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Abstract

Meta-learning is widely used for few-shot slot
tagging in task of few-shot learning. The
performance of existing methods is, however,
seriously affected by sample forgetting is-
sue, where the model forgets the historically
learned meta-training tasks while solely re-
lying on support sets when adapting to new
tasks. To overcome this predicament, we
propose the Memory-based Contrastive Meta-
Learning (aka, MCML) method, including
learn-from-the-memory and adaption-from-the-
memory modules, which bridge the distribu-
tion gap between training episodes and between
training and testing respectively. Specifically,
the former uses an explicit memory bank to
keep track of the label representations of previ-
ously trained episodes, with a contrastive con-
straint between the label representations in the
current episode with the historical ones stored
in the memory. In addition, the adaption-from-
memory mechanism is introduced to learn more
accurate and robust representations based on
the shift between the same labels embedded in
the testing episodes and memory. Experimen-
tal results show that the MCML outperforms
several state-of-the-art methods on both SNIPS
and NER datasets and demonstrates strong scal-
ability with consistent improvement when the
number of shots gets more.

1 Introduction

Slot tagging (Tur and De Mori, 2011), is a key part
of natural language understanding, which is usually
modeled as a sequence labeling problem with BIO
format as shown in Figure 1 (Chen et al., 2019).
However, rapid domain transfer and scarce labeled
data in the target domain introduce new challenges
(Bapna et al., 2017a; Zhang et al., 2020). To this
end, significant efforts have been made to develop
few-shot techniques (Li Fei-Fei et al., 2006; Snell
et al., 2017; Vinyals et al., 2016), which aim to
recognize a set of novel classes with only a few la-
beled samples (i.e, less than 50-shot) by knowledge
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transfer from a set of base classes with abundant
annotated samples.

Among several few-shot learning approaches
(Hospedales et al., 2022), metric-based meta-
learning has been widely used in slot tagging be-
cause they are model-agnostic, effective, and easily
applicable (Snell et al., 2017; Vinyals et al., 2016;
Zhu et al., 2020; Hou et al., 2020). To cope with the
data scarcity of novel classes, metric-based meth-
ods split data into different episodes deliberately
while each episode consists of one support set and
one query set. The model classifies a (query) item
according to its similarity with the representation
of each label learned from the support set in this
episode.

However, this kind of setting has shown sev-
eral limitations, where the similarity calculation
conducted only at the episode level hinders the
learning of the original representations, resulting
in the sample forgetting problem (Toneva et al.,
2018). On the one hand, this cripples the model’s
ability to learn consistent representations for the
same labels across different episodes. Here, the
same labels may occur during different episodes
at the meta-training stage and also possibly span
the meta-training and meta-testing stages. For ex-
ample, B-Object_name occurs in both the meta-
training stage and meta-testing stage as shown in
Figure 1. On the other hand, the similarity calcu-
lation is conducted between the query and support
set only in one episode under the few-shot setting,
resulting in the representation shift while ignoring
the same label representation in previous episodes.
First of all, the representation of each label is not
accurate due to the limited labeled samples. Be-
sides that, the locally closest label in one episode is
not necessarily the globally closest. Furthermore,
with the number of shots increasing, the sample
forgetting problem becomes worse and the model
performance saturates quickly (Cao et al., 2019).

To overcome the above limitations, we propose
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Figure 1: Episode-setting of Metric-based meta-learning, where each domain contains multiple episodes and each
episode consists of a support-query-set pair. Different colors indicate different labels.

the Memory-based Contrastive Meta-learning (aka,
MCML) method, marrying the benefits of learn-
Jfrom-the memory and adaption-from-the-memory
to capture more transferable and informative label
representations. Specifically, during meta-training,
we use an explicit memory bank to keep track of the
label representations from the historical episodes.
Then a contrastive constraint is added to pull to-
gether semantically similar (i.e, positive) samples
in the embedding space while pushing apart dissim-
ilar (i.e, negative) samples. This is what we call
the learn-from-the-memory technique. Secondly,
during meta-testing, we use the adaption-from-the-
memory technique to bridge the shift between the
input labels embedded in the test episodes and the
label anchors in the memory. In addition, an indi-
cator is used to control how much information we
want to acquire from the memory. The combination
of learn-from-the-memory and adaption-from-the-
memory helps the model to learn consistent repre-
sentations for the same labels and distinguished rep-
resentations for different labels concurrently across
different episodes. To summarize, our contribu-
tions are three-fold:

e This is the first work to tackle the sample for-
getting problem of metric-based methods. We
propose a novel Memory-based Contrastive
Meta-learning (MCML) method to bridge the
gap between different episodes.

* We propose two model-agnostic methods in-
cluding learn-from-the-memory and adaption-
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from-the-memory, which can be applied in
different stages separately. The combination
of them achieves the best performance even
with the number of shots increasing.

The experimental results confirm the effective-
ness of our model with very favorable perfor-
mance over several state-of-the-art methods
on both SNIPS and NER datasets.

