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Abstract

The rapid proliferation of AI-generated text
online is profoundly reshaping the informa-
tion landscape. Among various types of AI-
generated text, AI-generated news presents
a significant threat as it can be a prominent
source of misinformation online. While sev-
eral recent efforts have focused on detecting
AI-generated text in general, these methods re-
quire enhanced reliability, given concerns about
their vulnerability to simple adversarial attacks.
Furthermore, due to the eccentricities of news
writing, applying these detection methods for
AI-generated news can produce false positives,
potentially damaging the reputation of news
organizations. To address these challenges, we
leverage the expertise of an interdisciplinary
team to develop a framework, J-Guard, capa-
ble of steering existing supervised AI text de-
tectors for detecting AI-generated news while
boosting adversarial robustness. By incorporat-
ing stylistic cues inspired by the unique jour-
nalistic attributes, J-Guard effectively distin-
guishes between real-world journalism and AI-
generated news articles. Our experiments on
news articles generated by a vast array of AI
models, including ChatGPT (GPT3.5), demon-
strate the effectiveness of J-Guard in enhanc-
ing detection capabilities while maintaining an
average performance decrease of as low as 7%
when faced with adversarial attacks.

1 Introduction

Recent advances in transformer-based generative
models have led to substantial enhancements in the
Natural Language Generation (NLG) capabilities
of advanced conversational Artificial Intelligence
(AI) systems, such as ChatGPT and BARD. These
AI tools generate human-like text on a large scale
by leveraging state-of-the-art (SOTA) pre-trained
language models (PLMs) such as GPT 4 (OpenAI,
2023), GPT 3.5 (Ouyang et al., 2022), GPT 3 (Rad-
ford et al., 2019), OPT (Zhang et al., 2022) and
Lambda (Thoppilan et al., 2022). Considering the

current trend of deploying these models in services
offered to the general public, we can anticipate
further improvements in NLG from future models.

However, deploying such NLG-capable models
for public use poses the risk of potential misuse.
Adversaries can employ these models to establish
harmful agendas and conduct influence operations
that deceptively steer the opinions of large groups
of a target populace (Shu et al., 2020; Goldstein
et al., 2023). AI-generated news articles are par-
ticularly concerning, as they can cause significant
damage to the information ecosystem. Malicious
actors can easily prompt AI models to generate text
that purports to be authentic news but contains fal-
sified information (Shu et al., 2018; Zellers et al.,
2019). To make matters worse, current models are
capable of generating misinformation and factually
incorrect text in large volumes at a minimal cost
through APIs. A recent report1 by NewsGuard,
an organization that combats misinformation on-
line, identified an emerging set of 49 newsbots, i.e.,
news and information sites, that appear to incorpo-
rate AI for news generation. Therefore, it is crucial
to have computational methods to discern between
AI-generated news and actual human-written news
to combat the persistent challenges to the informa-
tion ecosystem.

In recent years, much interesting work has been
done on detecting AI-generated text (Zellers et al.,
2019; Mitchell et al., 2023; Kirchenbauer et al.,
2023). However, most of these methods, which we
discuss under Related Works (section 5), do not
explicitly focus on AI-generated news. Therefore,
using these general-purpose AI text detectors to de-
tect AI-generated news has a few challenges: 1) the
unique attributes of professional journalism make
news articles distinct from typical human-written
text. Thus applying general AI text detection meth-
ods for AI-generated news detection could lead to

1https://www.newsguardtech.com/special-
reports/newsbots-ai-generated-news-websites-proliferating/
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false positives that potentially damage the reputa-
tion of journalists and news organizations, and 2)
existing AI text detectors are highly vulnerable to
adversarial attacks, e.g., paraphrasing (Sadasivan
et al., 2023; Krishna et al., 2023).

To address the above challenges, we lever-
age the expertise of an interdisciplinary team,
which includes journalists, computer scientists,
and communication scholars, to develop a frame-
work for Journalism Guided Adversarially Robust
Detection of AI-generated News (J-Guard)2. To
this end, we first studied the unique professional
journalism attributes of human-written news arti-
cles’ writing and publishing process. Throughout
the journalism process, many stylometric cues are
incorporated, including journalism standards em-
ployed by the journalist as well as specific news-
room style guides and standards imposed by the
newsroom editors. Here we hypothesize that even
though the PLMs learn human-level writing via
pretraining, they potentially will display semantic
gaps in replicating these style guides and journal-
ism standards inherent to the news production pro-
cess. Therefore, we propose incorporating a simple
yet effective set of auxiliary stylistic cues to guide
the existing supervised AI text detectors to discern
real-world journalism with the AI generation of
news articles using PLMs. Furthermore, as we will
show, since these cues quantify the high-level sty-
lometry of the text, the detection process is more
robust to the character and word level perturbations,
thus, reinforcing the adversarial robustness of our
AI-generated news detection methodology.

To summarize, the main contributions of our
paper are as follows:

1. To the best of our knowledge, we are the first
to study and quantify stylistic cues resulting
from the latent journalism process in real-
world news organizations towards discrimi-
nating AI-generated news.

2. We propose a computational framework in-
corporating these stylistic cues to detect AI-
generated news.

3. We conduct extensive experiments on a pub-
licly available vast array of PLMs, including
ChatGPT (GPT 3.5), to show our approach’s
effectiveness in detecting AI-generated news.

2Feature extraction and J-Guard code is available at
https://github.com/TSKumarage/J-Guard.git

4. By producing character and word level attacks,
we empirically show how the stylistic cues we
incorporated improved the adversarial robust-
ness of AI-generated news detection.

