Raganato et al. (2017).18 We note that, despite
the training data being silver and available in a
smaller quantity, ESCHER reaches a significant
84.6 F1 score. As for Wiktionaryzs, although it ex-

17Average senses per lemma computed on the intersection
of the lemmas in the two inventories.

18Results taken from Barba et al. (2021a).

Sense Inventory Training Instances Dev Test

PWN 226036 76.3 80.7
Wiktionary 60570 84.5 84.6
Wiktionaryzs 226036 71.5 70.9

Table 5: F1 scores of ESCHER when trained on different
sense inventories, i.e., PWN and Wiktionary.

hibits a significant drop, the overall F1 score is still
remarkable, especially taking into consideration
the differences between the two inventories. This
finding is particularly promising for our setting, as
Wiktionaryzs effectively provides an effective es-
timate of how well LEXICOMATIC can be applied
to dictionaries where neither sense-tagged data nor
examples are available.

Test Set & Comparison System To evaluate the
resources LEXICOMATIC creates, we leverage ad-
ditional in-house datasets for each language in our
evaluation suite. As comparison systems, since
no other work attempts to translate Wiktionary to
the best of our knowledge, here we report only
the performance of our MT baseline (Wiktionary +
MT).19

A.2 Results
Table 6 shows the overall scores on the test sets. As
a first result, we note that, even in this setting, the
baseline has competitive performances and, inter-
estingly, reaches F1 and F.5 scores even higher than
when translating PWN. This is likely due to the
longer definitions20 Wiktionary provides for each
sense, which help the translation system better con-
textualize the lexicalizations.

This trend is reflected on LEXICOMATIC, with
Arabic, Chinese and Korean being slight excep-
tions, where, compared to the rest of the board,
LEXICOMATIC achieves a significantly lower re-
call.21 Furthermore, as in PWN, decreasing β in-
creases the precision and lowers the recall, even if,
in this case, the precision gain is more substantial
than the recall loss on average.

Nevertheless, arguably the most interesting find-
ing is the behavior of LEXICOMATIC when used in
zero-shot (LEXICOMATICzs

β=0.7).22 Indeed, while

19See Section 4.4.
20Wiktionary has 12.19 tokens on average, whereas PWN

has 10.02.
21We believe this phenomenon is the result of the different

behavior the annotators had: significantly less candidates were
produced for each element compared to the other languages.

22Due to space constraints, we only report LEXICO-
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Model Precision Recall F1 F.5 Senses

A
ra

bi
c

Wiktionary + MT 32.4 13.6 19.2 25.4 406112
LEXICOMATICβ=0.7 46.6 18.3 26.3 35.6 38317
LEXICOMATICβ=0.9 38.1 20.4 26.6 32.5 46768
LEXICOMATICβ=1.0 33.6 23.1 27.4 30.8 57626
LEXICOMATICzs

β=0.7 46.4 17.9 25.8 35.2 33036
C

hi
ne

se

Wiktionary + MT 41.6 17.3 24.5 32.5 471320
LEXICOMATICβ=0.7 52.3 16.6 25.2 36.6 40627
LEXICOMATICβ=0.9 45.2 18.3 26.1 34.9 67394
LEXICOMATICβ=1.0 31.4 19.6 24.2 28.0 89648
LEXICOMATICzs

β=0.7 52.5 16.2 24.7 36.2 35133

Fr
en

ch

Wiktionary + MT 48.9 44.1 46.4 47.9 573007
LEXICOMATICβ=0.7 58.7 43.0 49.6 54.7 73593
LEXICOMATICβ=0.9 48.6 44.7 46.6 47.8 87039
LEXICOMATICβ=1.0 37.3 46.9 41.6 38.9 102436
LEXICOMATICzs

β=0.7 58.7 41.5 48.6 54.2 55762

G
er

m
an

Wiktionary + MT 46.3 33.14 38.5 42.7 603238
LEXICOMATICβ=0.7 61.0 35.9 45.2 53.5 71683
LEXICOMATICβ=0.9 54.0 39.4 45.5 50.3 83056
LEXICOMATICβ=1.0 44.7 42.5 43.6 44.3 96933
LEXICOMATICzs

β=0.7 62.8 35.5 45.4 54.5 54128

It
al

ia
n

Wiktionary + MT 52.6 41.4 46.3 49.9 578599
LEXICOMATICβ=0.7 68.3 43.7 53.3 61.4 73724
LEXICOMATICβ=0.9 63.0 47.0 53.9 59.0 84055
LEXICOMATICβ=1.0 51.0 49.1 50.0 50.6 98625
LEXICOMATICzs

β=0.7 70.0 44.0 54.0 62.6 57577

K
or

ea
n

Wiktionary + MT 22.4 17.0 19.3 21.1 403295
LEXICOMATICβ=0.7 48.2 15.9 23.9 34.3 54563
LEXICOMATICβ=0.9 44.3 17.2 24.8 33.7 78509
LEXICOMATICβ=1.0 39.8 18.0 24.8 32.0 103798
LEXICOMATICzs

β=0.7 48.0 14.0 21.7 32.3 45853

R
us

si
an

Wiktionary + MT 46.8 20.3 28.3 37.1 449321
LEXICOMATICβ=0.7 67.3 30.7 42.1 54.3 63009
LEXICOMATICβ=0.9 57.9 32.7 41.8 50.2 75491
LEXICOMATICβ=1.0 48.5 36.7 41.8 45.6 90142
LEXICOMATICzs

β=0.7 65.3 28.7 39.9 52.0 45007

Sp
an

is
h

Wiktionary + MT 53.8 42.0 47.2 50.9 568727
LEXICOMATICβ=0.7 67.2 41.5 51.4 59.8 72842
LEXICOMATICβ=0.9 59.3 43.6 50.2 55.3 83121
LEXICOMATICβ=1.0 49.5 45.7 47.5 48.7 96875
LEXICOMATICzs

β=0.7 68.0 40.3 50.6 59.8 57201

Sw
ed

is
h

Wiktionary + MT 52.5 35.9 42.6 48.1 623679
LEXICOMATICβ=0.7 63.7 43.8 51.9 58.4 64563
LEXICOMATICβ=0.9 57.9 45.8 51.2 55.0 72257
LEXICOMATICβ=1.0 48.2 48.6 48.4 48.3 80944
LEXICOMATICzs

β=0.7 64.5 42.7 51.3 58.5 56865

Table 6: Results on Wiktionary for the 9 languages under consideration. We mark in bold the best scores per
language for precision, recall, F1 and F.5.

MATICzs for β = 0.7.
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Table 5 showed a significant gap between Wik-
tionary and Wiktionaryzs, the F1 and F0.5 scores
of LEXICOMATICβ=0.7 and LEXICOMATICzs

β=0.7

are almost identical for each language. We be-
lieve this is a consequence of the large amount
of text disambiguated which, combined with the
filtering heuristics adopted, helps the model fill
the gap between the two systems. The only sig-
nificant difference between these lies in the num-
ber of senses produced, with LEXICOMATICzs

β=0.7

emitting consistently less senses than LEXICO-
MATICβ=0.7. Nonetheless, this result further backs
our claim that leveraging the zero-shot capabilities
of the disambiguation model considered is a vi-
able option when translating resources with neither
sense-tagged data nor examples.

Finally, the number of total senses covered by
our approach compared to the baseline is as few as
one-ninth when β = 0.7 and German is considered
(and even lower if we take into account the zero-
shot setting). The low percentage of senses covered
is due to the large number of Named Entities that
are present in Wiktionary but which are, instead,
under-represented in parallel corpora.


