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Abstract

The diversity and Zipfian frequency distribu-
tion of natural language predicates in corpora
leads to sparsity in Entailment Graphs (EGs)
built by Open Relation Extraction (ORE). EGs
are computationally efficient and explainable
models of natural language inference, but as
symbolic models, they fail if a novel premise
or hypothesis vertex is missing at test-time. We
present theory and methodology for overcom-
ing such sparsity in symbolic models. First,
we introduce a theory of optimal smoothing
of EGs by constructing transitive chains. We
then demonstrate an efficient, open-domain,
and unsupervised smoothing method using an
off-the-shelf Language Model to find approx-
imations of missing premise predicates. This
improves recall by 25.1 and 16.3 percentage
points on two difficult directional entailment
datasets, while raising average precision and
maintaining model explainability. Further, in a
QA task we show that EG smoothing is most
useful for answering questions with lesser sup-
porting text, where missing premise predicates
are more costly. Finally, controlled experi-
ments with WordNet confirm our theory and
show that hypothesis smoothing is difficult, but
possible in principle.1

1 Introduction

An Entailment Graph (EG) is a learned structure
for making natural language inferences of the form
[premise] entails [hypothesis], such as “if Arsenal
defeated Man United, then Arsenal played Man
United.” An EG consists of a set of vertices (typed
natural language predicates), and a set of directed
edges constituting entailments between predicates.
They are constructed in an unsupervised manner
using the Distributional Inclusion Hypothesis (Gef-
fet and Dagan, 2005): a representation is generated
for each predicate based on its distribution with
arguments in a training corpus, and representation

1Code available at github.com/nighttime/EntGraph

Figure 1: The question cannot be answered because a
predicate in the text isn’t in the Entailment Graph. An
LM embeds the predicate so a nearest neighbor in the
EG can be found, completing the directional inference.

subsumption is used for learning directional en-
tailments between predicates. A directional infer-
ence is stricter than paraphrase or similarity, in that
it is true only in one direction, but not both, e.g.
DEFEAT ⊨ PLAY but PLAY ⊭ DEFEAT (where ⊨
means “entails”). Directional inferences are diffi-
cult to learn, but crucial to language understanding.

EGs are useful in tasks like Knowledge Graph
link prediction (Hosseini et al., 2019, 2021) and
question answering from text (Lewis and Steedman,
2013; McKenna et al., 2021). EG learning is unsu-
pervised: building them only requires a parser and
entity linker for a new language domain (Li et al.,

https://github.com/nighttime/EntGraph
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2022b). EGs are relatively very data- and compute-
efficient, requiring less than two days to train on
2GB of unlabeled text using a single GPU (Hos-
seini et al., 2021). Further, EGs are editable and
also explainable, because decisions can be traced
back to distinct sentences on a task.

However, EGs suffer from two kinds of sparsity.
One is edge sparsity, when two predicates are not
observed with co-occurring entities, so cannot be
connected together. Recent work improves on EG
connectivity (Berant et al., 2015; Hosseini, 2021;
Chen et al., 2022) but to our knowledge we are
the first to acknowledge vertex sparsity, arising
when a predicate is not seen at all in training. EGs
are structures of symbols, so they cannot handle
missing queries: in an inference task, if either the
premise or hypothesis predicate is not in training,
no entailment edge can be learned. In fact, many
EG demonstrations achieve just 50% of task recall.
Predicates occur in a Zipfian frequency distribu-
tion with an unbounded tail of rare predicates, so
it’s impractical to scale up the learning of predi-
cate symbols by reading larger corpora. There will
virtually always be predicates missing at test-time.

Modern Language Models combine representa-
tions of subword tokens to solve a similar issue
(Peters et al., 2018; Devlin et al., 2019), and recent
scaling of LMs has lead to breakthrough perfor-
mance on many tasks (Hoffmann et al., 2022; Wei
et al., 2022), offering relief to sparsity problems via
techniques like in-context learning (Brown et al.,
2020). However, as LMs scale in size and compute
they bring new problems: they require balloon-
ing GPU resources to train or run; or are costly
to query via API; and centralizing models under
private companies opens challenges of data privacy.
We are thus motivated to research lower-compute
and more data-efficient methods which run on the
scale of a single GPU.

We are the first to define vertex sparsity and ap-
proach the problem by applying a small, pretrained
LM to improve an existing EG using the benefits of
modern embeddings. We offer four contributions:

(1) A theory for optimal smoothing of symbolic
inference models such as EGs by constructing tran-
sitive chains, accounting for a distinction between
premise and hypothesis.

(2) A low-compute method for unsupervised
smoothing of EG vertices using LM embeddings to
find approximations of missing predicates (see Fig-
ure 1). Applied to premises, we improve recall by

16.3 and 25.1 percentage points on Levy/Holt and
ANT entailment datasets while raising precision.

(3) On a QA task we show LM premise smooth-
ing is most helpful when there is less supporting
context and missing a predicate is more costly.