2 Journalism Background

Journalism as an industry does not universally sub-
scribe to codes of conduct, owing largely to a
historical rebuke of standardization as a profes-
sion (Shapiro, 2010). Several trade groups, includ-
ing the Society for Professional Journalists, have
created detailed style guides. Many news organi-
zations have adopted them internally, and others
have created their versions. Scholars (Broersma,
1880; Shapiro, 2010; Mateus, 2018) have noted
that, though the reporting process is typically situa-
tional, which makes it difficult to routinize, there
are some key areas in which common methods,
processes, and values signal an intent to establish
credibility. And the form and style are integral to
convincing people of the ‘truthiness’ of newswor-
thy events (Broersma, 1880; Mateus, 2018).

Journalistic practices that have been widely
adopted include the use of the inverted pyramid as
a storytelling format (Mateus, 2018) and a style of
writing based on the Associated Press (AP) Style-
book 3. Mateus (Mateus, 2018) describes form and
style “as key components of journalistic discourse
that, in a given time, are able to generate credi-
bility and confidence.” Though the AP Stylebook
is not universally followed among news organiza-
tions, and some make situational exceptions, if we
encounter purported news articles that are widely
divergent from what AP recommends, we hypothe-
size that this is a strong signal of inauthenticity. In
fact, adherence to the Stylebook is one of the key
factors in the Associated Press’ automated journal-
ism efforts (Linden, 2017).

In our study, we aim to integrate the aforemen-
tioned hypothesis of inauthenticity into the task of
detecting AI-generated news. Specifically, we in-
vestigate the extent to which current AI models are
capable of generating news articles that adhere to
professional journalism standards. Figure 1 illus-
trates a clear distinction in the distribution between
GPT3-generated news articles and those written by
humans from reputable news organizations such
as CNN and the Washington Post. As illustrative
examples of journalism features, we consider the
length of introductory sections (leading sentences

3https://www.apstylebook.com/

https://github.com/TSKumarage/J-Guard.git
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Figure 1: Distribution of GPT3 Generated News vs
Human-written News.

and paragraphs) and the usage of Oxford commas.
Professional journalism typically employs shorter
and more concise introductions, while the use of
Oxford commas is infrequent in accordance with
AP standards. Hence, we observe the potential for
leveraging our hypothesis to enhance the detection
of AI-generated news. In the subsequent section,
we will delve into a detailed discussion of the jour-
nalism features that can be utilized for detecting
AI-generated news.

3 AI-generated News Detection

This section presents the details of the J-Guard
framework. The J-Guard framework consists of
two main components: (a) the base AI text detector
component and (b) the Journalism guidance com-
ponent. The base AI text detector is any PLM se-
quence classification model. The journalism guid-
ance component injects auxiliary journalism cues
into the detection pipeline, thus transforming the
base detector into an AI-generated news detector.
We will provide a comprehensive discussion of
these two components in the following sections.

3.1 Base AI Text Detector

The Base AI text detector component consists
of a pretrained transformer encoder stack with n
encoders to learn the semantic representation of
the given input news article X . Here we define
(x1, x2, ..., xk) as the token representation of the
input X according to the tokenizer of the PLM
model we choose for the base detector component.
We denote the representation learned by the base
AI text detector as Bk×d where k is the sequence
length (i.e., number of tokens of the input news
article), and d is the hidden state size of an encoder
block. From the representation matrix, Bk×d, we
select the final hidden vector representation of the
special token [CLS], BCLS

d as the feature vector
for our task of detecting AI-generated news. Then
BCLS

d is passed to the journalism guidance compo-
nent for further processing.

News Article

....

+

Auxiliary Cues: 

Output Emb:

PLM

Classification 
       Head

Guidance 
    Head

a) Base AI Text Detector

Journalism Guided AI News Detector 

b) Journalism Guidance

Encoder 1

Encoder 2

Encoder n

...

Input Emb

Feature Extractor

....

Figure 2: Proposed framework J-Guard: The base
detector component here is a supervised PLM-based
detector for AI text detection.

3.2 Journalism Guidance

The cornerstone of the J-Guard framework lies in
the journalism guidance of the Base AI text detec-
tor toward detecting AI-generated news—different
modules within the journalism guidance compo-
nent help achieve this goal. As illustrated in Figure
2, the journalism guidance component comprises a
Journalism Feature Extractor and a Guidance Head
as sub-components.

3.2.1 Journalism Feature Extractor
As postulated in Section 2, encountering a news
article that widely deviates from the recommended
styles and standards of the AP stylebook may serve
as a strong indication of inauthenticity. There-
fore, the journalism feature extractor is a computa-
tional module that incorporates this hypothesis to
enhance the detection of AI-generated news. The
feature extractor takes the input news article X in
the form of a set of tokens w1, w2, ..., wm. Here,
(w1, w2, ..., wm) represents the tokenized version
of the input article X using an improved Treebank
Word Tokenizer4. Subsequently, a set of extractor
functions f ∈ F is applied to these tokens to ex-
tract various scores that quantify the divergence of

4https://www.nltk.org/api/nltk.tokenize.word_tokenize.html
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the input article from the AP recommended styles
and standards. For discussion, it is useful to la-
bel three subsets of the extractor function set F
F i|i ∈ 1, 2, 3, such that F = F 1 ∪ F 2 ∪ F 3. The
three subsets can be broadly defined as follows:

1. F 1: Organization and grammar standards -
functions that quantify the wording and gram-
matical structure of the news article (sentences
and paragraphs forming)

2. F 2: Punctuation usage - functions that quan-
tify the punctuation usage of the news article

3. F 3: Formatting standard violations - func-
tions that quantify the violations of the for-
matting of different elements in a news article,
such as date, time, and number, in reference
to the AP standards

Within each extractor category, we extract multi-
ple features that can quantify the deviation of the
input article from the AP recommended styles and
standards. In F 1, we examine the overall wording
structure of the news article, as well as the leading
sentence and paragraph, as the size of these com-
ponents could serve as indicators of inauthenticity.
For example, a large leading or introductory part is
not very common for news articles. Additionally,
we consider grammatical elements, such as tense
and voice, which can provide cues about journal-
ism standards. For instance, the use of past tense
and passive voice is not common in news writing.
As a result, the following features are extracted:
mean word count (WC), mean sentence count (SC),
WC of the leading sentence, WC of the leading
paragraph, mean SC with passive voice, and mean
SC with past tense. In F 2, we analyze the usage
of punctuation. In addition to standard punctuation
marks, we also examine symbols that are rarely
found in genuine news articles, such as the num-
ber sign. Consequently, the following features are
extracted in F 2: mean usage of "!" "#", "'", and
the Oxford comma per paragraph. Lastly, under
F 3, we investigate format violations in the input
article based on AP standards. Specifically, we
identify and count violations related to date, time,
and number formats. The detailed implementations
of each feature extractor function can be found in
the appendix section A.