2 Related Work

Few-shot learning was first proposed as a transfer
method using a Bayesian approach on low-level vi-
sual features (Li Fei-Fei et al., 2006). Over the past
few years, researchers have developed alternative
techniques to build domain-specific modules for
low-resource cross-domain natural language under-
standing (Bapna et al., 2017b; Lee and Jha, 2019;
Fritzler et al., 2019; Shah et al., 2019). Most recent
works have tried to model the transition possibil-
ity or similarity function between different labels
with the metric-based meta-learning framework as
backbone (Hou et al., 2020; Zhu et al., 2020; Wang
et al., 2022). Nevertheless, episode-level relation-
ships are still under-explored in previous works,
except for a number of methods on image classi-
fication (Li et al., 2019; Sun et al., 2019; Ouali
et al., 2020; Fei et al., 2021). Fei et al. (2021) pro-
posed a novel method to learn more robust repre-
sentations by sampling two episodes containing the
same set of classes for meta-training while Ouali
et al. (2020) used intra-episode spatial contrastive



learning (SCL) as an auxiliary pre-training objec-
tive to learn general-purpose visual embeddings for
image classification.

Distinguishing from prior work, we first exploit
the inter-episode relationship for natural language
understanding by using an explicit memory bank.
Most researchers choose to store the encoded con-
textual information in each meta episode under
the few-shot setting (Kaiser et al., 2017; Cai et al.,
2018). Another alternative method adopts param-
eterized memory network to implicitly save his-
torical information (Geng et al., 2020). Our work
also keeps in line with Momentum Contrast(MoCo)
which utilizes an external memory module to store
positive or negative samples for contrastive learn-
ing (He et al., 2020). Similarly, with a relatively
large size of samples, unilateral representations
from one episode in the metric-based methods can
be alleviated.

3 Preliminaries

Before introducing our proposed framework, we
provide the problem definition and an illustration of
the basic framework of metric-based meta-learning
to solve few-shot slot tagging in this section.

3.1 Problem Definition

We denote each sentence x = (x1, 2,23, ..., Tp)
and the corresponding label y = (y1,¥2, Y3, ..., Yp)-
Usually, we are provided with lots of labeled data
(i.e. (z,y) pairs) of source domains D, and few-
shot (less than 50) labeled data as well as plenty of
unlabeled data in the target domain D; under the
few shot setting. We split the data as episodes
e = (S,Q) in which § = {a7,y/}/=]""% and
Q = {27,4 }lfi‘l respectively. S, as the support
set, contains K examples (K-shot) for each of N
labels (N-way) while () contains several unlabeled
samples '. Thus, the few-shot model is trained
based on many episodes Ej,. = (e1, €2, €3, ..., €n)
initially. The trained model is then directly eval-
uated on the target domain Ej. = (e, €2, ..., €m).
The objective is formulated as follows:

y* = argmax, py(y|z, S) (D

where 6 refers the parameters of the slot tagging
mode, the (x,y) pair and the support set from
the target domain, Fy,. and FE,. represent differ-
ent episodes during meta-training and meta-testing
respectively.

'We have labels during meta-training.
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3.2 Metric-based Meta Learning

Given an episode consisting of a support-query set
pair, the basic idea of metric-based meta-learning
(Zhu et al., 2020; Hou et al., 2020) is to classify an
item (a sentence or token) in the query set based on
its similarity with the representation of each label,
which is learned from the few labeled data of the
support set. Some representative works are match-
ing network (Vinyals et al., 2016) and prototypical
network (Snell et al., 2017). More specifically,
given an input episode (S, Q) pair, the model en-
codes these two parts to get the sample vector and
query vector respectively:

S, Q = Encoder(S, Q) 2)

After that, various models can be used to extract
label representations c,,. Take the prototypical
network as an example, each prototype (label rep-
resentation) is defined as the average vector of the
embedded samples which have the same labels:

N K
1 . ,

Cyi = N S Iyl =yibs! 3)
Yi j=1 j=1

while [ is an indicator function which equals to
True when yf == y; else False; sg is the corre-
sponding sample vector from S.

Lastly, we calculate the distance between the
label representation and the sample vector from the
query set. The most popular distance function is the
dot product function which is defined as follows:

SIM (x;,cp) = xiTck 4)

&)

The label of instance (i.e, x;) from the query
set is the label whose embedding is closest with
the instance vector (i.e, ¢;). This can be calcu-
lated through a softmax layer. However, in this
way, the learned prototype of labels may lack gen-
eral discriminative semantic features since it (¢;)
only needs to be closer to instance (x;) compared
with other prototypes (i.e, c; where j!=i) in the
same episode without considering the global proto-
types. Since the support set may only contain a few
instances with the same label, the representation
becomes imprecise and fragile (Ouali et al., 2020).

y = Softmax(SIM (z;,cy))

4 Model

In this section, we first illustrate the overview of
our proposed framework (Section 4.1), and then we
discuss how to learn and adaption from memory
(Section 4.2 and 4.3) respectively.
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Figure 2: The overview of Our Framework, including three modules 1) Memory Bank, 2) Learn-from-the-memory,
and 3) Adaption-from-the-memory, while the memory bank stores global representations across different episodes,
learn-from-the-memory is used to learn more accurate and robust representations during the meta-training stage, and
adaption-from-the-memory to bridge the gap between training and testing for local representations in test episode.