(4) Finally, in controlled experiments with Word-
Net relations we confirm the behavior of the LM
for premise smoothing and show that hypothesis
smoothing is possible, but more difficult.

2 Background

Research on unsupervised Entailment Graph induc-
tion has mainly oriented toward edges: overcoming
edge sparsity using graph properties like transitiv-
ity (Berant et al., 2015; Hosseini et al., 2018; Chen
et al., 2022), incorporating contextual or extralin-
guistic information to improve edge precision (Hos-
seini et al., 2021; Guillou et al., 2020), and research
into the underlying theory of the Distributional
Inclusion Hypothesis (Kartsaklis and Sadrzadeh,
2016; McKenna et al., 2021). However, none of
these address vertex sparsity.

We leverage sub-symbolic encoding by an LM
using WordPieces (Devlin et al., 2019) in this work
as a means of smoothing, to generalize beyond a
fixed vocabulary of predicates. Our most direct
comparison is with Schmitt and Schütze (2021)
who apply contemporary prompting techniques
with the computationally tractable RoBERTa (Liu
et al., 2019) to learn open-domain predicate en-
tailment. They finetune on premise-hypothesis
pairs and labels from the development split of the
Levy/Holt NLI dataset (Holt, 2018), used in our ex-
periments. They use templates like “[hypothesis],
because [premise]” which are encoded by the LM,
then classified true/false. They report high scores
on datasets, but Li et al. (2022a) have shown that de-
spite excelling at paraphrase detection, rather than
learning directional inference (e.g. BUY ⊨ OWN

and OWN ⊭ BUY), this technique picks up dataset
artifacts spuriously correlated with the labels in
Levy/Holt. In contrast, our approach combines the
strengths of each: open-domain encoding using a
computationally tractable LM with the directional
inference capability of an EG.

3 Theory of Smoothing

We first present a theory for optimal smoothing of
a symbolic EG which overcomes the problem of
vertex sparsity. We define smoothing as the approx-
imation of missing predicates using those in the
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existing predicate vocabulary, in reference to ear-
lier work in smoothing n-gram Language Models
(Chen and Goodman, 1996). We next discuss the
theoretical intuition behind applying an LM as an
open-domain smoother.

3.1 Directionality by Transitive Chaining
We argue that it is most important when modifying
EG predictions by smoothing to maintain the EG’s
strong directional inference capability. Our theory
maintains directionality by constructing transitive
chains, importantly distinguishing the role of the
proposition as premise or hypothesis. We distin-
guish ways to P-smooth premises and H-smooth
hypotheses.

We start with a query entailment relation Q :
p ⊨ h, with unknown truth value to be verified
by a model which is missingmissingmissingmissingmissingmissingmissingmissingmissingmissingmissingmissingmissingmissingmissingmissingmissing entries for at least
p or h. We specify smoothing as the process of
generating a new relation Qs suitable for the model
by identifying a replacementreplacementreplacementreplacementreplacementreplacementreplacementreplacementreplacementreplacementreplacementreplacementreplacementreplacementreplacementreplacementreplacement predicate p′ and/or h′

within the model’s vocabulary. We claim that to
maintain directional precision, this must be done
by identifying a p′ (or h′) related to p (or h) such
that a transitive chain is constructed, as in the cases
below. By this transitivity, confirmation of Qs is
leveraged to confirm Q.

1. Generalize Missing P. Identify a more general
premise p′ in the EG such that p ⊨ p′. This
yields a new Qs : p

′ ⊨ h.

(Q) “a obliteratedobliteratedobliteratedobliteratedobliteratedobliteratedobliteratedobliteratedobliteratedobliteratedobliteratedobliteratedobliteratedobliteratedobliteratedobliteratedobliterated b” ⊨ “a played b”

⊨

(Qs) “a beatbeatbeatbeatbeatbeatbeatbeatbeatbeatbeatbeatbeatbeatbeatbeatbeat b” ⊨ “a played b”

p ⊨ p′ is known, so if the EG confirms p′ ⊨ h,
then p ⊨ h is confirmed by transitivity.

2. Specialize Missing H. Identify a more special-
ized hypothesis h′ in the EG such that h′ ⊨ h.
This yields a new Qs : p ⊨ h′.

(Q) “a bought b” ⊨ “a shopped forshopped forshopped forshopped forshopped forshopped forshopped forshopped forshopped forshopped forshopped forshopped forshopped forshopped forshopped forshopped forshopped for b”

⊨

(Qs) “a bought b” ⊨ “a paid forpaid forpaid forpaid forpaid forpaid forpaid forpaid forpaid forpaid forpaid forpaid forpaid forpaid forpaid forpaid forpaid for b”

If the EG confirms p ⊨ h′, then also knowing
h′ ⊨ h confirms p ⊨ h by transitivity.

3. Generalize P and Specialize H. If missing both
p and h, combine methods: identify new p′ and
h′ as above, yielding a new Qs : p

′ ⊨ h′.