Some of the feature extractors mentioned above
return mean values in the range of [0,1] while some
return absolute counts, which will be larger than 1.

Therefore we normalize the feature vector before
incorporating it with the task of AI-generated news
detection. Let n be the number of journalism fea-
tures, fi ∈ F and W = (w1, w2, . . . , wm) be the
treebank tokenization of X then we define the final
normalized journalism feature vector Jn as:

Jn =
[f1(W ), f2(W ), ..., fn(W )]

||[f1(W ), f2(W ), ..., fn(W )]||
. (1)

3.2.2 Guidance Head
We propose to enhance the detection capabilities
and adversarial robustness of our detector by incor-
porating the learned journalism features, Jn, into
the output of the base AI text detector, BCLS

d . A
naive approach would be to simply concatenate
both features and pass them through the fully con-
nected feedforward neural network, which we refer
to as the Classification Head, to predict the final
classification label ŷ. However, this naive approach
may lead to the overshadowing of Jn by BCLS

d due
to the large dimensionality of BCLS

d compared to
Jn. Furthermore, direct concatenation of the two
feature vectors without considering their different
ranges poses a feature scaling issue. To address
these challenges, we propose the incorporation of
an additional set of feedforward layers, referred
to as the Guidance Head. This Guidance Head in-
cludes a hidden layer with a size equal to or larger
than the input layer. This choice is made to prevent
overshadowing of Jn. The Guidance Head learns
the relationships between the feature vectors BCLS

d

and Jn, without overshadowing Jn, by mapping the
input [BCLS

d , Jn] to a higher-dimensional feature
space. Note that we first normalize the [BCLS

d , Jn]
vector before passing it to the Guidance Head to
avoid feature scaling issues. Finally, the Guidance
Head’s output layer produces a reduced vector of
the scaled-up hidden representation, which we pass
to the Classification Head for the final prediction.
To summarise, as shown in equation 2, the whole
purpose of Guidance Head is to learn the function
gθ that learns fusion between BCLS

d and Jn.

Cl = gθ

(
[BCLS

d , Jn]

||[BCLS
d , Jn]||

)
(2)

Here, Cl is the reduced vector of size l produced
by the output layer of the Guidance Head.

Finally, the output of the Guidance Head, Cl

is passed to the Classification Head to predict the
final classification label ŷ. Using the ground truth
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label, we incorporate standard cross-entropy loss
to train the whole framework J-Guard end to end.

4 Experiments and Results

This section describes the experimental settings
used to validate our framework, including the
datasets and baselines, followed by a thorough anal-
ysis of the experiments. We conducted several ex-
periments to investigate whether the proposed jour-
nalism features can improve the detection of AI-
generated news. We aim to answer the following
two research questions through our experiments:

• RQ1 - Do the identified journalism features,
enhance the detection of AI-generated news?

• RQ2 - Do the identified journalism features,
enhance the adversarial robustness of AI-
generated news detection?

4.1 Datasets and AI Generators
We evaluate our approach on a vast array of AI gen-
erators, i.e., PLMs — To this end, we use the bench-
mark datasets TuringBench (Uchendu et al., 2021)
and NeuralNews(N.News) (Tan et al., 2020). Tur-
ingBench is a dataset consisting of human-written
news articles, mostly from CNN and the Washing-
ton Post, and AI-generated news from more than 10
PLM generators. Of these, we used the following
PLMs for our analysis: Grover, CTRL, PPLMgpt2

(base model used is GPT2), GPT2, GPT3. Within
TuringBench, data is generated using various com-
binations of PLMs and model sizes. To maintain
brevity in our analysis, we have included only the
largest model size for each PLM. This selection
is justified by the understanding that the largest
model size for each PLM is expected to produce
the highest quality text, making it more challenging
to detect. Therefore, our results can be extrapolated
to smaller PLMs as well. The Neural News dataset
contains only news articles generated by Grover.
The human-written articles included in this dataset
are collected from the GoodNews dataset, which
features news from the New York Times.

Furthermore, we performed our experiments on
a ChatGPT dataset that we created. Given the
human-like quality of text generated by newer
PLMs like GPT3.5 and GPT4 (OpenAI, 2023), it
is important to evaluate our detection framework
on such language models. To create this dataset,
we followed steps similar to the ones in the Tur-
ingBench paper (Uchendu et al., 2021). Specifi-
cally, we sampled around 9,000 news articles from

CNN and the Washington Post and use these as
‘human’ written articles. For each of these articles,
we prompt ChatGPT (with backend gpt-3.5-turbo,
model version as of March 14, 2023) to generate
an equivalent news article. To do this, we exper-
iment with several types of prompts, and for the
final data generation, we use the prompt: “Gen-
erate a news article with the <headline>.”, where
<headline> is the headline from the corresponding
human written article. For the ChatGPT genera-
tions, we set top_p to 1, temperature to 0.5 and
limit the length of the generated text to 1024 tokens.
The final dataset contains 9k human-written and
9k ChatGPT-generated articles, which we divided
into train, test, and validation splits (7:2:1) similar
to TuringBench. We will release this dataset to the
public upon acceptance of the paper (section 8.2).