4.1 Framework

Due to data scarcity and domain transfer, sam-
ple forgetting problem seriously hinders the model
to learn robust representation, resulting in worse
adaptability. To overcome this problem during
meta-training and meta-testing stages, we pro-
pose learn-from-the-memory and adaption-from-
the-memory techniques respectively as shown in
Figure 2 to reuse the learned representations
(Raghu et al., 2019).

Learn-from-the-memory: During the meta-
training stage, the model will continuously train on
different episodes. We utilize an external memory
bank to store all learned label representations from
the support set. These representations form dif-
ferent clusters naturally according to their original
labels. When a newly seen label appears, a con-
trastive loss is computed on these dimensional rep-
resentations by attracting positive samples, which
have the same label, and by repelling the negative
samples which have different labels. If this label
has not been encountered before, we just write it
into our memory.

Adaption-from-the-memory: During the meta-
testing stage, we first learn an adaption layer by
using these overlapped labels during meta-training
and meta-testing, and then we use the learned adap-
tion layer to project these unseen (i.e, not overlap)
labels from testing space to training space in or-
der to bridge the shift between testing space and
training space. In addition, we use the skip connec-
tion to control how much information we want to
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acquire from the memory.

4.2 Learn from Memory

To consider all prototypes and learn consistent rep-
resentations during meta-training, we first use a
memory bank to store all prototypes of different
labels from the support set. We design three basic
operations in the memory bank: write, update, and
read.

Write. Specifically, starting from the first episode
ej to the last episode e, in Ey,., we store the label
representations from the corresponding support set
C; = (c1, ¢, ...cx) into external memory bank M
with the label name as key, where k is the number
of labels for the current episode. M increases as
the episode continue on.

E<M<msxk (6)

while k represents average number of labels for
all episodes, and m is the number of episodes. For
the ith episode, we first calculate the prototypi-
cal embedding of seen-label clusters from mem-

ory. Theoretically, this step is unnecessary but we

choose to do so to save computational resources?.

1
. Nk;I{Ci:ck}Ci @)

“We call the prototypical embedding of label clusters by
centroid (i.e, prototype in historical episodes), and prototype
as average label embedding in one episode. Here if we skip
the calculation of centroid, then we can directly use these
prototypes.
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Figure 3: The high-level overview of our learn-from-
the-memory. There are multiple label representations
in the memory bank. We will attract representations
with the same label, repel otherwise, and also update
accordingly.

We use ¢, to represent the centroid of the kth
cluster and we also store it in the memory bank,
and then we define a distance function following
(Ding et al., 2021) as follows:

Ci

lleill el

G

d(ci, cj) = 1/ (1 + exp( ) ®

Read. For the coming labels and corresponding
representations, there are two situations: (1) the la-
bel is new which means it never appears in the pre-
vious episodes, and (2) the label has already been
stored in the memory bank. We extract all centroid
representations from the memory bank and impose
a contrastive learning constraint accordingly.

>

CZ‘ESC,CJ‘ eS—¢
+log(1 — d(cj, c;))]

1

Lmemory e

[log d(ci, cf)
9

For the new label, there are no positive pairs, and
we increase the distances between its representation
and all extracted representations. For the same
label, we draw the same centroid representation but
repel different centroids.

This objective effectively serves as regulariza-
tion to learn more consistent and transferable label
representation as they evolve during meta-training
(Ding et al., 2021; He et al., 2020). We empha-
size that the parameters of models do not change at
this stage, and we do not need to modify the archi-
tecture of traditional metric-based meta-learning
models. As such, the model can be easily trained
together with other components in an end-to-end
fashion.

Update. At the last, we need to re-calculate the
prototypical embeddings of seen-label clusters in
the memory following Equation 7. In this way, the
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Figure 4: The high-level overview of our adaption-from-
memory. We extract global representations from the
memory bank which stores label representations dur-
ing the meta-training stage and use them as grounded
truth to learn the adaption layer (aka, MLP) with la-
bel representations from the current episode (aka, local
representations) as input. We pass all labels, including
overlap labels and new labels, from the current episode
to the adaption layer to get the final representations.

distribution shift across different episodes during
meta-training will be alleviated and thus more gen-
eral discriminative representations can be learned.
Figure 3 demonstrates the whole processing of
learn-from-the-memory.

4.3 Adaption from Memory

To address the forgetting problem during the meta-
testing stage, we take advantage of stored represen-
tations in the memory bank to build a bridge con-
necting the testing space and training space. With
overlapped labels between meta-training and meta-
testing, two types of representations can be ob-
served: 1) one from memory during meta-training;
2) the other from the current episode during meta-
testing. It is noted that labels overlap frequently in
practice, e.g. B-person and B-city almost appear in
every slot tagging dataset.

As shown in Figure 4, we decompose the whole
process into two steps. First of all, we use the over-
lapped labels during meta-training and meta-testing
to learn the adaption function f which minimizes
the representation gap between meta-training and
meta-testing 3.