Knowing p ⊨ p′ and h′ ⊨ h, if a model confirms
p′ ⊨ h′, then p ⊨ h is confirmed by transitivity.

Of course, the success of this smoothing depends
on being able to find p′ such that p ⊨ p′, and h′

such that h′ ⊨ h. However, when an additional
inference is found, it is likely to be correct, aiding
model precision. By definition we cannot use the
EG for this, and we turn to Language Models to
identify replacement predicates.

3.2 LM Embeddings and Specificity

We assume that p′ and h′ are respectively among
the nearest neighbors of p and h in the embed-
ding space of the LM, and in this paper propose
a method to leverage LM embeddings in an unsu-
pervised way to find them. As defined later in §4,
we first embed all EG predicates, then at test-time
we embed the target query predicate and search
for the K nearest neighbors to the target in embed-
ding space. We predict that doing so for a premise
predicate will build a transitive chain satisfying the
conditions of §3.1. We identify two factors which,
combined, lead to predictions that are likely more
semantically general than the target, which enables
P-smoothing, but not H-smoothing:

(A) The LM training objective. Li et al. (2020)
show that the masked language modeling objective
in BERT induces a particular structure in its la-
tent embedding space: on average, corpus-frequent
words are embedded near the origin and infrequent
ones further out. This is because of statistical
learning, which biases LMs toward high frequency
words since they are trained on a corpus to pre-
dict the most probable tokens. This objective leads
LSTM-based LMs to produce a beneficially Zip-
fian frequency distribution of words (Takahashi and
Tanaka-Ishii, 2017), and similar biases are evident
in Transformers for generation like GPT-2 and XL-
Net (Shwartz and Choi, 2020).

(B) The natural anti-correlation of word fre-
quency with specificity in text. Probabilistically,
the more frequent a word, the lower its “seman-
tic content” (in other words, the less specific it is).
Caraballo and Charniak (1999) show this for nouns,
and this assumption is even used in the “IDF” com-
ponent of TF-IDF (Spärck Jones, 1972).

These factors imply that embedding a vocabu-
lary of EG predicates using an LM will result in
a space densely populated toward the origin by
corpus-frequent predicates. KNN-search starting
from a target predicate embedding will likely return
neighbors toward this dense origin, thus selecting
more corpus-frequent, semantically general words.
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We illustrate further in §3.3.
This effect has even been studied elsewhere: in

Machine Translation, frequency bias causes a quan-
tified semantic generalizing effect from transla-
tion input to output (Vanmassenhove et al., 2021),
dubbed “Machine Translationese” due to the artifi-
cially non-specific tone.

3.3 The Specificity Taxonomy

To help show the relation between frequency and
generality and characterize the source of vertex
sparsity, we illustrate a hierarchical taxonomy of
predicates ordered by specificity, following from
the theories of natural categories and prototype
instances (Rosch and Mervis, 1975; Rosch et al.,
1976). We place very general predicate categories
at the top of this taxonomy such as “act” and
“move,” with concrete subcategories beneath, and
highly specific ones at the bottom, like “innoculate”
and “perambulate.” Rosch et al define their middle
“basic level categories” for nouns, containing ev-
eryday concepts like “dog” and “table,” which are
learned early by humans and are used most com-
monly among all categories, even by adults (Mervis
et al., 1976). We assume an analogous basic level
in a predicate taxonomy, too, in Figure 2.

Figure 2: The specificity taxonomy. The basic level
contains “everyday” predicates. Above becomes more
general, and below becomes more concrete and specific.
Usage frequency decreases away from the basic level.

There are few general categories at the top and
many specific ones at the bottom (e.g., consider
the many ways to “move,” e.g. “walk,” “sprint,”
“lunge”). However, since basic level categories are
the most frequently used, moving either up or down
in the taxonomy accompanies a decrease in usage
frequency. Above the basic level, predicates are
fewer and more abstract, and can be infelicitous in
daily use (e.g. calling a cat a “mammal” in Rosch’s
case or predicates like “actuate” in ours). Below,

predicates are highly specialized for specific con-
texts, so there are many more of them, and they are
lower-frequency (e.g. “elongate,” “defenestrate”).
This is a major source of vertex sparsity.

This asymmetry encourages P-smoothing us-
ing an LM (and foreshadows its failure at H-
smoothing). A predicate z is likely to be missing
from an EG if it is corpus-infrequent, thus likely
specific. Randomly sampling another EG predicate
z′ neighboring z in embedding space, but sampled
proportional to observed frequencies, is likely to
return a predicate of higher frequency, toward the
basic level, which is usually higher in the specificity
taxonomy. Thus given z, a frequency-proportional
sample z′ is likely to be more general than z, usable
for P-smoothing to construct a transitive chain.

4 Experimental Methods

In this work we consider Entailment Graphs of
typed binary predicates. An EG is defined as G =
(V,E), consisting of a set of vertices V of natural
language predicates (with argument types in the set
T ), and directed edges E indicating entailments.

