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Abstract

Reinforcement learning (RL) offers a princi-
pled framework for optimizing a given reward
function and has been applied to a neural ma-
chine translation (NMT) problem to maximize
arbitrary task metrics. However, previously
adopted RL algorithms for NMT (e.g., policy
gradient) are generally slow as they require on-
line data collection, and limits the algorithm’s
applicability to specific reward functions that
can be evaluated online. In this paper, we
present an offline RL algorithm called CER
(conservative expectile regression). Despite the
demanding nature of offline RL tasks, which
are even more difficult with large models, this
algorithm is capable to learn stably by explic-
itly exploiting the properties of NMT’s RL for-
mulation, such as the deterministic transition
function. We analyze and discuss the design
choices of CER, and demonstrate in the exper-
iments that the proposed method outperforms
its competitors for offline reward optimization
in NMT.

1 Introduction

Standard training of neural machine translation
(NMT) systems relies on the maximum likelihood
estimation (MLE) with ground-truth parallel cor-
pus , where we assume that every single instance in
the dataset is a correct translation. Despite the re-
markable progress made so far (Lewis et al., 2020;
Brown et al., 2020), there is always a need of train-
ing methods that can learn without the perfect su-
pervision, e.g., learning from noisy data (Guo et al.,
2021), or human feedback (Nguyen et al., 2017).

To this end, reinforcement learning (RL) has
gained attraction to train models beyond the stan-
dard MLE training, as it offers a principled frame-
work to optimize for the given reward function.
In the applications of NMT (or text generation in
general), it has been widely researched to mainly re-
duce the exposure bias (Wang and Sennrich, 2020)
and/or optimize for the non-differentiable metrics

like BLEU (Edunov et al., 2018). However, most of
the previous works have focused on designing on-
line RL algorithms, which possess inherent weak-
nesses in a number of practical perspectives. Pri-
marily, online RL algorithms are slow due to the
low probability of obtaining good samples during
online data collection, and is not possible if the re-
ward/transition functions cannot be sampled online,
e.g., learning on human feedback.

Recently, there was a large amount of research to
develop efficient and stable offline reinforcement
learning algorithms that only utilize previously col-
lected data (Kumar et al., 2020), and some of them
have achieved small successes on real-world tasks
like robot manipulations (Mandlekar et al., 2021).
While offline learning is free from the inherent
weaknesses of online learning, it adds another diffi-
cult algorithmic challenge of distribution shift on
top of the challenges and destabilizes learning. We
indeed empirically observed that typical offline RL
algorithms with bootstrapped action-value learning
become easily unstable in NMT, and less perfor-
mant in practice. Nevertheless, we also show that
there are clear limitations in optimizing the policy
with the importance sampling alone, which implies
that action-value learning should not be abandoned.

In this paper, we aim to develop an efficient of-
fline RL algorithm that is able to handle all of the
above challenges. To this end, we explicitly exploit
the unique characteristics that the RL formulation
of NMT has: deterministic transition, and the fact
that choosing different actions will never lead to the
same state in the future. These characteristics en-
able us to use the proposed algorithm, conservative
expectile regression (CER), which is specialized
to have high efficiency in this particular setting.
We also present a way to extract a policy and de-
code from the learned action-values to obtain the
highest performing translation possible. In the ex-
periments, we demonstrate the performance of the
CER algorithm by designing an offline RL experi-
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ments based on various IWSLT’14 and WMT’14
parallel datasets. We show that CER outperforms
other offline RL algorithms while it only requires a
minor change in architecture and small amount of
extra computation that parallelizes.

2 Preliminaries

2.1 RL formulations for NMT

The goal of neural machine translation (NMT) is
to produce a translation y = (y0, ..., yT ) in a target
language given a sentence x = (x0, ..., xS) in a
source language. Each y, x ∈ V are tokens from a
finite vocabulary set V .

In this work, we model the neural machine
translation task as a Markov Decision Process
(MDP), where the system state at each time step
t is st = (x,y<t), the partial translation gener-
ated so far. The action corresponds to choosing the
next token from a finite action space, the vocab-
ulary set: at = yt ∈ V . The machine translator
corresponds to a policy π(at|st) = p(yt|y<t,x).
After the translator chooses a token, it receives a
reward rt = R(st, at) and a next state st+1, with
a deterministic transition rule st+1 = (x,y<t+1)
with y<t+1 = (y<t, at). This procedure will
produce a trajectory (i.e., a full translation) τ =
(s0, a0, r0, ..., sT , aT , rT ) given a policy.

We also define the return as the sum of
discounted rewards from time-step t, Gt =∑T

t′=t γ
t′rt′ where γ ∈ (0, 1] is a discount fac-

tor. The goal is then to find a policy that max-
imizes the expected return at the initial state,
J(π) = Eτ∼π [G0]. To do this, the action-value
function of policy is often computed and used:
Qπ(s, a) = Eτ∼π [G0|s0 = s, a0 = a], which is
the expected return following π, starting from tak-
ing action a at state s.

One particular aspect of NMT as an RL prob-
lem is that most of the task metrics we use for the
reward function can only evaluate the completed
translations. In these cases, the nonzero reward will
only be assigned to the end of the trajectory, i.e.
rt = 0,∀t < T . We assume the case throughout
this paper.