4.2 Baselines
Our experiments consist of two categories of AI
news detector baselines: First, we study simple
feature-based classification schemes which use lo-
gistic regression (LR) with BOW and Word2vec
features as a baseline to evaluate the quality of
the journalism features (JF) we selected via our
journalism analysis. Second, we aim to empiri-
cally compare and validate J-Guard with SOTA
PLM-based methods for AI-generated text detec-
tion. The SOTA baselines can be further catego-
rized into 1) Zero-shot PLM-based classifiers:
GLTR (Gehrmann et al., 2019), and the newer zero-
shot baseline DetectGPT (Mitchell et al., 2023).
These two approaches work without supervised
training datasets for detecting AI-generated text
and 2) Supervised PLM-based classifiers: We
consider OpenAI’s GPT-2 detector (RoBERTa-
large) as our supervised PLM-based detector base-
line. We considered two variants of this model i)
OpenAIZero - OpenAI’s off-the-shelf GPT-2 detec-
tor without any task-specific tuning, ii) OpenAIFT

- OpenAI’s GPT2 detector finetuned for AI news
detection. Further technical details about the base-
lines can be found in the appendix section B.

4.3 Detection Setup
Implementation Details of J-Guard: The base AI
text detector is one of the key components of the
J-Guard framework, involving a supervised PLM
specifically designed for detecting AI-generated
text. In our research, we conducted experiments
using various existing PLMs (base size), includ-
ing RoBERTa, BERT, DeBERTa, and DistilBERT.
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Among these models, RoBERTa exhibited the high-
est performance, and therefore, it was selected as
the base AI text detector for the J-Guard frame-
work, while reporting the experiment results. Both
the Classification Head and the Guidance Head
were implemented using feedforward neural net-
works comprising one hidden layer. For the train-
ing of the overall framework, a max length of 512,
a learning rate of 2×10−5, and a dropout rate of 0.2
were employed. The training process utilized a 40
GB NVIDIA A100 GPU (≈ 1hr per AI generator).
Task Details: We consider the task of AI-generated
news detection as a binary classification problem.
In our data, we have train, test, and validation (7:2:1
ratio) splits for each AI generator, where we use the
train set to finetune models on the task of AI news
detection and the test set to record the classifica-
tion performance. The validation set was used for
early stopping to determine the number of training
epochs. See appendix section C for more details.

4.4 Adversarial Attack Setup

In order to validate the adversarial robustness of
the detector, we conducted two common attacks
that have been observed in previous work: Cyrillic
injection and paraphrasing (Crothers et al., 2022;
Sadasivan et al., 2023; Liang et al., 2023). In the
Cyrillic injection attack, we perturbed the input
text by replacing English characters with similar-
looking Cyrillic characters. Specifically, we se-
lected three highly frequent English vowels, "a",
"e", and "o," and replaced them with their Cyrillic
counterparts. For the paraphrasing attacks, we em-
ployed a PLM-based approach that incorporates the
T5 model to paraphrase a given input text (Sadasi-
van et al., 2023).

4.5 Results and Discussion

This section discusses the experimental results un-
der AI-generated news detection, including addi-
tional experiments on feature importance and PLM
choice for the J-Guard. Furthermore, we em-
pirically show the adversarial robustness of the
J-Guard by emulating multiple attack scenarios.

4.5.1 RQ1 - AI-generated News Detection
Performance

Here, we present an evaluation of the performance
of AI news detection using a wide range of AI
generators. Table 1 reports the AUROC scores for
different detectors (rows) across different AI gen-
erators/PLMs (columns). Based on the results in

RoBERTa BERT DeBERTa DistilBERT90
91
92
93
94
95
96
97

AU
RO

C(
%

)

J-Guard
Base Detector

Figure 3: Effect of the choice of PLM for framework
J-Guard- Average AUROC across all six AI generators,
before and after Journalism guidance.

Table 1, we make the following observations re-
garding AI-generated news detection:
1) Effectiveness of journalism features - when
we look at the logistic regression results (1st 3 re-
sult rows of Table 1), we can see that journalism
features outperform simple BOW and word2vec
performance across all the AI generators. This sug-
gests that the journalism feature space provides a
reasonable boundary for discriminating between
human-written news and AI-generated news.
2) Effectiveness of J-Guard - Our proposed
method outperforms all the detection baselines in
4 out of 6 AI generators. However, for PPLMgpt2

and GPT2 generators, we observe that the fine-
tuned OpenAI detector (OpenAIFT ) outperforms
J-Guard by a small margin. The OpenAI detector
has an advantage in detecting GPT2 and PPLMgpt2

as it is exposed to GPT2 samples in the first stage
of finetuning done by OpenAI.
3) Effectiveness of task-specific training - We ob-
serve that off-the-shelf zero-shot methods (GLTR,
DetectGPT, and OpenAIZero) perform poorly
across many AI generators in detecting AI news.
However, the performance improves significantly
when we further finetune the OpenAIZero on the
AI news detection task (OpenAIFT ). This obser-
vation highlights the importance of task-specific
supervision.

We also analyzed the impact of the base AI detec-
tor choice on our framework, J-Guard. We experi-
mented with multiple open-source PLMs, as shown
in Figure 3. We evaluate each PLM with and with-
out J-Guard to evaluate the detection performance
and report the average performance across the AI
generators considered in our study. We found that
the detection performance could be enhanced with
the use of J-Guard on each PLM. Among all the
models, RoBERTa yielded the best performance.
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Dataset → TuringBench N.News In-House Data
Generator →

Grover CTRL PPLMgpt2 GPT2 GPT3 Grover GPT3.5 GPT3.5JGDetector ↓
LR+ BoW 0.816 0.775 0.792 0.822 0.806 0.896 0.810 0.805
LR+ W2V 0.854 0.793 0.804 0.871 0.852 0.915 0.847 0.838
LR + JF 0.897 0.831 0.873 0.931 0.912 0.933 0.883 0.847
GLTR 0.482 0.784 0.634 0.542 0.454 0.499 0.728 0.688
DetectGPT 0.549 0.806 0.492 0.505 0.557 0.815 0.766 0.751
OpenAIZero 0.746 0.763 0.918 0.857 0.773 0.962 0.756 0.718
OpenAIFT 0.975* 0.969* 0.966 0.980 0.951* 0.993* 0.925* 0.911*
J-Guard 0.986 0.972 0.965* 0.975* 0.968 0.998 0.934 0.917

Table 1: Proposed J-Guard model performance (AUROC) values for AI-generated news detection. Bold shows
the best AUROC within each column (Detector-PLM generator combination); asterisk (*) denotes the second-best
AUROC.
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Figure 4: SHAP values to estimate journalism feature
importance.