Yi = f(Riest_overlap)
Where f can be implemented by Multilayer Per-

ceptron (MLP) or one linear layer with the fol-

lowing loss function. Here R} ., ., Means ith

(10)

3We emphasize this operation is conducted at episode-level
to comply with the few-shot setting.



label appears in both the memory bank and current
test episode. The learning objective of adaption
layers L,q, can be defined as follows:

|Overlap|
— i 2
Lada = Z ||Rtrain_overlap - yl” (11)
i=1
,L' .
Where Ri,. ..., overiap Dere can be directly ex-

tracted from the memory bank as the ground truth
representation. We then use the learned adaption
function to project the new labels (i.e, not overlap)
to the training space based on the assumption that
the training space should be more accurate than the
testing space which consists of more labeled data.

Rtrainﬁnew - f(Rtestinew) (12)

In this case, we can get original representations
in the testing space and representations in the train-
ing space after adaption for both overlap labels and
new labels. Our final representation for each la-
bel can be the combination of these two kinds of
representation from different spaces.

Rfin = O * Rori + (1 - CY) * Rada (13)

where « € (0, 1) is a hyper-parameter that con-
trols the percentage of information from the orig-
inal testing space and from adaption. By adap-
tion from the memory, the distribution shift in the
testing episodes rooting in domain transfer and
few-shot setting will be de-biased by the global
representations in the memory.

4.4 Training Objective

The learning objective of our methods is the sum
of three parts. It is noted that these losses are not
optimized simultaneously.

K

Lner =Y yelog(Pe) (14)
c=1

L= Lner + Lmemory + Lada (15)

while L., represents the traditional cross-
entropy loss of sequence labeling (see Eq. 14) and
is optimized with Ly,emory during training (see Eq.
9). Ladq 1s optimized during testing (see Eq. 11).

5 Experiments

5.1 Datasets

We evaluate the proposed methods following the
data split setting provided by (Hou et al., 2020) on
NER and SNIPS datasets (Coucke et al., 2018). It
is in the episode data setting (Vinyals et al., 2016),
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where each episode contains a support set (1-shot
or 5-shot) and a batch of labeled samples. For
NER, we followed the setting as same as (Zhu et al.,
2020), which contains 4 different datasets: CoNLL-
2003 (i.e. News) (Tjong Kim Sang and De Meulder,
2003), GUM (i.e. Wiki) (Zeldes, 2017), WNUT-
2017 (i.e. Social) (Derczynski et al., 2017) and
OntoNotes (i.e. Mixed) (Pradhan et al., 2013). For
SNIPS, it consists of 7 domains with different la-
bel sets: Weather (We), Music (Mu), PlayList (P1),
Book (Bo), Search Screen (Se), Restaurant (Re)
and Creative Work (Cr). And also, we extend our
method to more shots (10-shot and 20-shot) to fur-
ther demonstrate the effectiveness and robust gen-
eralization capability of our approach.

5.2 Baselines

SimBERT. It assigns labels to words according to
the cosine similarity of word embedding of a fixed
BERT. For each word x;, SImMBERT finds the most
similar word z, in the support set and assigns x’s
label to x;.

TransferBERT. It directly transfers the knowledge
from the source domain to the target domain by
parameter sharing. We train it on the source domain
and select the best model on the same validation
set of our model. Before evaluation, we fine-tune
it on the target domain support set.
L-TapNet+CDT+PWE (Hou et al., 2020) one
of the strong baselines for few-shot slot tagging,
which enhances the WarmProtoZero(WPZ) (Frit-
zler et al., 2019) model with label name represen-
tation and incorporate it into the proposed CRF
framework.

L-ProtoNet+CDT+VPB (Zhu et al., 2020) current
state-of-the-art metric-based meta-learning, which
investigates the different distance functions and
utilizes the distance function VPB to boost the per-
formance of the model.

Coach (Liu et al., 2020) Coarse-to-fine approach
(Coach) for cross-domain slot filling, which is a cur-
rent state-of-the-art few-shot fine-tuning method
incorporating template regular loss and slot descrip-
tion information.

5.3 Implementation Details

We take the pre-trained uncased BERT-Base (De-
vlin et al., 2019) as an encoder to embed words
into contextually related vectors in all experiments.
Following the setting in (Zhu et al., 2020), we use
ADAM (Kingma and Ba, 2015) to train the model
with a learning rate of le-5, a weight decay of