Learning from offline data In contrast to online
RL algorithms, offline RL uses previously collected
dataset D without any additional data collection.
In terms of NMT, offline RL is similar to the usual
supervised learning of NMT methods, but it en-
ables us to optimize arbitrary score metrics. In

the following, with a slight abuse of notations, we
also refer D as an empirical distribution induced

by dataset D, i.e., D(a|s) =
∑

(si,ai)∈D 1si=s,ai=a∑
si∈D 1si=s

is

the behavior policy estimated from D.

3 The Offline RL Framework for NMT

In this section, we discuss the weaknesses of the
previous offline RL methods (§3.1) and introduce
a practical algorithm, conservative expectile regres-
sion (CER), that avoids those issues and enables
stable training of action-value Q (§3.2, §3.3). Then,
we describe how we can obtain a highly rewarding
translation sample from learned Q (§3.4).

3.1 Challenges in Offline RL on NMT
While RL in principle provides an effective frame-
work for optimizing neural machine translators on
arbitrary metrics, due to the large state-action space
and large language models, designing an offline RL
algorithm that works faces a number of challenges.
We discuss below the weaknesses of various candi-
dates that we did not choose to develop.

Policy gradient The most widely used algorithm
for NMT (or text generation in general) is policy
gradient (PG, Ranzato et al., 2016; Wu et al., 2018;
Choshen et al., 2020; Kiegeland and Kreutzer,
2021). PG is an on-policy algorithm, meaning that
the samples from the current policy π are required
to optimize the policy. To apply PG in an offline
setting, we need to apply an importance sampling:

∇J(π) = Eτ∼π

[
T∑
t=0

Gt∇ log π(at|st)

]

= Eτ∼D

[
T∑
t=0

wtGt∇ log π(at|st)

]
,

with importance weights wt =
∏T

t′=t
π(at′ |st′ )
D(at′ |st′ )

.
Note that computing the importance weight

wt requires multiplying per-timestep importance
weight over a number of timesteps. It can be easily
seen that such an estimator suffers from a vari-
ance that grows exponentially as the trajectory gets
longer. Furthermore, for the usual parametrized
policy π with a softmax head, the probability of
any action is nonzero. This implies that the dataset
D should cover all possible generations, which is
simply not possible.

Approximated PG To overcome such issues of
PG, Pang and He (2021) proposes GOLD, which
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Figure 1: An illustrative example of the suboptimality of
"single-step" methods, which cannot take better future
decisions into account. Although the best policy would
be choosing to go to s2 to get a return of 1. maximizing
QD leads to s1 because of the bad data distribution after
s2. See (Snell et al., 2022) also for other examples.

is an approximation of PG that uses truncated im-
portance weight wt ≈ π(at|st) assuming uniform
probability for samples in a dataset. This choice
has two implications; first, by truncating the impor-
tance weight after the current timestep, it can be
equivalently seen as maximizing the behavior value,
QD. This will make the algorithm work like the
"single-step" update methods (Snell et al., 2022),
which estimate the value of the behavior policy,
and act greedily according to the behavior value
QD instead of maximizing the sum of rewards. As
shown in Figure 1, single-step update methods may
result in a myopic, suboptimal policy.

Secondly, as we assume uniform distribution
over sampled actions in a dataset, the gradient es-
timate becomes biased as most of the actions will
not be sampled despite their nonzero probability.
The algorithm will act as trajectories that are not
sampled have the return of 0, and this makes the
algorithm dependent on the signs of returns. For
example, if all returns Gt are negative, then the
probability of any trajectory in the dataset to be
sampled by the policy π will be updated toward
zero. These implications of approximated PG en-
courage us to design an algorithm that learns a non-
behavior action-value, i.e., multi-step methods, to
avoid the limitations.

Bootstrapped update of Q The standard way of
learning Qπ in recent deep RL algorithms is using
a bootstrapped update according to the following
temporal difference (TD) loss:

LTD =
1

2
ED[(r+γEπ(a′|s′)Q̂(s′, a′)−Q(s, a))2]

where Q̂ is a target network and the experience tu-
ple (s, a, r, s′) is sampled from the dataset D. We
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Figure 2: A learning curve on BLEU of validation data
of IWSLT14 de-en task, showing a BLEU score of valid
data and a maximum action-value among a batch. Note
that a maximum of return Gt/true action-value Q is
upper bounded by 100. It is shown that using a boot-
strapped update, i.e. CQL, leads to the divergence of Q
value without a careful tuning of α. Learning curves of
ILQL are not presented here, but they also have similar
trends to that of CQL. On the other hand, CER is much
less sensitive to α (we use α = 1 for CER throughout
all the experiments, see §4.2)

can also simultaneously do the policy optimiza-
tion by using maxa′ Q̂(s′, a′) instead of Eπ(a′|s′)Q̂,
which leads to a Q-learning algorithm that achieves
Q∗. However, when dealing with large models,
this bootstrapped update introduces a number of
technical difficulties:

• Requires doubled number of parameters due
to the target network, and the target network
update rate should be tuned.

• Under the sparse reward of NMT, it takes T
times of updates to propagate the rewards to
the Qs of initial states.