Additionally, we conducted a study to better un-
derstand the significance of journalism features in
AI news detection with the help of a Shapley Ad-
ditive Explanations (SHAP) (Lundberg and Lee,
2017) explainer on the logistic regression classi-
fier. The SHAP values were used to indicate fea-
ture importance. We only present SHAP plots
for the GPT3 detection task for brevity reasons,
but SHAP plots related to other AI generator de-
tection tasks can be found in the appendix sec-
tion D.2. The SHAP plots show that certain fea-
tures, such as mean sentence count for a paragraph
(mean_sent_count_para), the word count of lead
paragraph size (wc_lead_para), and past tense us-
age (past_tense_count) are highly significant in
distinguishing AI news from human-written news,
as depicted in Figure 4.

4.5.2 RQ2 - Adversarial Robustness of AI
News Detection

This section discusses our experiments on evaluat-
ing the adversarial robustness of AI news detectors.

As outlined in section 4.4, we conducted two types
of attacks on the detectors: character-level attacks
involving Cyrillic injection and word-level attacks
involving paraphrasing. Table 2 shows the detec-
tors’ performance (AUROC) difference before and
after each attack. For brevity, we only report the
detection performance on GPT3 and ChatGPT data,
while the other results can be found in the appendix
section D.2. Based on the results presented in Table
2, we make the following observations regarding
the adversarial robustness of AI news detectors:

Attack Success - We have observed that almost ev-
ery SOTA baseline detector we have considered is
susceptible to adversarial attacks. On average, the
performance of the detectors dropped by at least
15-20%. In contrast, we observed a low attack
success rate with the GLTR model. However, the
observation of low attack success is meaningless as
the GLTR model had a near-random guess (≈ 0.5
AUROC) performance before the attack. The over-
all reduction in performance following the Cyrillic
injection attack can be attributed to the tokenizer.
Cyrillic letters in the input text alter the token rep-
resentation, subsequently affecting detection. For
paraphrasing, modifying the original text could al-
ter the learned decision boundary during detector
training, leading to a performance decline.

Improved Adversarial Robustness of J-Guard -
We have observed that J-Guard is quite resilient to
adversarial attacks, with an average performance
drop of only 7%. It is apparent that this robustness
is due to the journalism features employed by J-
Guard. For example, OpenAIFT , which shares the
same PLM architecture and training data for detec-
tion as J-Guard, has an average performance drop
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Generator → GPT3 ChatGPT
Attack →

Para. Cyri. Para. Cyri.
Detector ↓
GLTR 0.041 0.055 0.095 0.056
DetectGPT 0.222 0.196 0.254 0.183
OpenAIZero 0.244 0.201 0.223 0.154
OpenAIFT 0.159 0.138 0.166 0.150
J-Guard 0.090 0.041 0.091 0.040

Table 2: Detector performance change after the attack
(AUROC before the attack - AUROC after the attack).
Bold shows the lowest AUROC difference within each
column (detector-attack combination).

of nearly 15%. In the journalism feature space, we
check for high-level semantic gaps and violations
of journalism standards. Character-level attacks,
such as Cyrillic injection, have a negligible effect
on these feature calculations. Even with paraphras-
ing attacks, the edit distance between the original
and perturbed text may be substantial in the input
space but insignificant in the journalism feature
space, making J-Guard robust to such attacks.

4.6 Further Analysis: Better Prompting
versus J-Guard

To ensure consistency across data generations, we
adhered to a headline-based prompt from the Tur-
ingBench dataset for our in-house GPT3.5 data
production. However, given the capabilities of ad-
vanced LLMs like GPT 3.5, providing more con-
textual instructions is feasible. Thus, we explored
the potential of prompting GPT 3.5 to adhere to
real-world journalism standards in news article gen-
eration and its subsequent impact on the J-Guard’s
detection abilities. For this evaluation, a test dataset
comprising 1000 data points from ChatGPT was de-
veloped using what we term as a journalism-guided
prompt (GPT3.5JG) as shown below:
System prompt: “You are a helpful assistant. I
want you to act as a journalist. Adhere to journalis-
tic ethics, and deliver accurate reporting using your
own distinct style."
User prompt: “Following the rules in the AP style
guide for journalists, write a news article with the
<headline>.”

As presented in Table 1, there is a marginal de-
cline in performance when using the journalism-
guided prompt test dataset. This suggests that
ChatGPT emulated the AP standards more effec-
tively with this prompt than with the standard head-
line prompt. The performance of J-Guard clearly

validates the strength of the proposed hypothesis,
even when the prompt explicitly guides the LLM
towards real-world journalistic generation. Yet,
this analysis raises crucial questions for future re-
search: Can we design a prompt that consistently
directs LLMs to adhere to real-world journalism
processes? And, if successful, can we detect such
generated news articles?