Binary predicates in V have two argument slots
labeled with their types. For example, the pred-
icate TRAVEL.TO(:person, :location) ∈ V , and
the types :person, :location ∈ T . An exam-
ple entailment is TRAVEL.TO(:person, :location)
⊨ ARRIVE.AT(:person, :location) ∈ E.

Our smoothing method may be applied to any
existing EG. In this work we show the comple-
mentary benefits of vertex-smoothing with existing
methods in improving edge sparsity by comparing
two related baseline models, described in §5. These
EGs are learned from the same set of vertices, but
are constructed differently so have different edges.
The FIGER type system is used for these experi-
ments (Ling and Weld, 2012), where |T | = 49, and
these models typically have up to |T |2 = 492 typed
subgraphs g ∈ G. Typing disambiguates senses of
the same predicate, which improves precision of
inferences, an observation in NLP tracing back to
Yarowsky (1993). For example, RUN(:person, :or-
ganization) which is learned in the typed subgraph
g(person-organization) has a different meaning and en-
tailments than RUN(:person, :software).

4.1 Nearest Neighbors Search

Our method assumes that existing EGs contain
enough predicates already present in the graph to
enable discovery of suitable replacements for an
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x : (join.1,join.2)#person#organization
⇒ “person join organization”

x : (give.2,give.to.2)#medicine#person
⇒ “give medicine to person”

x : (export.1,export.to.2)#location_1#location_2
⇒ “location_1 export to location_2”

Table 1: A typed predicate x is converted to a sentence
(shown) and encoded with an LM by L(x). The final
output is the average over predicate WordPiece vectors.

unseen target predicate, using an LM. For exam-
ple, in the sports domain, the EG may be missing
a rare predicate OBLITERATE but contain similar
predicates BEAT and DEFEAT which can be found
as close neighbors in Language Model embedding
space. These nearby predicates are expected to
have similar semantics (and entailments) to the
unseen target predicate, and will thus be suitable
replacements. See Figure 1 for an illustration.

We define the smoothed retrieval function S,
which replaces the typical method for retrieving
a target predicate vertex x from a typed subgraph
g(t) = (V (t), E(t)), with typing t ∈ {T × T }.

Ahead of test-time, for each typed subgraph g(t)

we encode the EG predicate vertices V (t) as a ma-
trix V(t). For each predicate v(t)i ∈ V (t), we encode
v(t)i = L(v

(t)
i ), a row vector v(t)i ∈ V(t).

At test-time we encode a corresponding vector
for the target predicate x, x = L(x). Then S re-
trieves the K-nearest neighbors of x in g(t):

S(x, g(t),K) =

{v(t)i | v(t)i ∈ V (t), if v(t)i ∈ KNN(x,V(t),K)}

L(·) is a function which encodes a typed natural
language predicate using a pretrained LM. First,
a short sentence is constructed from the predicate
using the types as generic arguments, and then
the sentence is encoded by the LM (see Table 1
for examples). We extract the representations of
WordPieces corresponding to the predicate, and
average them into the resulting predicate vector.
In our experiments we use RoBERTa (Liu et al.,
2019) for encoding, a well-tested, off-the-shelf LM
of tractable size for running on a single GPU, which
has pretrained on 160GB of unlabeled text.

For the KNN search metric we use Euclidean
Distance (L2 norm) from the target vector x to
vectors in V(t). We precompute a BallTree using
scikit-learn (Pedregosa et al., 2011) which spatially

“The audience applauded the comedian” ⊨ “The audi-
ence observed the comedian”
“The audience observed the comedian” ⊭ “The audience
applauded the comedian”

“The laptop satisfied the criteria” ⊨ “The laptop was
assessed against the criteria”
“The laptop was assessed against the criteria” ⊭ “The
laptop satisfied the criteria”

Table 2: Example queries, ANT (dev) directional subset.

organizes the EG vectors to speed up search from
linear in the number of vertices |V (t)| to log |V (t)|.

4.2 Datasets
We demonstrate our smoothing method on two ex-
plicitly directional datasets, which test both direc-
tions of predicate inference, creating a 50% posi-
tive/50% negative class balance.

Levy/Holt. This dataset (Holt, 2018; Levy and
Dagan, 2016) has been explored thoroughly in pre-
vious work (Hosseini, 2021; Guillou et al., 2021; Li
et al., 2022b; Chen et al., 2022). Importantly, it in-
cludes inverses for all queries, allowing systematic
investigation of directionality, although it contains
a high proportion of paraphrases and selection bias
artifacts that can be picked up by finetuning in
supervised models (Li et al., 2022a). We test on
the 1,784 questions forming the purely directional
subset, which is more challenging.