• When combined with an offline setting, LTD

uses Q̂(s′, a′) that may have not been trained,
and is prone to divergence when π is very
different from data collection policy (Kumar
et al., 2019). A number of different offline
RL algorithms have been proposed to prevent
the divergence, but these typically require an-
other hyperparameter to be tuned to tradeoff
the possibility of divergence and the possible
performance improvement.
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• It may lead to poor generalization and degener-
ate feature representation (Kumar et al., 2021)
that can harm performances on new source
sentences that were never seen.

While a few previous studies (Guo et al., 2021;
Snell et al., 2022) demonstrated the effectiveness
of these temporal difference losses, we have em-
pirically observed that in our experiment settings,
bootstrapped update leads to relatively unstable
learning and poor performance without sensible
tuning of hyperparameters (Figure 2).

3.2 Learning Q with expectile regression

Consequently, in this work, we aim to entirely
avoid using a bootstrapped update based on a TD
error as in LTD. One simple alternative we can
think of is the simple Monte-Carlo (MC) estima-
tion of action-values:

min
Q

Eτ∼D

[
T∑
t=0

(Q(st, at)−Gt)
2

]
. (1)

Despite its simplicity, it can alleviate some of the
weaknesses of LTD and challenges of the NMT
as an offline RL problem: (1) it does not suffer
from the problem of querying unseen next action a′

during offline training (thus no divergence/less in-
stability), and (2) under the sparse reward function
of NMT, Q of any time-step can be directly updated
with nonzero reward signal at the end of the trajec-
tory. In this case, we can simply let Gt = γT−trT .

On the other hand, it is one of the "single-step"
methods and will suffer from the same problem
that approximated PG suffers from (Figure 1). It
is also well known that MC estimation of Q-value
has a higher variance compared to TD estimation,
which will result in a relatively high variance in
gradient and slow learning.

To deal with these problems, we adopt the ex-
pectile regression framework and propose the fol-
lowing loss:

Lη
ER = Eτ∼D

[
T∑
t=0

Lη
2(Q(st, at)−Gt)

]
, (2)

where Lη
2(u) = |η − 1u<0|u2 and η ∈ (0, 1).

The Qη(st, at) that minimizes Lη
ER will be the η-

expectile of the return distribution that we can get
from (st, at), following the behavior policy D(a|s).
Intuitively, it recovers the MC loss (Eq. 1) when
η = 0.5. For η > 0.5, it assigns smaller weight

1 − η to the return samples Gt that are smaller
than Qη(st, at) while assigning larger weight to
the others, resulting in Qη(st, at) ≥ E[Gt].

Normally this objective would not give a valid
Q-value since taking an expectile of the return Gt

involves all the stochasticity including those from
sampling the transition and reward functions. For-
tunately, under the specific MDP formulation that
we have made for NMT, we can prove that Qη,
a solution to the Eq. (2), is always a valid action
value function Q of some specific policy.

Theorem 3.1. Under the MDP formulation of NMT
described in Section 2.1, there exists a policy π
such that Qπ(s, a) = Qη(s, a), ∀(s, a) ∈ D where
Qη is a solution to Eq. (2).

Proof. See Appendix A.1.

We also provide another interpretation and a ben-
efit of Lη

ER by showing what happens when η → 1:

Theorem 3.2. For Qη = argminQ Lη
ER,

lim
η→1

Qη(s, a) = max
τ∈D

[
T∑
t=0

γtrt|s0 = s, a0 = a

]
.

Furthermore, the variance of the stochastic gradi-
ent ∇L̃ER is zero as we approach the solution,

lim
η→1

Q→Qη

V[∇L̃η
ER] = 0.

Proof. See Appendix A.2.

In other words, as we take η ≈ 1, it is equiva-
lent to letting Q(s, a) be the maximum return we
have experienced in the dataset. With high η, the
variance of stochastic gradient decreases as we ap-
proach the solution, which also alleviates the high
variance problem of simple MC Q estimators.

The objective Lη
ER can be seen as an MC version

of IQL (Kostrikov et al., 2021; Snell et al., 2022)
to deal with the sparsity of rewards. In general
RL problems, this objective may not be desirable
since it lacks the ability to "stitch" together differ-
ent sub-trajectories (Kumar et al., 2020). How-
ever, in the RL formulation of NMT, it can be
seen that trajectories, which choose different ac-
tions a1t , a

2
t at st that give different state transitions

s1t+1 ̸= s2t+1, will never arrive at the same state in
the subsequent time-steps, and no algorithm will
benefit from stitching.

Moreover, due to the absence of sampling error,
Lη
ER benefits from a much higher η when com-

pared to Kostrikov et al. (2021). While taking
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η → 1 is the best choice in principle, such η im-
plies that we completely ignore trajectories other
than those that give the max return. Although we
observed that in experiments the algorithm does
better as we set η higher (Figure 5), there might
be cases where smaller η is better due to the worse
generalization of the function approximator.

3.3 Conservative expectile regression
We have shown that the Lη

ER objective introduced
in the last section has nice properties, and addresses
the problems of offline RL training in principle.
However, it should be noted that the analyzed char-
acteristics above apply to the exact Q-function
learning, i.e., the tabular case. NMT is at the other
extreme where, in the test time, we do not see any
of the state-action we have seen during the training
and should only rely on the generalization ability
of our function approximators.