5 Related Work

5.1 AI-generated Text Detection

Several methods have been explored for detecting
AI-generated text, such as logistic regression, SVC,
etc. (Ippolito et al., 2019). GLTR (Gehrmann et al.,
2019) uses a set of simple statistical tests to check
whether an input text sequence is AI-generated
or not. Fine-tuned PLM detectors are also used
and considered state of the art (Solaiman et al.,
2019; Jawahar et al., 2020; Zellers et al., 2019; Ku-
marage et al., 2023), such as OpenAI’s GPT2 detec-
tor that uses a RoBERTa backbone finetuned with
GPT-2 outputs (Radford et al., 2019). With the
rapid advancement of newer language models like
GPT3.5/4, there is a growing emphasis on the capa-
bilities of few-shot or zero-shot detection and the
interpretability of these detectors (Mitrović et al.,
2023). Some new detectors include commercial
products such as GPTZero 5 and OpenAI’s detec-
tor that is trained on the text generated by GPT-36.
An interesting zero-shot detection approach, De-
tectGPT (Mitchell et al., 2023), operates on the
hypothesis that minor rewrites of AI-generated
text would exhibit lower log-probabilities under
the model compared to the original sample. Wa-
termarking (Kirchenbauer et al., 2023) on PLM-
generated text has gained attention as a detection
mechanism in the research community. However,
its success hinges on the cooperation and support
of the organizations that develop the PLMs.

5.2 Adversarial Robustness of AI Text
Detection

Multiple studies have examined the vulnerability
of AI text detectors, specifically those designed
for early PLMs like Grover and GPT2 (Crothers
et al., 2022; Liang et al., 2023; Gagiano et al.,
2021). These studies conducted various attacks
at the character and word levels, including flipping

5https://gptzero.me/
6https://openai.com/blog/new-ai-classifier-for-indicating-

ai-written-text
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upper-lower case, using homoglyphs, misspelling
words, and replacing synonyms. The results in-
dicate that supervised-PLM-based AI text detec-
tors are highly susceptible to these attacks, with
success rates reaching up to 96% in some cases
(Crothers et al., 2022). Recent research has also
demonstrated that paraphrasing the input text can
significantly undermine the performance of AI text
detection approaches (Sadasivan et al., 2023; Kr-
ishna et al., 2023), raising concerns about the relia-
bility of such methods. Proposed solutions involve
semantic retrieval to counter paraphrase attack (Kr-
ishna et al., 2023), but they rely on text generation
APIs like the OpenAI API, which limits their prac-
tical applicability when evaluating independent de-
tection mechanisms.

Previous research has highlighted two important
considerations for detecting AI-generated text. 1)
it is impractical to rely on a single detector for all
types of AI text, emphasizing the need for domain-
specific models, and 2) ensuring the detector’s ro-
bustness against adversarial attacks is critical, war-
ranting further investigation in this field.

6 Conclusion

In this paper, we examine the task of detecting
AI-generated news from a multidisciplinary per-
spective, aiming to identify domain-specific sig-
nals that can enhance detection accuracy while pre-
serving robustness against adversarial attacks. We
analyzed the real-world news production process
compared to AI news generation and identified a
set of stylistic cues that measure the deviation of
AI-generated news from journalistic standards es-
tablished by entities such as the Associated Press.
Our proposed framework, J-Guard, incorporated
these auxiliary features and steered existing super-
vised PLM-based AI text detectors to achieve ro-
bust performance across various text-generation
AIs, including ChatGPT. For future work, it would
be interesting to see how prompt engineering can
generate news articles that evade journalism-guided
detection.

7 Limitations

7.1 Assumption of Professional Journalism
In our study, we make the assumption that the
human-written portion of the dataset is produced
through a professional journalism process. This
means that the news organization or journalist ad-
heres to the journalism standards commonly de-

fined by organizations such as the Associated Press
(AP). It is important to note that our hypotheses
and findings are valid only under this assumption.
If the human-written articles come from a non-
professional journalism source, we expect the de-
tection performance to decrease since the distinc-
tion achieved through journalism features may no
longer hold.

7.2 Domain-Specific Training

The approach we propose follows the supervised
learning paradigm for AI news detection. As a
result, it requires specific training data to be effec-
tive in real-world AI news detection scenarios. For
instance, if we aim to ensure the performance of
J-Guard on an AI text generator X , we first need
to gather a training dataset consisting of news arti-
cles generated by X . It is important to emphasize
that our approach does not claim to have cross-AI
generator generalized detection capabilities. How-
ever, the set of journalism features we proposed
are agnostic to the AI generator and derived from
real-world journalism process analysis.

7.3 In-House Dataset

As described in our section 4.1, we generated our
dataset using ChatGPT due to the lack of publicly
available ones. Although we followed a similar
data collection and generation pipeline as Turing-
Bench (Uchendu et al., 2021), it is worth noting
that there may be differences in the pre-processing
and data cleanup we performed compared to the
methods employed by the authors of TuringBench.

7.4 Generalizability for ChatGPT-generated
Text Detection

Throughout our paper, we emphasize the specificity
of our analysis and its focus on AI news detection.
Therefore, the differences in ChatGPT text detec-
tion performance reported by the community 7, as
opposed to the high-performance results presented
in our work, can be attributed to the domain of the
data, specifically news articles. We hypothesize
that detecting a particular domain, such as news
articles with a specific type and text style, is easier
than detecting generic text generated by ChatGPT.
In summary, our paper does not claim that J-Guard
can be used for general ChatGPT text detection
tasks; instead, it presents a specific method tailored

7https://openai.com/blog/new-ai-classifier-for-indicating-
ai-written-text
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to improve the detection of ChatGPT-generated
news.