Domain
N-shot | Model We Mu Pl Bo Se Re Cr Avg.
SimBERT 36.10 37.08 35.11 68.09 41.61 42.82 2391 | 40.67
TransferBERT 55.82 38.01 45.65 31.63 2196 41.79 38.53 | 39.06
Lshot L-TapNet+CDT+PWE | 71.53 60.56 66.27 84.54 7627 70.79 62.89 | 70.41
L-ProtoNet+CDT+VPB | 73.08 58.50 68.81 8241 7588 73.17 70.27 | 71.73
Coach (Liu et al., 2020) | 55.81 38.72 41.60 41.44 3525 5438 47.74 | 44.99
Ours 7230 58.33 69.64 8290 77.23 7279 79.57 | 73.25
SimBERT 53.46 54.13 4281 7554 57.10 5530 32.38 | 52.96
TransferBERT 59.41 42.00 46.07 20.74 28.20 67.75 58.61 | 46.11
5-shot L-TapNet+CDT+PWE | 71.64 67.16 75.88 84.38 82.58 70.05 73.41 | 75.01
L-ProtoNet+CDT+VPB | 82.54 69.52 80.45 91.03 86.14 80.75 75.95 | 80.91
Coach (Liu et al., 2020) | 73.56 45.85 47.23 61.61 6582 69.99 57.28 | 60.19
Ours 81.79 69.70 80.78 91.53 87.09 8249 81.07 | 82.06
Table 1: Fj scores on few-shot slot tagging of the SNIPS dataset
Model _ lshot __ Sshot
News. Wiki Social Mixed | Avg. || News Wiki Social Mixed | Avg.
SimBERT 19.22 691 5.18 1399 | 11.32 || 32.01 10.63 8.20 21.14 | 18.00
TransferBERT 4.75 057 271 3.46 2.87 15.36 3.62 11.08 3549 | 16.39
L-TapNet+CDT+PWE | 44.30 12.04 20.80 15.17 | 23.08 || 45.35 11.65 2330 20.95 | 25.31
L-ProtoNet+CDT+VPB | 42.23 11.36 27.72 31.17 | 28.10 || 56.30 19.17 3495 43.30 | 38.43
Ours 42770 13.20 26.75 29.86 | 28.13 || 56.89 22.09 3527 42.08 | 39.08

Table 2: F scores on few-shot slot tagging of the NER dataset

5e-5. And we set the distance function as VPB
(Zhu et al., 2020). To prevent the impact of ran-
domness, we test each experiment 10 times with
different random seeds following (Hou et al., 2020).
For adaption from memory, we set the iteration as
1000, and « from [0.1,0.3,0.5,0.7,0.9] and report
the best result.

5.4 Main Result

Table 1 and Table 2 show the results of both 1-shot
and 5-shot slot tagging of SNIPS and NER datasets
respectively. Our method reaches comparable re-
sults with the state-of-the-art and outperforms in
3 out of 7 domains under 1-shot setting, and 6 un-
der 5-shot setting at SNIPS dataset. Specifically,
our method achieves about 13% (70.27 — 79.57)
and 7% (75.95 — 81.07) improvements in the
Cr domain under 1-shot and 5-shot respectively.
Besides that, the improvement keeps consistent
on the NER dataset while adding additional shots
leads to greater improvement. It’s obvious that
our method demonstrates strong scalability and
flexibility with the number of shots increasing.
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When comparing Coach (Liu et al., 2020) with
L-TapNet+CDT+PWE (Hou et al., 2020) and L-
TapNet+CDT+VPB (Zhu et al., 2020), it is also
interesting to see that fine-tuning is not as compet-
itive as metric-based approaches when the shot is
smaller.

6 Ablation Study and Analysis

6.1 Ablation Result

We borrow the result from Zhu et al. (2020) as
baseline (i.e. L-ProtoNet+CDT+VPB) here since
it reaches the best performance out of all base-
lines. Table 3 shows the ablation study of learning
and adaption from memory. Comparing the result
between 1-shot, 5-shot, 10-shot, and 20-shot, we
find that the learn-from-the-memory (i.e. M) mod-
ule gets more important as the number of shots
increases. We attribute this phenomenon to the
more transferable representations due to more la-
beled data brought by more shots. However, the
adaption-from-the-memory cannot keep consistent
improvement, we think this is caused by noise in-
troduced by the adaption layer. After combining



1-shot 5-shot [ 10-shot 20-shot

B A M B A~ M | B A M B A M
We |73.08 7230 71.83 | 8254 81.13 81.79 | 79.09 7875 79.12 | 82.06 80.92 82.79
Mu | 5850 56.58 5833 |69.52 67.95 69.70 | 6571 64.75 66.65 | 68.94 67.47 70.03
Pl | 6881 69.64 68.16 | 80.45 80.78 79.62 | 7443 75.08 77.89 | 75.90 76.16 77.09
Bo | 8241 8195 82.90 | 91.03 89.99 91.53 | 8838 8731 89.65 | 89.10 88.16 90.94
Se | 7588 77.23 7445|8641 8635 86.95 | 86.96 87.37 87.70 | 8833 88.08 88.48
Re | 73.17 71.64 7279 | 80.75 7821 82.49 | 77.06 7495 78.00 | 79.32 76.90 80.31
Cr | 7027 79.57 70.77 | 7595 81.07 76.61 | 80.82 8491 77.31 | 77.37 82.02 7588
Avg. | 71.73 7270 7132|8091 80.78 81.24 [ 7892 79.02 79.96 | 80.15 79.96 80.79

Table 3: Ablation Study of adaption-from-the-memory and learn-from-the-memory on 1-shot, 5-shot, 10-shot and
20-shot respectively on SNIPS dataset. B, A, and M stand for the strongest baseline L-ProtoNet+CDT+VPB, only
adaption-from-memory, and only learn-from-memory respectively.

these two modules, the model can reach the best
performance as reported in Table 1 and Table 2.
Compared with the strongest baseline, the aver-
aged F1 score further improved (More analysis can
be found in Appendix A).