ANT. This is a new, high-quality dataset improv-
ing on Levy/Holt, which tests predicate entailment
in the general domain (Guillou and Bijl de Vroe,
2023). It was created by expert annotation of entail-
ment relations between clusters of predicate para-
phrases, expanded automatically using WordNet
and other dictionary resources into thousands of
test questions of the format “given [premise], is [hy-
pothesis] true?” We test on the directional subset
of 2,930 questions.

See Table 2 for dataset examples. Each comes
preprocessed with argument types from CoreNLP
(Manning et al., 2014; Finkel et al., 2005), roughly
aligning with EG FIGER types. We use the MoN-
TEE system (Bijl de Vroe et al., 2021) to ex-
tract CCG-parsed and typed predicate relations (x)
shown in Table 1, which are used as queries to
Entailment Graphs.

4.3 Models
We smooth two recent Entailment Graphs which
previously scored highly amongst unsupervised
models on the full Levy/Holt dataset. Importantly,
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Figure 3: Experiment 1: Smoothing the CTX EG with
an LM on the ANT dataset. P-smoothing improves
recall and precision, whereas H-smoothing is detrimen-
tal. We try different K ∈ {2, 3, 4} and show the best
Kprem = 4 and Khyp = 2.

they are constructed from the same set of predicate
vertices but have different edges, so we can observe
how vertex- and edge-improvements combine.

GBL. The EG of Hosseini et al. (2018), which
introduces a “globalizing” graph-based method to
improve the edges after “local” EG learning.

CTX. The state-of-the-art contextualized EG of
Hosseini et al. (2021), which improves over GBL
edges by augmenting local learning with a contex-
tual link-prediction objective, before globalizing.

GBL-P / GBL-H and CTX-P / CTX-H. We ap-
ply an LM separately for both P- and H-smoothing
on GBL and CTX. As described earlier, we use
the RoBERTa LM (Liu et al., 2019) to produce
embeddings for smoothing the EG.

S&S. The finetuned RoBERTa model of Schmitt
and Schütze (2021) (discussed in §2). We insert
each premise/hypothesis pair into their 5 prompt
templates, and take the maximum entailment score
as the model prediction for the pair. Li et al. (2022a)
find that this model has overfit to artifacts present
in Levy/Holt, so we compare with it on a different
question answering task in §6.

5 Experiment 1: Entailment Detection

We run two experiments on both Levy/Holt and
ANT. (1) We apply our unsupervised smoothing
to augment the Premise of each test entailment,
generating K new target premise predicates. Sepa-
rately, (2) we smooth the Hypothesis of each test
entailment the same way. For both we try different
values of the hyperparameter K ∈ {2, 3, 4}.

Plots for model performances are shown in Fig-
ure 3, in which we compare P-smoothing vs. H-
smoothing of the CTX graph using Kprem = 4 and
Khyp = 2, chosen for producing the best AUCn

ANT Levy/Holt

Model AUCn AP AUCn AP

GBL 3.79 58.36 3.01 55.82
GBL-PK=4 13.91 64.71 9.95 60.70
GBL-HK=2 1.41 52.57 1.09 52.05

CTX 15.44 65.66 9.40 60.19
CTX-PK=4 25.86 67.47 13.45 60.80
CTX-HK=2 9.94 58.52 8.33 57.97

Table 3: Experiment 1: P- and H-smoothing, compared
to unsmoothed models. P-Smoothing with an LM im-
proves AUCnorm (AUCn) and Average Precision (AP)
in both CTX and GBL models.

(see Appendix A for all results). In Appendix B
we also show P-smoothing in particular of the CTX
graph vs. the GBL graph. For all models (best K
selected) on both datasets we show summary statis-
tics in Table 3, including normalized area under
the precision-recall curve (AUCn) and average pre-
cision (AP) across the recall range. A sample of
model outputs is shown in Table 4.

Li et al. (2022a) introduce AUCn, a fair way
to compare models which may achieve different
maximum recalls. It computes only the area under
the precision-recall curve above the random-guess
baseline for the dataset, so it is highly discerning
compared to AUC, which can inflate performance
when there is a high random baseline. In our case,
the high 50% random baseline means that AUCn

scores are systematically much smaller than AUC.
As predicted, our method of selecting nearest-

neighbors of a target predicate in an EG using their
LM embedding distance has different behavior for
P-smoothing than H-smoothing. We observe that
P-smoothing with an LM is very beneficial to both
the recall and precision of both Entailment Graphs
it is applied to, with a slight advantage in AUCn

to higher values of K. When applied to the SOTA
model CTX on the ANT dataset, our smoothing
method increases maximum recall by 25.1 absolute
percentage points (pp) to 74.3% while increasing
average precision from 65.66% to 67.47%. On
Levy/Holt we increase maximum recall by 16.3
absolute pp to 62.7% while slightly raising average
precision. However, H-smoothing with the LM is
highly detrimental: despite improving recall, av-
erage precision on ANT is cut to 58.52%, and the
lowest confidence predictions are at random chance
(50% precision).