8 Ethical Considerations

8.1 Intended Use
It is crucial to consider the intended real-world ap-
plication of J-Guard and its societal impact. Our
research on AI news detection aims to develop an
algorithm that effectively identifies and mitigates
the spread of misinformative, AI-generated news
articles. The primary application of our work lies
in online content moderation and forensics, where
the decisions made by our detector can be utilized
to flag or remove news articles from social media
platforms, web search results, and other platforms.
However, a significant ethical concern arises from
potential false positives generated by our method.
Suppose the detector incorrectly flags a genuine
news article from a reputable organization as AI-
generated. In that case, it may lead to the cen-
sorship of legitimate news, causing harm to the
reputation and rights of the journalist and the pub-
lishing organization. Hence, we strongly advise
users not to incorporate J-Guard into fully auto-
mated real-world content moderation or forensics
systems unless a human annotator or analyst works
in conjunction with the system to make the final
decision.

8.2 ChatGPT-generated News
In our study, we conducted experiments using the
in-house ChatGPT-generated news articles. It is
crucial to emphasize that we adhered to the us-
age policies8 of OpenAI while generating these
news articles through the API (refer to the prompt
details in Section 4.1). We recognize the impor-
tance of not publicly releasing any AI-generated
news article, as we cannot guarantee the factual
accuracy of the content. Therefore, we will im-
plement an on-demand release structure for our
ChatGPT-generated news articles. Individuals or
organizations requesting access to our generated
news articles for legitimate academic research pur-
poses will be granted permission to download the
data.

8.3 Fairness and Bias in Detection
Our research endeavors to prioritize using natural
language processing tools for the betterment of so-
ciety while upholding principles of fairness and

8https://openai.com/policies/usage-policies

impartiality. We transparently disclose our method-
ology, results, and, most importantly, limitations to
mitigate biases and address ethical concerns. Fur-
thermore, we commit to continuous assessment and
improvement of our system in the future.

8.4 Malicious Use of Adversarial Attacks

We understand the potential danger of an adversary
misusing the adversarial attack setup we presented
in our section 4.4 to attack existing commercial AI
text detectors. However, we posit that finding these
limitations and vulnerabilities in AI text detector
systems (red-teaming) will outweigh the potential
for misuse, given we help future researchers mit-
igate these issues. However, as a precaution, we
will not release the adversarial setup code base to
the public. Similar to ChatGPT data, individuals
or organizations requesting access to our adversar-
ial attack setup for legitimate academic research
purposes will be granted permission to receive the
code base.
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A Feature Extractors

In Section 3.2, we divided the feature extractor
function set F into three subsets: F i|i ∈ 1, 2, 3,
where F = F 1 ∪ F 2 ∪ F 3. In this appendix sec-
tion, we provide implementation details for the fea-
ture extractor functions in the categories mentioned
above.

A.0.1 F 1: Organization and Grammar
Standards

We used two NLTK tokenizers for our implementa-
tions: word_tokenize for word-level tokenization
and sent_tokenize for sentence-level tokenization.

Mean Word Count (WC): The average word
count per sentence in the input news article. First,
we extracted the sentences using sent_tokenize, and
then for each sentence, we obtained the word to-
kens. The word count for each sentence was deter-
mined by counting all word tokens that contained
at least one alphabetical character.

Mean Sentence Count (SC): We counted the
number of sentences per paragraph in the news
article. To obtain the paragraphs, we split the in-
put article using the newline character. For each
paragraph, we obtained sentence-level tokens. The
sentence count for each paragraph was determined
by counting all sentences that contained at least
one alphabetical character.

Word Count of the Leading Sentence: We
focus on the lead sentence of the input news arti-
cle. After obtaining the sentence-level tokens using
sent_tokenize, we calculated the word count for
this leading sentence using the same approach as
the Mean Word Count (WC).

Word Count of the Leading Paragraph: Simi-
lar to the previous approach, we extracted all para-
graphs by splitting the input article based on the
newline character. We then counted the number of
word tokens in the first paragraph.

Mean Sentence Count with Passive Voice:
Here we determined the number of sentences in
a paragraph written in the passive voice. To iden-
tify the voice of a sentence, we employed a simple
test. First, we extracted the dependency tree rela-
tions using the spaCy dependency parser9. Then,
we classified a sentence as passive if it contained
either an ’agent’ relation or an ’nsubjpass’ relation.

Mean Sentence Count with Past Tense: The
number of sentences in a given paragraph that were

9https://spacy.io/api/dependencyparser

written in the past tense. After extracting the sen-
tences for a given paragraph, we used POS tags
to determine whether a sentence was in the past
tense. Specifically, we checked if the sentence’s
POS tags included "VBD" or "VBN" and classified
the sentence as past tense accordingly.

A.1 F 2: Punctuation usage

Under punctuation usage, we calculated the av-
erage occurrence of "!" "#", "'", and the Oxford
comma per paragraph. We divided the input news
article into paragraphs, following the same ap-
proach as the previous feature extractions. For
each paragraph, we determined the frequency of
the mentioned punctuation.

A.2 F 3: Formatting standard violations

Here, we identify and tally violations related to
date, time, and number formats in accordance with
the AP standards.

Date format violations: To detect date format
violations, we utilize the datefinder library10 to ex-
tract date elements from the input news article. We
then verify if the date adheres to the standard for-
mat specified by AP standards. Specifically, we
ensure that the day is written in full without ab-
breviations (e.g., "Monday," "Tuesday," etc.), and
that the month is represented correctly. For in-
stance, when a month is used with a specific date,
we expect abbreviations like "Jan.," "Feb.," "Aug.,"
"Sept.," "Oct.," "Nov.," and "Dec." When a phrase
only lists the month and year, the month should be
spelled out, and there should be no comma separat-
ing the month and year.

Time format violations: In assessing time for-
mat violations, we verify if time phrases in the news
article adhere to the AP standards. This entails us-
ing lowercase "a.m." and "p.m." with periods and
ensuring that numerals precede the time. If a time
phrase does not conform to these standards, it is
considered a format violation. Similar to the date
format analysis, we employ the datefinder library
to extract time phrases from the text.

Number format violations: We identify number
format violations when numbers in an article fail
to comply with the AP standards. According to
these standards, numbers from zero to nine should
be spelled out, while numerals should be used for
10 and above.