6.2 t-SNE Visualization Analysis

We present a -SNE visualization of label repre-
sentations of trained metric-based meta-learning
methods as shown in Figure 5 and we additionally
draw the t-SNE visualization of label representa-
tions after adding contrastive learning constraint in
Figure 7. On the one hand, it is observed from Fig-
ure 5 that: 1) the representations of B-object_type
and I-object_type at the meta-training stage are
separated into distant groups; and 2) the represen-
tations at the meta-testing stage are shifted com-
pared with those at the meta-training stage. For the
first observation, we can conclude that the model
can not remember what it already learned, failing
to capture a consistent representation of the same
label. A similar problem still happens at the meta-
testing stage due to the presence of poorly sampled
shots (Fei et al., 2021). On the other hand, in Figure
7, it is found that the distance between the represen-
tations of B-object_type (also I-object_type) dur-
ing the meta-training stage is much closer, which
proves the effectiveness of learn-from-the-memory
to alleviate the sample forgetting problem.

6.3 The Impact of different value of scale

To investigate the effects of o during adaption-
from-the-memory, we report the performance of
different assignments of this scale. The result can
be found in Figure 6. Since the larger the value,
the more information from the meta-testing space,
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Figure 5: The t-SNE visualization of label representa-
tions during meta-training and meta-testing learned by
Metric-based Meta-learning Model (Target Domain: Cr
5-shot).

the less information from adaption. Thus, as long
as the graph is monotonically increasing, the less
useful the adaption is. However, as we can ob-
serve, it is obvious that not all domains show this
trend. Specifically, under the 1-shot setting, "P1",
"Se" and "Cr" gets higher performance because
of the adaption, and "P1" and "Cr" continue this
trend in the 5-shot. This shows the adaption layer
is highly domain-sensitive and prefers the domain
which has more overlapped labels. More analysis
can be found in Appendix A.2.

7 Conclusion

In this paper, we address the sample forgetting prob-
lem during meta-training and meta-testing stages in
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tions with our proposed learn-from-the-memory (Target
Domain: Cr 5-shot).

the metric-based meta-learning framework by cap-
turing more transferable and informative label rep-
resentations. To this end, we propose the Memory-
based Contrastive Meta-learning (MCML) method,
which consists of two modules: learn-from-the-
memory and adaption-from-the-memory to func-
tion at different stages. Experimental results on
both NER and SNIPS datasets demonstrate the ad-
vantages of our MCML framework in terms of scal-
ability and robustness.

Limitations

This paper tackles the issues of the sample for-
getting problem in the metric-based meta-learning
framework. We mainly focus on the few-shot slot
tagging tasks but our proposed method is motivated
by the unique setting of metric-based meta-learning
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which can be applied to other text classification
tasks such as intent detection or news classification.
We left this in our future work.

Acknowledgement

We thank all reviewers for their insightful com-
ments and suggestions. This research work is par-
tially supported by ITF Project No. PRP/054/21FX
and CUHK under Project No. 3230366.

References

Ankur Bapna, Gokhan Tur, Dilek Hakkani-Tur, and
Larry Heck. 2017a. Towards zero-shot frame se-
mantic parsing for domain scaling. arXiv preprint
arXiv:1707.02363.

Ankur Bapna, Gokhan Tur, Dilek Hakkani-Tur, and
Larry Heck. 2017b. Towards zero-shot frame se-
mantic parsing for domain scaling. arXiv preprint
arXiv:1707.02363.

Qi Cai, Yingwei Pan, Ting Yao, Chenggang Yan, and
Tao Mei. 2018. Memory matching networks for one-
shot image recognition. In 2018 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR
2018, Salt Lake City, UT, USA, June 18-22, 2018,
pages 4080-4088. IEEE Computer Society.

Tianshi Cao, Marc Law, and Sanja Fidler. 2019. A
theoretical analysis of the number of shots in few-
shot learning. arXiv preprint arXiv:1909.11722.

Qian Chen, Zhu Zhuo, and Wen Wang. 2019. Bert
for joint intent classification and slot filling. arXiv
preprint arXiv:1902.10909.

Alice Coucke, Alaa Saade, Adrien Ball, Théodore
Bluche, Alexandre Caulier, David Leroy, Clément
Doumouro, Thibault Gisselbrecht, Francesco Calta-
girone, Thibaut Lavril, et al. 2018. Snips voice plat-
form: an embedded spoken language understanding
system for private-by-design voice interfaces. arXiv
preprint arXiv:1805.10190.


https://doi.org/10.1109/CVPR.2018.00429
https://doi.org/10.1109/CVPR.2018.00429

Leon Derczynski, Eric Nichols, Marieke van Erp, and
Nut Limsopatham. 2017. Results of the WNUT2017
shared task on novel and emerging entity recogni-
tion. In Proceedings of the 3rd Workshop on Noisy
User-generated Text, pages 140—147, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Ning Ding, Xiaobin Wang, Yao Fu, Guangwei Xu, Rui
Wang, Pengjun Xie, Ying Shen, Fei Huang, Hai-Tao
Zheng, and Rui Zhang. 2021. Prototypical represen-
tation learning for relation extraction. arXiv preprint
arXiv:2103.11647.

Nanyi Fei, Zhiwu Lu, Tao Xiang, and Songfang Huang.
2021. Melr: Meta-learning via modeling episode-
level relationships for few-shot learning. In Proc. Int.
Conf. Learn. Represent., pages 1-20.