We also note that P-smoothing greatly improves
recall and precision when applied to both GBL
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Predicate Missing
from EG

Nearest Neighbors
by Embedding Dist.

DISCREDIT(:person, :thing) PROBE, ACCUSE

CRACK.UP.AT(:person,
:written_work)

MAKE.JOKE.AT,
YELL.AT

MINIMIZE(:organization, :thing) SOFTEN, EVADE

REBUKE(:person, :person) OPPOSE, REMIND

Table 4: Experiment 1: Sample of CTX outputs on ANT.
A target PREDICATE(type1, type2) that is missing from
CTX is closest in LM embedding space to K=2 CTX
predicates, which are more semantically general.

and CTX graphs. This shows the complementary
nature of improving vertex sparsity with improving
edge sparsity in EGs: these techniques improve
different aspects, which can be applied together.
Since effects are similar for both EGs, from now on
we show results only for CTX, and report additional
results for the weaker GBL in Appendix B.

6 Experiment 2: Question Answering

We now experiment with LM smoothing in appli-
cation on an applied task. We test on the Boolean
Open QA task, BoOQA (Li et al., 2022a), in which
models answer true/false questions about entities
mentioned in news articles from multiple sources.
BoOQA questions are chosen to be adversarial to
simple similarity baselines, and EGs have proven
useful by using directional reasoning.

6.1 Boolean Open-Domain QA

BoOQA is a task over open domain news articles,
with questions formed by extracting triples of (en-
tity, relation, entity), in the format “is it true that
<triple>?” Context statements are other triples
sourced from the articles concerning the same ques-
tion entities, and the task is to compare each context
statement with the question itself. If any context
statement entails the question by means of its rela-
tion, the question can be labeled “true,” otherwise
“false.” BoOQA also contains false questions de-
rived from true ones, so models must decide care-
fully what is supported by evidence and what isn’t.

We address vertex sparsity in a natural setting,
so we relax the original entity restriction of Li
et al. (2022a): instead of sampling questions about
frequently-mentioned entities (which always have
many context statements to decide from), we in-
crease the challenge by sampling from the natural
distribution of entities, regardless of popularity.

Context Size CTX CTX-P CTX-H S&S

[2, 5) 20.05 20.66 19.07 17.00
[5, 10) 29.13 29.17 29.01 23.05
[10, 15) 32.32 32.31 32.25 24.98
15+ 36.58 36.57 36.51 26.13

All Questions 21.26 21.74 20.64 16.99

Table 5: Experiment 2: Effect of P- and H-smoothing
vs. baseline CTX and S&S across context sizes (AUCn

is reported). P-smoothing is useful on CTX when fewer
context statements are available.

6.2 Results Across Context Sizes

Results corroborate the earlier tests: P-smoothing
improves AUCn from 21.26% to 21.74% over all
questions, while H-smoothing worsens to 20.64%
(as in §4, AUCn is systematically lower than AUC).
We also outperform Schmitt and Schütze (2021),
our most direct competition which uses a tractable-
size LM. Despite facility to encode any predicate,
it lacks directional precision useful for this task.

To demonstrate when smoothing an EG is help-
ful, we further analyze the effect on different con-
text size bands. For each question, we count the
number of context sentences available to answer it;
questions are bucketed into bands of [2, 5), [5, 10),
[10, 15), 15+. From the overall dataset we sample
approximately 55,000 questions per context size
band (see Appendix C for exact counts). On each
band we compare an unsmoothed model with P-
smoothing and H-smoothing, and we report results
in Table 5.

The benefit of P-smoothing is greatest in the
lowest band f < 5, and diminishes in higher bands.
This is because in the lower bands there are fewer
context statements which may be used to answer
the question, increasing difficulty. Here the EGs are
more prone to sparsity, because missing even a few
context predicates devastates its chance to answer
the question. In fact, the proportion of questions
for which all context relations are missing from the
EG is 1.5% for f > 15, but 32.7% for f < 5.

7 Experiment 3: P and H with WordNet

LM P-smoothing works well, but not H-smoothing.
We now show controlled experiments using Word-
Net relations (Fellbaum, 1998) to confirm this is
due to semantic generalization (in line with our the-
ory in §3.1). We show by constructing a transitive
chain using WordNet hyponyms that Hypothesis
smoothing is possible in principle, without claim-
ing that it provides a practical alternative to an LM.
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Figure 4: Experiment 3: Comparing WordNet relations used in smoothing P(remise), H(ypothesis), and P+H, with
CTX graphs on the ANT dataset. Hypernyms are useful for P-smoothing, and hyponyms less so for H-smoothing.

7.1 Controlled Search with WordNet

We re-run the §4 experiment by smoothing the CTX
model on the ANT dataset (GBL in Appendix B).
However, the target premise or hypothesis is now
approximated without the LM. Instead, we generate
replacements using two WordNet relations.2

In this test, we choose specific WordNet lexical
relations as instances of entailment, then generate
smoothing predictions from the WN database. The
hyponymy relation is used for specialization and
hypernymy for generalization, and these are com-
pared for both P- and H-smoothing.