10https://pypi.org/project/datefinder/
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Altogether we collected 14 journalism features
through the above extractors.

B Baselines

GLTR (Gehrmann et al., 2019): This approach
utilizes a proxy language model (PLM) to calculate
the log probabilities of tokens in the input text. The
authors then incorporate a set of statistical scores to
predict the label, including average log probability,
average token rank, token log-rank, and predictive
entropy. For example, a higher average log proba-
bility of input indicates AI generation. The second
and third scores share a similar assumption, where
lower average ranks in input suggest AI-generated
text. The final score is based on the hypothesis that
AI-generated text tends to have lower entropy. Our
paper reports the average performance across all
the trials based on the scores mentioned above.
DetectGPT (Mitchell et al., 2023): This approach
also utilizes a proxy PLM to calculate log probabil-
ities for individual tokens. However, its decision
process involves comparing the log probability of
the original input text with the log probability of a
set of perturbed versions of the input text. These
perturbations are generated using the T5-base. The
authors hypothesize that if the difference in log
probabilities between the original text and the per-
turbed text is consistently positive, then it is likely
that an AI model generated the input text.
OpenAI-GPT2 detector: This detector is a
RoBERTa model fine-tuned on the GPT-2-output
dataset11 which consists of 250K documents from
the WebText dataset (Radford et al., 2019) and
500K GPT2 generated data. We incorporate two
variants of this model: 1) OpenAIZero - off-
the-shelf model without any additional finetun-
ing on AI-generated news detection task and 2)
OpenAIFT - off-the-shelf model further finetuned
on training datasets used for AI generated news
detection task.

C Implementation Details

Apart from the implementation details discussed
in Section 4.3, another crucial aspect to consider
is the hyperparameters of the Guidance Head and
Classification Head, including layer sizes.

Guidance Head: As described in the method-
ology section, the Guidance Head comprises one
hidden layer that maps the input [BCLS

d , Jn] to a
higher-dimensional feature space. Consequently,

11https://github.com/openai/gpt-2-output-dataset

we opted for a larger hidden layer size compared to
the input size d + n (Base detector hidden size
+ journalism feature vector size). In the case
of RoBERTa-base d = 768, where d + n =
768 + 14 = 782, we found that a Guidance Head
layer size of 1024 yielded the best performance.
Additionally, we used an output layer of size 256
for optimal results. To summarize, the layers of the
Guidance Head are structured as 782 → 1024 →
256.

Classification Head: The decision regarding the
layer size for the Classification Head was straight-
forward. Essentially, starting from the output size
of the Guidance Head, our objective was to obtain
the final prediction for the two classes. The layer
sizes that achieved the best performance were 256
→ 32 → 2.

D Additional Experiment Results

D.1 Journalism Feature Importance

We conducted a study to better understand the sig-
nificance of journalism features in AI news detec-
tion with the help of a Shapley Additive Explana-
tions (SHAP) (Lundberg and Lee, 2017) explainer
on the logistic regression classifier. In section 4.5,
we only presented the SHAP plots for the GPT3
detection task for brevity reasons. Therefore, here
we present the additional SHAP plots related to
other PLMs detection tasks.
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Figure 5: SHAP values to estimate journalism features
importance - CTRL

We see that almost all the SHAP plots agree on
the importance of certain features, such as leading
paragraph and or sentence word count, apostrophe
usage, and past tense usage.

D.2 Adversarial Robustness Results

In section 4.5.2, we discussed our experiments on
evaluating the adversarial robustness of AI news de-
tectors. We conducted two types of attacks on the
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detectors: character-level attacks involving Cyril-
lic injection and word-level attacks involving para-
phrasing. We only report the detection performance
on GPT3 and ChatGPT data for brevity in section
4.5.2. Therefore, here we present the results of
the rest of the PLMs of our study. Table 3 and
Table 4 show the detectors’ performance (AUROC)
difference before and after each attack.

Table 3 and Table 4 hold similar observations
as we presented with GPT3 and ChatGPT3 data in
section 4.5.2. Almost every SOTA baseline detec-
tor we have considered is susceptible to adversarial
attacks. On average, the performance of the de-
tectors dropped by at least 10-20%. However, in
some cases, we observed a low attack success rate

Table 3: Detector performance change after the attack
(AUROC before the attack - AUROC after the attack).

Generator → Grover CTRL
Attack →

Para. Cyri. Para. Cyri.
Detector ↓
GLTR 0.035 0.038 0.233 0.186
DetectGPT 0.127 0.086 0.248 0.195
OpenAIZero 0.233 0.169 0.229 0.175
OpenAIFT 0.144 0.113 0.162 0.106
J-Guard 0.082 0.054 0.074 0.031
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Figure 8: SHAP values to estimate journalism features
importance - PPLMgpt2
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Figure 9: SHAP values to estimate journalism features
importance - ChatGPT

with the GLTR and DetectGPT. However, the ob-
servation of low attack success is meaningless as
these models had a near-random guess (≈ 0.5 AU-
ROC) performance before the attack. Similar to
GPT3 and ChatGPT detection, we can observe that
J-Guard is quite resilient to adversarial attacks
across other PLM generators, with an average per-
formance drop of only 7%. It is again evident that
this robustness is due to the journalism features
employed by J-Guard. For example, OpenAIFT,
which shares the same PLM architecture and train-
ing data for detection as J-Guard, has an average
performance drop of nearly 15%.

Table 4: Detector performance change after the attack
(AUROC before the attack - AUROC after the attack).

Generator → PPLMgpt2 GPT2
Attack →

Para. Cyri. Para. Cyri.
Detector ↓
GLTR 0.124 0.082 0.090 0.054
DetectGPT 0.083 0.050 0.083 0.029
OpenAIZero 0.187 0.123 0.237 0.170
OpenAIFT 0.140 0.092 0.181 0.137
J-Guard 0.082 0.042 0.073 0.040