Alexander Fritzler, Varvara Logacheva, and Maksim
Kretov. 2019. Few-shot classification in named
entity recognition task. Proceedings of the 34th
ACM/SIGAPP Symposium on Applied Computing.

Ruiying Geng, Binhua Li, Yongbin Li, Jian Sun, and
Xiaodan Zhu. 2020. Dynamic memory induction
networks for few-shot text classification. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 1087-1094, On-
line. Association for Computational Linguistics.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and
Ross Girshick. 2020. Momentum contrast for un-
supervised visual representation learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 9729-9738.

Timothy Hospedales, Antreas Antoniou, Paul Micaelli,
and Amos Storkey. 2022. Meta-learning in neural net-
works: A survey. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 44(9):5149-5169.

Yutai Hou, Wanxiang Che, Yongkui Lai, Zhihan Zhou,
Yijia Liu, Han Liu, and Ting Liu. 2020. Few-shot
slot tagging with collapsed dependency transfer and
label-enhanced task-adaptive projection network. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1381—
1393, Online. Association for Computational Linguis-
tics.

Lukasz Kaiser, Ofir Nachum, Aurko Roy, and Samy
Bengio. 2017. Learning to remember rare events.
In 5th International Conference on Learning Rep-
resentations, ICLR 2017, Toulon, France, April 24-
26, 2017, Conference Track Proceedings. OpenRe-
view.net.

63

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Sungjin Lee and Rahul Jha. 2019. Zero-shot adaptive
transfer for conversational language understanding.
In The Thirty-Third AAAI Conference on Artificial
Intelligence, AAAI 2019, The Thirty-First Innova-
tive Applications of Artificial Intelligence Conference,
IAAI 2019, The Ninth AAAI Symposium on Educa-
tional Advances in Artificial Intelligence, EAAI 2019,
Honolulu, Hawaii, USA, January 27 - February I,
2019, pages 6642-6649. AAAI Press.

Huaiyu Li, Weiming Dong, Xing Mei, Chongyang Ma,
Feiyue Huang, and Bao-Gang Hu. 2019. Lgm-net:
Learning to generate matching networks for few-shot
learning. In International conference on machine
learning, pages 3825-3834. PMLR.

Li Fei-Fei, R. Fergus, and P. Perona. 2006. One-
shot learning of object categories. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence,
28(4):594-611.

Zihan Liu, Genta Indra Winata, Peng Xu, and Pascale
Fung. 2020. Coach: A coarse-to-fine approach for
cross-domain slot filling. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 19-25, Online. Association for
Computational Linguistics.

Yassine Ouali, Céline Hudelot, and Myriam Tami. 2020.
Spatial contrastive learning for few-shot classifica-
tion. arXiv preprint arXiv:2012.13831.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Hwee Tou Ng, Anders Bjorkelund, Olga Uryupina,
Yuchen Zhang, and Zhi Zhong. 2013. Towards ro-
bust linguistic analysis using OntoNotes. In Proceed-
ings of the Seventeenth Conference on Computational
Natural Language Learning, pages 143—-152, Sofia,
Bulgaria. Association for Computational Linguistics.

Aniruddh Raghu, Maithra Raghu, Samy Bengio, and
Oriol Vinyals. 2019. Rapid learning or feature reuse?
towards understanding the effectiveness of maml.
arXiv preprint arXiv:1909.09157.

Darsh Shah, Raghav Gupta, Amir Fayazi, and Dilek
Hakkani-Tur. 2019. Robust zero-shot cross-domain
slot filling with example values. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 5484-5490, Florence,
Italy. Association for Computational Linguistics.

Jake Snell, Kevin Swersky, and Richard S. Zemel. 2017.
Prototypical networks for few-shot learning. In Ad-
vances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Process-
ing Systems 2017, December 4-9, 2017, Long Beach,
CA, USA, pages 4077-4087.


https://doi.org/10.18653/v1/W17-4418
https://doi.org/10.18653/v1/W17-4418
https://doi.org/10.18653/v1/W17-4418
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1145/3297280.3297378
https://doi.org/10.1145/3297280.3297378
https://doi.org/10.18653/v1/2020.acl-main.102
https://doi.org/10.18653/v1/2020.acl-main.102
https://doi.org/10.1109/TPAMI.2021.3079209
https://doi.org/10.1109/TPAMI.2021.3079209
https://doi.org/10.18653/v1/2020.acl-main.128
https://doi.org/10.18653/v1/2020.acl-main.128
https://doi.org/10.18653/v1/2020.acl-main.128
https://openreview.net/forum?id=SJTQLdqlg
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1609/aaai.v33i01.33016642
https://doi.org/10.1609/aaai.v33i01.33016642
https://doi.org/10.1109/TPAMI.2006.79
https://doi.org/10.1109/TPAMI.2006.79
https://doi.org/10.18653/v1/2020.acl-main.3
https://doi.org/10.18653/v1/2020.acl-main.3
https://aclanthology.org/W13-3516
https://aclanthology.org/W13-3516
https://doi.org/10.18653/v1/P19-1547
https://doi.org/10.18653/v1/P19-1547
https://proceedings.neurips.cc/paper/2017/hash/cb8da6767461f2812ae4290eac7cbc42-Abstract.html

Qianru Sun, Yaoyao Liu, Tat-Seng Chua, and Bernt
Schiele. 2019. Meta-transfer learning for few-shot
learning. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition,

pages 403—412.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natural
Language Learning at HLT-NAACL 2003, pages 142—
147.