To illustrate, if smoothing by specializing,
given a predicate “receive from,” we retrieve
WN hypernyms like “inherit from.” We do
this by querying WN for relations of the pred-
icate head word. We use results from the first
word sense to replace the query word. E.g.,
from (receive.2,receive.from.2) the WN
query hyponym(“receive”) ⇒ “inherit” generates
(inherit.2,inherit.from.2).

7.2 Results

Results are shown in Figure 4. Importantly, from
these plots a switch in performance is observed be-
tween the application of hypernyms and hyponyms
when used for P- and H-smoothing on CTX (sim-
ilar results for GBL, see Appendix B). It is clear
that generalizing the premise using hypernyms is
highly effective in terms of recall and precision, but
specializing with hyponyms is extremely damaging
to precision. For the hypothesis, the reverse is true:
generalizing with hypernyms worsens performance,
but specializing with hyponyms can lead to some
performance gains (when used with P-smoothing,

2WN was partly used in ANT’s construction, so this result
explains the LM effect, rather than offering a practical model.

see discussion below). We also tested Levy/Holt
and see a similar trend.

These results nearly replicate the behavior of the
LM-smoother in §4, verifying that nearest neighbor
search in LM embedding space has a semantically
generalizing effect suitable for P-smoothing. Ta-
ble 4 shows examples of generalized predictions.

Finally, we note P-smoothing with WordNet per-
forms similarly to the LM in this “laboratory” set-
ting (see Appendix D), but an LM smoother is still
preferable due to being fully automatic and open-
domain, handling new words, misspellings, etc.

7.3 Discussion
We note two phenomena of interest. (1) For both
CTX and GBL, performance is boosted in the low-
recall/high-precision range when using both opti-
mal smoothers (Phyper + Hhypo), higher than us-
ing either smoother individually. (2) Additionally,
Hhypo is the better H smoother tested, though it
appears unreliable on its own without P smoothing:
Hhypo is not useful for smoothing CTX, but it does
improve the weaker GBL, see Appendix B.

Both of these phenomena are likely related to
data frequency. Generalized hypernyms such as
BEAT and USE are quite common in training data,
and therefore have more learned edges in the EG
with high quality edge weights. However, special-
ized hyponyms like ELONGATE can be extremely
sparse in training data, leading to poorer learned
representations and fewer edges. Phenomenon (1)
shows that using a frequently-occurring smoothed
premise of high quality yields better odds of finding
an edge to a smoothed hypothesis, leading to some
performance gains over either smoother individu-
ally. Phenomenon (2) suggests that H-smoothing
may be naturally more difficult than P-smoothing,
and less stable due to sparsity of hyponyms (spe-
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cializations) in corpora. If a hypothesis h is missing
from the EG (meaning it wasn’t seen in training)
then deriving a candidate for replacement h′ spe-
cialized from h will also be unlikely to occur in
training, thus even if found in the EG it may have
few or poorly learned edges. Though it can be
beneficial to precision, natural data sparsity makes
H-smoothing fundamentally harder.

8 Conclusion

We introduce a theory for optimal smoothing of
a symbolic model of language inference like an
Entailment Graph, which solves the problem of
vertex sparsity in EGs by constructing transitive in-
ference chains. Further, we show an unsupervised,
open-domain method of P-smoothing by approx-
imating premises missing from an EG using Lan-
guage Model embeddings, which improves both
recall and precision on two difficult directional en-
tailment datasets. We also test the method on a
QA task, where we show the most benefit in diffi-
cult scenarios where limited context information is
available. Our method is low-compute, combining
an existing EG with a pretrained LM of tractable
size for a single GPU, and it improves over two low-
compute baselines: a SOTA EG and a finetuned
RoBERTa-based prompting model.

We also demonstrate our theory of optimal
smoothing by directing the search for predictions
using WordNet relations, without an LM. Our ex-
periments replicate the behavior of the LM-based
smoother, offering an explanation for why LM em-
beddings are useful for P-smoothing, but not H-
smoothing, in terms of the semantic generalizing
effect when searching a neighborhood in embed-
ding space.

Limitations

In this work we present a simple “graph smoothing”
method which leverages the natural structure in LM
embedding space to find approximations of predi-
cates missing from the EG, a major source of error.
Nearest neighbors search within LM embedding
space is biased toward returning predicates that are
more semantically general, which is helpful for
P-smoothing.

However, generalizing is detrimental to H-
smoothing, which requires specialization. While
we show a proof of specialization and empirical
evidence using WordNet, solving H-smoothing in
an open domain using an unsupervised model such

as a Language Model is left open in this work. It
is likely that H-smoothing is a more difficult task
than P-smoothing due to natural data sparsity as dis-
cussed in the paper. If a hypothesis is missing from
the EG, it is likely to be a corpus-infrequent predi-
cate, and specializing it will yield other predicates
of low frequency, yielding poor odds of recovery.