For example, assume a rare token a that only
appears in the dataset one time from some state s,
and also assume that it achieves the largest return
G in the dataset. Without any other appearance of
action a in other states, the function approximator
may assume that the return G generalizes to other
states, making the translator repeat the same action
in any circumstance. It is because the behavior
of Qη that approximates the maximum return is
only guaranteed for state-actions that appear in the
dataset.

Therefore, we adopt the regularization that pe-
nalizes uncertain Q-values outside the data sup-
port introduced in Conservative Q-learning (Kumar
et al., 2020), which optimizes:

Lη
CER(H) = min

Q
Lη
ER + αRH , where (3)

RH = ED

[ T∑
t=0

log
∑
ā

exp(Q(st, ā))−Q(st, at)
]

We denote this algorithm as conservative expectile
regression: CER(H). By adding a regularizer RH,
it will additionally minimize Q-values that lie out-
side the data support, preventing unseen actions
from becoming overly optimistic.

Note that theoretically, the regularization RH in
CER brings a different amount of conservatism
compared to that of conservative Q-learning as
we choose to have an asymmetric objective Lη

ER.
In the Appendix B, we analyze how much con-
servatism CER will bring when compared to the
oracle-based objective, minQ ED[(Q − Qη)2] +

αRH. The main result is that CER will be at least
half conservative when compared to the oracle-
based objective when α is small enough. The lower
bounds on value functions and objective analyses
done by Kumar et al. (2020) can be followed sim-
ilarly to show that CER provides a valid lower
bound on action-value function.

Advantage weighted regularization Interest-
ingly, it can be observed that the regularization
term RH in Eq. (3) is highly reminiscent of the
cross-entropy loss of MLE training if we interpret
Q(s, ·) as the logit of a token given the current state
s, similar to the soft action-value (Guo et al., 2021),
i.e. π̃(a|s) = softmax(Q(s, a)). This interpreta-
tion naturally lead to a question whether interpolat-
ing against the MLE objective is actually beneficial.
It will depend on how the dataset is constructed: as
more suboptimal trajectories are contained in the
dataset, the performance of the policy that MLE
objective results alone becomes worse, and so does
the optimized policy of CER(H). To make CER(H)
not suffer from the suboptimality of trajectories in
the dataset, we need to avoid RH over-regularizing
towards suboptimal trajectories.

To this end, we also present a variant that regu-
larizes the policy with RH but weights the regular-
ization with its importance:

RA = ED [−⟨π̃(a|s)⟩ log π̃(a|s)] with

log π̃(a|s) = Q(s, a)− log
∑
ā

exp(Q(s, ā)),

where ⟨·⟩ is a stop-gradient function. We denote
this a CER(A) algorithm.

3.4 Policy extraction and decoding

As briefly discussed in the last section, the key to
better performance in NMT tasks is generalization
since the test time state-actions will be never shown
to the agent during training. There are two differ-
ent ways of generalization we can perform with the
current algorithm; the generalization in the policy
space and the generalization in the action-value
space. If we extract a parametrized policy out of
the learned action-value function and decode it ac-
cording to the extracted policy (similar to usual
actor-critic algorithms (Kostrikov et al., 2021)), we
are generalizing in the policy space. On the other
hand, if we directly deploy the learned action-value
function for decoding, it corresponds to the gener-
alization in the value function space (Snell et al.,
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Figure 3: Overall training/decoding algorithms and the architecture of Conservative Expectile Regression. Left:
from sub-optimal translations with their evaluations, we train a transformer with two heads: Q-head for an action-
value estimation and a policy-head as usual. Q-head is trained with the CER objective (3), and policy extraction is
done with off-policy actor-critic style loss (4). Right: we utilize both action-value and policy to perform a beam
search during the decoding process.

2022). We empirically found that combining both
complements each other and gives the best result.

Policy extraction IQL (Kostrikov et al., 2021)
uses a weighted log-likelihood loss with exponen-
tiated advantages to extract a policy, which corre-
sponds to the KL-constrained policy search (Peng
et al., 2019). However, as we use additional reg-
ularization to penalize OOD actions, we found it
unnecessary to constrain it again. We use an off-
policy actor-critic style (Degris et al., 2012) policy
extraction instead:

∇J ≈ ED

[ T∑
t=0

π(at|st)Q(st, at)∇ log π(at|st)
]

(4)
where we assume a uniform data distribution
D(a|s) = 1

|D| similar to approximated PG and
hence omitted from above. Sampling actions from
D instead of π enables a far faster policy extraction
than by sampling from π. On the other hand, it suf-
fers from a similar issue to the approximated PG,
and we add mins,aQ(s, a) to Q to force positivity.

Decoding We perform a beam search according
to the following criterion:

log π(a|st)+β
(
Q(st, a)−log

∑
ā

exp(Q(st, ā))
)

(5)
to combine the two ways of generalization based
on the extracted policy and the learned action-value

function, balancing with β. It can be seen as an
adaptation of ILQL (Snell et al., 2022) where the
second term is designed to mimic an advantage
function without explicit estimation of a state value
function or the policy.1

Another way to interpret this criterion is to see
Q as a logit of a policy as we did to develop an
advantage weighted regularization. In this case,
the criterion corresponds to a weighted sum of two
different log probabilities: log π + β log π̃.