Mariya Toneva, Alessandro Sordoni, Remi Tachet des
Combes, Adam Trischler, Yoshua Bengio, and Geof-
frey J Gordon. 2018. An empirical study of exam-
ple forgetting during deep neural network learning.
arXiv preprint arXiv:1812.05159.

Gokhan Tur and Renato De Mori. 2011. Spoken lan-
guage understanding: Systems for extracting seman-
tic information from speech. John Wiley & Sons.

Oriol Vinyals, Charles Blundell, Tim Lillicrap, Koray
Kavukcuoglu, and Daan Wierstra. 2016. Matching
networks for one shot learning. In Advances in Neu-
ral Information Processing Systems 29: Annual Con-
ference on Neural Information Processing Systems
2016, December 5-10, 2016, Barcelona, Spain, pages
3630-3638.

Zezhong Wang, Hongru Wang, Wai Chung Kwan, and
Kam-Fai Wong. 2022. Prior omission of dissimilar
source domain(s) for cost-effective few-shot learning.
In Proceedings of the 5th International Conference
on Natural Language and Speech Processing (IC-
NLSP 2022), pages 30-39, Trento, Italy. Association
for Computational Linguistics.

Amir Zeldes. 2017. The gum corpus: Creating multi-
layer resources in the classroom. Lang. Resour. Eval.,
51(3):581-612.

Tao Zhang, Congying Xia, Chun-Ta Lu, and Philip Yu.
2020. MZET: Memory augmented zero-shot fine-
grained named entity typing. In Proceedings of the
28th International Conference on Computational Lin-
guistics, pages 77-87, Barcelona, Spain (Online).
International Committee on Computational Linguis-
tics.

Su Zhu, Ruisheng Cao, Lu Chen, and Kai Yu. 2020.
Vector projection network for few-shot slot tagging
in natural language understanding. arXiv preprint
arXiv:2009.09568.

64


https://aclanthology.org/W03-0419
https://aclanthology.org/W03-0419
https://proceedings.neurips.cc/paper/2016/hash/90e1357833654983612fb05e3ec9148c-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/90e1357833654983612fb05e3ec9148c-Abstract.html
https://aclanthology.org/2022.icnlsp-1.4
https://aclanthology.org/2022.icnlsp-1.4
https://doi.org/10.1007/s10579-016-9343-x
https://doi.org/10.1007/s10579-016-9343-x
https://doi.org/10.18653/v1/2020.coling-main.7
https://doi.org/10.18653/v1/2020.coling-main.7

A Analysis

A.1 Less-shot or More-shot ?

Table 3 shows the result of 10-shot and 20-shot on
the SNIPS dataset which is generated following the
method proposed by Hou et al. (2020).

More Shots. Compare 10-shot with 20-shot, we
can find that all domains are improved with the
help of learn-from-the-memory when the number
of shots increases except “SearchCreativeWork".
Since this is the only domain which has 100% over-
lap labels during meta-training and meta-testing,
we attribute this phenomenon caused by poor rep-
resentations from meta-testing without adaption-
from-memory.

Fewer Shot v.s More Shot. Compare 1-shot and
5-shot (less-shot) with 10-shot and 20-shot (more-
shot), there are some interesting findings: 1) learn-
from-the-memory can boost 6 out of 7 domains in
more-shot instead of 3 in less-shot. This demon-
strates the importance and effectiveness of this
module when the number of shots gets more; 2)
adaption-from-memory shows exactly the same
gains whether or not there are more shots. This
is reasonable since the number of shots does not
affect the number of labels, and also the accu-
racy of adaption. We conclude that learn-from-the-
memory is always worth trying, and adaption-from-
the-memory highly depends on a specific domain.

A.2 The Impact of overlap

The performance of the adaption function highly
depends on the number of overlap labels. Since
the more overlap labels between training and test-
ing, we will get a more accurate adaption function.
Figure 8 shows the percentage of overlap labels
between training data and validation or test data.
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Figure 8: The Percentage of Overlap Labels between
train and valid or test
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To further investigate to what extent the influ-
ence of overlap labels on adaption performance,
we utilize the Pearson correlation coefficient to an-
alyze the relationship between these two variables.
The calculated result is 0.83 which shows these two
variables are highly related.
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Figure 9: Improvement of different shots with different
percentage overlapped labels.

The performance improved by the adaption of
different domains can be found in Figure 9. It
is noted that although "GetWeather" domain has
60% overlap labels with training data, the perfor-
mance declines surprisingly. We further investigate
the specific overlap labels of this domain, and we
find most of them are "state", "country" and "city",
common regular entity types which appear in al-
most every corpus. When the number of shots is
less, these common entities cannot be represented
accurately during meta-training, much less during
adaption. This explains the poor performance of
1-shot and 5-shot and the higher performance of
10-shot and 20-shot. For the above reasons, we
argue it is worth trying adaption once the overlap
exceeds 50% as long as the overlaps labels have
some domain-specific features.