Further, using a sub-symbolic LM encoder theo-
retically enables inference using any premise pred-
icate, but we are still restricted to choosing approx-
imations from the predicate vocabulary of the EG.
If the vocabulary is not suitable e.g. for a new tar-
get genre/domain, Hosseini et al. (2021) show that
EG learning may be scaled up easily, which may
provide a sufficiently scoped vocabulary for any
application, but exploration is left to future work.

Finally, our work is demonstrated only on the
English language. However, we expect this method
should succeed with arbitrary natural languages. Li
et al. (2022b) demonstrate that learning Entailment
Graphs in Chinese can be done using the same
process as English, and our technique leverages a
simple fundamental property of Language Models
stemming from the natural Zipfian distribution of
predicates in corpora, across languages.

Ethical Considerations

This work is designed to extend the capabilities
of Entailment Graphs, which are general-purpose
structures of meaning postulates. These can be
applied most readily to question answering appli-
cations, but they can also be used for other NLU or
NLI tasks. As an unsupervised, corpus-based learn-
ing algorithm, we believe that EGs could be sus-
ceptible to learning biases in human beliefs present
in corpora, but this algorithm is most sensitive to
widely repeated statements, which may be easier to
detect in data cleaning than uncommon statements.
We believe there is no immediate risk in basic ques-
tion answering when using EGs that are trained
on published news articles, as shown in this work,
because the training data is professionally edited to
a standard. However, models for general language
understanding like an EG may be used for many
purposes beyond this.
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A Hyperparameter Search

In §5 we test three values for hyperparameters
Kprem and Khyp, each from choices {2, 3, 4}. Fig-
ure 5 shows all smoothing combinations. We select
Kprem = 4 and Khyp = 2 in the main experiments
due to having the highest AUCn values for P- and
H-smoothing, respectively. We highlight a few
trends. (1) higher Kprem appears better (most no-
tably, Kprem = 4 yields slightly better recall than
Kprem = 2), though it has diminishing returns.
(2) lower Khyp is better, because H-smoothing us-
ing an LM is actively harmful (Khyp = 0, an un-
smoothed EG, would “perform” better in practice!).

Figure 5: Experiment 1: LM smoothing on the ANT
dataset. Comparison of P- and H-smoothing CTX
with different Kprem and Khyp from choices {2, 3, 4}.
Higher values of K are shown more darkly.

B The GBL Entailment Graph

We test the older GBL graph (Hosseini et al., 2018)
on the ANT dataset. Results confirm findings on

the newer CTX (Hosseini et al., 2021). Figure 6
shows results for the experiment in §4 but compar-
ing P-smoothing with LM predictions for the CTX
and GBL graphs. We note that base CTX performs
much better than GBL, and that P-smoothing with
an LM improves both GBL and CTX.

Figure 7 shows results for the experiment in §7
of smoothing an EG using WordNet relations, but
we now show smoothing the older GBL graph. We
observe similar results as with CTX: there is notice-
able improvement over the base EG when smooth-
ing either premises with hypernyms, hypotheses
with hyponyms (stronger than when applied to
CTX), or both combined.

Figure 6: Experiment 1: LM smoothing on the ANT
dataset. Comparison of P-smoothing GBL and CTX
with optimal K=4.

C BoOQA Context Size Bands

In the QA task a model must try to draw an in-
ference from any context statement (premises) to
infer the validity of the question (hypothesis). Any
model is less likely to find an entailment when there
are few premises, but symbolic EGs are especially
prone because missing premises means even fewer
chances to find an entailment. From the original
dataset, we sample approximately 55,000 questions
for each context size band, including 55,000 ques-
tions from the natural distribution, with no con-
text limitation (“All Questions”). Sample sizes are
shown in Table 6.

[2, 5) 56,390
[5, 10) 56,425
[10, 15) 54,778
15+ 54,926

All Questions 56,494

Table 6: Experiment 2: Sample sizes for context bands
on the QA task.
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Figure 7: Experiment 3: WordNet relations used to smooth P(remise), H(ypothesis), and P+H, with the Entailment
Graph GBL on the ANT dataset. Hypernyms are useful for P-smoothing, and hyponyms for H-smoothing.

D P-Smoothing: LM vs. WordNet

In Figure 8 we show a comparison of P-smoothing
between the LM (CTX-PLM AUCn = 25.86) and
WordNet (CTX-Phyper AUCn = 27.39) on the
ANT dataset. We note that although WordNet per-
forms within about 1.5% of the LM smoother in
this “laboratory” experiment, we believe the LM-
smoother is preferable in use, because it is fully
automatic to learn and apply, and because it en-
codes an open domain of predicates, which may
include new words, misspellings, etc. that WordNet
cannot handle.

Figure 8: Comparison of P-smoothing methods on ANT:
LM-based smoother performs similarly to WordNet hy-
pernym relations on the Entailment Graph CTX.