Architectures for CER The main advantage of
CER is that we only need a very minor change in
architecture. We use the same transformer architec-
tures that are used for supervised learning of NMT
tasks, with an additional head at the top of the de-
coder to predict an action-value function. Training
of the action-value head and the policy extraction
can be parallelized as in typical supervised train-
ing. Overall training/decoding algorithms and the
architecture are summarized in Figure 3.

4 Experiments

Datasets and base architecture In order to
benchmark the algorithms for an offline learning
with sub-optimal translations, we performed the
following procedures. We split the dataset into
half, and trained a machine translator using the

1Note that the policy π extracted is not a policy that Q is
based on, hence V (s) ̸= Eπ[Q(s, a)]
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De→En Ro→En It→En Fr→En En→De En→Ro De→En*

Base 31.55 35.05 31.74 39.05 26.05 26.15 29.28
Online PG 33.40 36.64 33.24 39.72 26.77 26.91 30.56

BC 32.56 35.94 32.56 39.6 26.69 27.15 30.15
Approximate PG 32.66 36.35 33.03 39.84 27.14 27.29 30.31

CQL 32.85 36.24 32.91 40.15 27.39 27.60 30.22
ILQL 32.8 36.18 32.97 40.17 27.4 27.56 30.26

CER(H) 33.21 36.77 33.26 40.49 27.59 27.97 30.68
CER(A) 33.16 36.81 33.37 40.47 27.7 27.99 30.71

Table 1: BLEU score comparison for IWSLT’14 and WMT’14 (indicated using *) tasks. Offline algorithms with
the highest scores are denoted in bold.

first half of the dataset. We denote this the Base
model. Using the Base model, we run beam decod-
ing with a beam size of 50 over the latter half of the
dataset, and picked top 5 translations with the best
BLEU scores for each source sentences to build
an offline RL dataset with sub-optimal translations.
SacreBLEU (Post, 2018) is used to evaluate the
scores, and the scores are also saved as rewards
for translations. These offline datasets thus are 2.5
times larger than the original datasets. We then
tested a series of algorithms on these offline RL
datasets, warm-starting from the Base model.2 We
constructed offline RL datasets using IWSLT’14
datasets. We also used German-English (De→En)
from the WMT’14 translation task for the result on
large datasets. See appendix C for more details on
experiments.

Methods We implement and compare the follow-
ing algorithms: behavior cloning (BC), approxi-
mate policy gradient (GOLD, Pang and He, 2021),
conservative Q learning (CQL, Kumar et al., 2020),
implicit language Q-learning (ILQL, Snell et al.,
2022) and our algorithm variants, CER(H) and
CER(A). Note that we used the proposed archi-
tecture, policy extraction and decoding methods
for CQL and ILQL here for the fair comparison,
so the only differences are the action-value loss
objectives. After the training, the BLEU score is
evaluated by performing a beam decoding with a
beam size of 5 for all the algorithms.

On the other hand, BC and approximate PG are
the policy-based algorithms that do not use addi-
tional action-value estimation. BC simply performs

2Note that all the algorithms experimented here have the
ability to be trained from scratch; warm-starting was used to
reduce training time.

supervised training over sub-optimal translations
and is independent of the rewards of trajectories.
We also report the results of Online PG for the
comparison.

Results Table 1 shows the performance of the
described experiments, where each entry of a table
represents a single run. First, we can note that CQL
and ILQL give about the same result, which is ob-
vious considering the sufficiently large η due to the
deterministicity of NMT domain. These algorithms
improve over approximate PG in most cases, but
fails on Ro→En, It→En even with the additional
estimation of action values. We believe that this is
due to their high sensitivity on regularization co-
efficient, and the results will improve with more
fine-grained hyperparameter search. Nevertheless,
it is true that these results make these bootstrapping-
based algorithms look less attractive in practice.

On the other hand, our proposed CER algorithms
are worth the extra computation for action-value es-
timation, being consistently better than other com-
petitors. CER(A) shows better performance com-
pared to CER(H) in most of the cases, although
the improvement is marginal. Note that, although
CER(A) was designed to make the regularization
process more intelligent, it is mainly dependent on
the accuracy of our action value estimate. CER(A)
may fail to sufficiently regularize OOD action value
estimates if it is large because it less penalizes large
action values, and it may result in a smaller gain in
practice.

It is hard to compare against online PG as the
experiment settings are vastly different, but em-
pirical observations indicate that CER consistently
outperforms online PG in a majority of language
pairs. Although online PG theoretically has the po-
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Figure 4: BLEU score on IWSLT’14 De→En of differ-
ent action-value learning objectives depending on β of
beam decoding criterion.

tential for superior performance in an asymptotic
sense, practical inefficiencies arising from online
data sampling often hinder its actual achievement
of such performance.3

4.1 Effect of policy extraction methods

Figure 4 shows the effect of the choice of β of de-
coding criteron (5) on IWSLT’14 De→En. While
β → 0 implies we are using the extracted pol-
icy only and β → ∞ implies we are using the
advantage-like perturbation only, we get the best
results around β = 1 regardless of the action-value
learning objective. These results show that the pol-
icy extraction and decoding methods have large
impact on the performance, and that combining the
two different generalization methods has a signifi-
cant benefit in validation performance. In addition,
it can be seen that the performance of policy ex-
traction alone is inferior to that of advantage-based
decoding alone, suggesting that there is room for
improvement in policy extraction.

4.2 Effect of hyperparameters

Figure 5 shows the effect of the choice of hy-
perparameters α and η of CER(A) on IWSLT’14
De→En. Note that we have the following interpre-
tations: α = 0 is the expectile regression without
conservatism, whereas α → ∞ makes CER the reg-
ularization only model, which will be trained like
BC (CER(H)) or weighted BC (CER(A)) where Q
is a logit of a token. On the other hand, η → 1 cor-
responds to fitting Q(s, a) to the maximum return
starting from (s, a), and η → 0.5 corresponds to
the learning of average return of each state-actions.

3Although an increase in BLEU score by < 2 may ap-
pear modest, it aligns with previous findings reported, e.g.
Kiegeland and Kreutzer (2021).
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Figure 5: BLEU score on IWSLT’14 De→En of
CER(A) depending on the choice of hyperparameters α
and η.

Results from various alpha experiments show
that it is better to use an appropriate α. This is
because small α can make translators overly opti-
mistic on high-scoring and rare tokens, while large
α reverts the algorithm back to BC. Meanwhile, it
is interesting to see how the algorithm performs
depending on the different ηs. While it works best
with the highest η, the algorithm could also get a
high score on the other end η = 0.5. It can be
understood in a way that the effective size of the
dataset is the largest when η = 0.5, and it would
have been advantageous for learning better repre-
sentations. But that leads the algorithm to a "single
step" method, and the more sub-optimal transla-
tions per source sentence, the worse it will be.

5 Conclusion

In this paper, we develop a novel RL algorithm for
NMT, conservative expectile regression, based on
expectile regression and a conservative q-learning
framework. Based on the unique characteristics of
the RL formulation of NMT, the objective of CER
is carefully designed to combat all the difficulties
we face in the maximization of arbitrary reward sig-
nals based on offline RL. We emphasize that CER
is as stable as supervised training, and it only needs
a slightly more parameters. We have demonstrated
the performance by designing an offline RL exper-
iment based on various IWSLT’14 and WMT’14
datasets and shown that CER is clearly advanta-
geous compared to other offline RL algorithms.
While these improvement of BLEU scores may not
be strongly correlated with human evaluations (Wu
et al., 2016), we believe that the experiment aims
to demonstrate the efficiency in optimizing the re-
wards, and the difference is likely to persist even if
we optimize for other metrics.
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Limitations

While the proposed CER algorithm is a valid algo-
rithm for NMT where the transitions are determin-
istic, it may not result in an optimal policy when
the transitions are stochastic, e.g., dialog manage-
ment. In this cases, use of ILQL (Snell et al., 2022)
is recommended. Furthermore, we were not able to
demonstrate the performance of CER algorithm on
very large models or on very large amount of data,
the impacts of CER on representation learning on
those cases are not shown. However, we believe
that CER will be at least better than other offline
RL algorithms in terms of representation, since it is
one of the closest algorithm to supervised training.
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A Proofs

We provide the proofs for the theorems here.

A.1 Proof of Theorem 3.1
Lemma A.1. Assume two sets of real numbers
X1 = {x1, ..., xn} and X2 = {xn+1, ..., xn+m}
with xi ∈ R ∀i. Define an η-expectile of a set:

mη(X) = argmin
mη

1

|X|
∑
x∈X

Lη
2(x−mη). (6)

Then, it satisfies min(mη(X1),mη(X2)) ≤
mη(X1 ∪X2) ≤ max(mη(X1),mη(X2)).

Proof. By the first order condition of mη(X), it
satisfies

η
∑
x∈X

(x−mη)
+ = (η − 1)

∑
x∈X

(x−mη)
−. (7)

W.l.o.g. assume mη(X1) ≤ mη(X2). Assume
that mη(X1 ∪ X2) < min(mη(X1),mη(X2)) =
mη(X1). It means

η
∑

X1∪X2

(x−mη(X1))
+

< (η − 1)
∑

X1∪X2

(x−mη(X1))
−. (8)

Subtracting Eq. (7) from Eq. (8) implies that
mη(X2) < mη(X1), which is a contradic-
tion. Therefore, mη(X1 ∪ X2) ≥ mη(X1) =
min(mη(X1),mη(X2)). The other way around
can be proved similarly.

Theorem A.1. Under the MDP formulation of
NMT described in Section 2.1, there exists a pol-
icy π such that Qπ(s, a) = Qη(s, a), ∀(s, a) ∈ D
where Qη is a solution to Eq. (2).

Proof. We use the following properties of the MDP
formulation of NMT: (1) the transition function is
deterministic, and (2) the same state is never visited
more than once.

We prove this by induction. From the terminal
states s, we have a set of actions that have tried
in s: {ai}i. Since the same state is never visited
more than once, we have Qη(s, ai) = Qπ(s, ai) =
R(s, ai) ∀i for any η, π.

Now pick an arbitrary non-terminal state-action
pair from the dataset (s, a) ∈ D. It will give a deter-
ministic next state s′. There will be the next actions
{a′i}i that have been chosen from s′. Assume that
there exists π such that Qπ(s′, a′i) = Qη(s′, a′i) ∀i
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for some fixed η. These Qη(s′, a′i), which is the
solution to Eq. (2), are expectiles of sets of re-
turns starting from (s′, a′i) and they are equal to
Qπ(s′, a′i) from the assumption, i.e.,

Qπ(s′, a′i) = mη({Gt : Gt ∈ D|st = s′, at = a′i}).

Note that according to Eq. (7), if we shift and scale
the data by constants, the expectile will also be
shifted and scaled by the same amount. There-
fore, R(s, a) + γQπ(s′, a′i) are also expectiles of
R(s, a) + γGts with Gts starting from (s′, a′i).

R(s, a) + γQπ(s′, a′i) =

mη({R(s, a) + γGt : Gt ∈ D|st = s′, at = a′i}).

Now observe that Qη(s, a) is an expectile of Gt−1s
starting from (s, a), which is a union of R(s, a) +
γGts starting from {(s′, a′i)}is:

Qη(s, a)

= mη({Gt−1 : Gt−1 ∈ D|st−1 = s, at−1 = a})

= mη

(⋃
i

{R(s, a) + γGt : Gt ∈ D|st = s′, at = a′
i}
)
.

Using Lemma A.1, we see that

min
i

R(s, a) + γQπ(s′, a′i)

≤ Qη(s, a) ≤ max
i

R(s, a) + γQπ(s′, a′i).

This implies that there exists a convex combination
0 ≤ λi ≤ 1,

∑
i λi = 1 such that

Qη(s, a) =
∑
i

λi

(
R(s, a) + γQπ(s′, a′i)

)
= R(s, a) + γ

∑
i

λiQ
π(s′, a′i).

Therefore, by choosing π(ai|s) = λi ∀i, we see
that Qη(s, a) = Qπ(s, a). Furthermore, choosing
π accordingly does not affect Qπ after (s, a) since
we do not visit same state more than once.

A.2 Proof of Theorem 3.2
Theorem A.2. For Qη = argminQ Lη

ER,

lim
η→1

Qη(s, a) = max
τ∈D

[
T∑
t=0

γtrt|s0 = s, a0 = a

]
.

Furthermore, the variance of the stochastic gradi-
ent ∇L̃ER is zero as we approach the solution,

lim
η→1

Q→Qη

V[∇L̃η
ER] = 0.

Proof. The proof of the first statement mainly fol-
low the proof of Lemma 1 of (Kostrikov et al.,
2021). As in the proof of Lemma A.1, first order
condition of Qη(s, a) is:

η
∑
G∈G

(G−Qη(s, a))+ = (η−1)
∑
G∈G

(G−Qη(s, a))−.

where G = {Gt : Gt ∈ D|st = s, at = a}. If
Qη(s, a) > maxG∈G G, the above condition can-
not be satisfied since LHS is 0, and RHS is larger
than 0. This implies Qη(s, a) ≤ maxG∈G G for
any η.

Moreover, assume η1 and η2 with η1 < η2. It
can be easily seen that

η2
∑
G∈G

(G−Qη1(s, a))+

≥ (η2 − 1)
∑
G∈G

(G−Qη1(s, a))−,

and the gap will only narrow when Q(s, a) in-
creases. This means Qη1(s, a) ≥ Qη2(s,a) where
the equality only holds for the trivial case when
all G ∈ G are the same. Then η is bounded and
monotonically increasing function except the trivial
case, and the limit limη→1Q

η(s, a) = maxG∈G G
follows.

For the second statement, we redefine the loss to
derive the following stochastic gradient:

Lη
ER = E(s,a,G)∼D[L̃

η
ER(s, a,G)]

L̃η
ER(s, a,G) = |η − 1Q(s,a)<G|(Q(s, a)−G)2

∇L̃η
ER(s, a,G) = 2|η − 1Q(s,a)<G|(Q(s, a)−G)

= −2η(G−Q(s, a))+

− 2(1− η)(G−Q(s, a))−

for Q(s, a) ̸= G. Then,

lim
η→1

Q→Qη

(G−Q(s, a))+ = (G−max
G∈G

G)+ = 0

lim
η→1

(1− η)(G−Q(s, a))− = 0

and lim η→1
Q→Qη

V[∇L̃η
ER] = 0.

B Analysis on Conservative Expectile
Regression

Recall the objective of CER that we introduced:

Lη
ER + αRCQL

= ED[|η − 1Q(s,a)<G|(Q(s, a)−G)2]

+ αED[Eā∼µ(a|s)Q(s, ā)−Q(s, a)].
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Let the derivative of the above objective to be 0:

0 = ∇(Lη
ER + αRCQL)

= ED

[
− 2η(G−Q(s, a))+

− 2(1− η)(G−Q(s, a))− + α

(
µ(a|s)
D(a|s) − 1

)]

Fix s, a ∈ D, and define the return distribution
pG(G|s, a) that can be computed from D. Equiva-
lently, we can write:

α

2

(
µ(a|s)
D(a|s)

− 1

)
= EpG

[
η(G−Q(s, a))+

+ (1− η)(G−Q(s, a))−
]

= EpG

[
(2η − 1)(G−Q(s, a))+

]
+ (1− η)(EpG [G]−Q(s, a))

and we get:

Q(s, a) = EpG

[
G+

(2η − 1)

(1− η)
(G−Q(s, a))+

]
− α

2(1− η)

(
µ(a|s)
D(a|s)

− 1

)
.

Now, we define the portion of return samples G
that is larger than Q to be ρG>Q ∈ [0, 1], and the
average of Gs that is larger than Q to be G>Q.
Then, we can write:

EpG [(G−Q(s, a))+] = EpG [ρG>Q(G−Q(s, a))]

These two newly defined ρG>Q, G>Q depend on
Q, but they do not change until Q moves and passes
another G sample. Based on those, we can derive
the following:(
1− ρG>Q

(2η − 1)

(1− η)

)
Q(s, a)

= EpG

[
G+

(2η − 1)

(1− η)
ρG>QG>Q

]
− α

2(1− η)

(
µ(a|s)
D(a|s)

− 1

)
,

arranging the terms we get,

Q(s, a) = c1EpG [G] + c2EpG [G>Q]

− c3α

(
µ(a|s)
D(a|s)

− 1

)
where c1 = 1−η

1−η−ρG>Q(2η−1) , c2 =
ρG>Q(2η−1)

1−η−ρG>Q(2η−1) , and c3 =
1

2(1−η−ρG>Q(2η−1)) .
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Figure 6: The relationship between η, c3, and ρG>Q.

If we know the expectile Qη(s, a) in advance,
the objective that resemble the original conserva-
tive Q-learning the most would be the loss based
on symmetric least squares:

ED

[
1

2
(Q(s, a)−Qη(s, a))2

]
+ αoRCQL.

With similar derivations with new oracle-based ob-
jective, we get:

Q(s, a) = Qη(s, a)− αo

(
µ(a|s)
D(a|s)

− 1

)
= c1EpG [G] + c2EpG [G>Q]

− αo

(
µ(a|s)
D(a|s)

− 1

)
Therefore, given that ρG>Q, G>Q do not change
(i.e., change on Q(s, a) due to RCQL is not big
enough to lower Q(s, a) to pass some G), the solu-
tion to the CER algorithm is equivalent to that of
oracle-based objective by letting αo = c3α. Look-
ing into c3, we can see that minη,ρG>Q c3 = 1

2 ,
showing that CER will be at least half conservative
when compared to oracle-based objective.

In Figure 6, we show the relationship between
η, c3, and ρG>Q. It can be seen that c3 → 1 as
η → 0.5, which is well aligned with our discussion
since η = 0.5 makes Lη

ER to be a MSE loss and
CER is equivalent to the oracle-based objective.
On the other hand, when η → 1, the amount of
conservativeness varies much depending on how
the data is distributed: ρG>Q. While c3 may grow
to arbitrarily large value in the extreme case of
ρG>Q → 0.0, η → 1.0, such a small ρG>Q can
hardly be achieved in practice, where we have only
few return samples per same state-action (at most
5 in our experiments).
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C Experiment details

We provide all the experiment details that are not
provided in the main text here. Models are opti-
mized with Adam (Kingma and Ba, 2015) with
parameters β = 0.9 and β2 = 0.98. Training
starts with linear warmup for 4 × 103 steps until
it reaches the learning rate 10−4, and then inverse
square root learning rate scheduler is used to sched-
ule the learning rate. 0.3 dropout probability and
weight decay of coefficient 10−4 are used. Base
models are trained over 40 epochs, where the of-
fline training is done over 20 epochs. We used label
smoothing (0.1) for the supervised training of Base
model. Note that the amount of data is different
between these two. We ran all experiments on 4
Nvidia GTX 3090 GPU, and running all experi-
ments took about 500 GPU hours.

Dataset and Architectures We constructed of-
fline RL datasets using German-English (De→En),
Romanian-English (Ro→En), Italian-English (It→
En) and French-English (Fr→En) from IWSLT’14
datasets. We also experimented on IWSLT’14
English-German (En→De) and English-Romanian
(En→Ro) to see the results on different target lan-
guages. We used byte-pair-encoding (Sennrich
et al., 2016) to preprocess all sentences. For these
tasks, tst2010, tst2011, tst2012 datasets are merged
to form test datasets and report BLEU on these
datasets. We also used German-English (De→En)
from the WMT’14 translation task for the result on
large datasets.

We use the Fairseq (Ott et al., 2019) implemen-
tation of the Transformers architecture (Vaswani
et al., 2017). We used the transformer architecture
of six encoder layers, six decoder layers, 4 atten-
tion heads, 512 embedding dimension and 1024
inner-layer dimension for all the IWSLT’14 ex-
periments.4 For WMT’14 experiments, we used
8 attention heads and 2048 inner-layer dimension
instead.5

Hyperparameters For approximate PG, we used
truncated approximated importance weight wt =
max(π(at|st), 0.1), following Pang and He (2021).
For regularization coefficients α for CQL and
ILQL, we reported the results with α = 102, which
resulted in the best performance out of the set of
{100, 101, 102}. For the expectile hyperparameter
of ILQL, we used η = 0.99 that resulted in the best

4transformer_iwslt_de_en architecture of Fairseq.
5transformer_wmt_en_de architecture of Fairseq.

performance out of the set of {0.9, 0.95, 0.99}. For
CERs, α = 100 and η = 0.99 is used.


