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Abstract

We present an approach for assessing how
multilingual large language models (LLMs)
learn syntax in terms of multi-formalism syn-
tactic structures. We aim to recover constituent
and dependency structures by casting parsing
as sequence labeling. To do so, we select a
few LLMs and study them on 13 diverse UD
treebanks for dependency parsing and 10 tree-
banks for constituent parsing. Our results show
that: (i) the framework is consistent across en-
codings, (ii) pre-trained word vectors do not
favor constituency representations of syntax
over dependencies, (iii) sub-word tokenization
is needed to represent syntax, in contrast to
character-based models, and (iv) occurrence
of a language in the pretraining data is more
important than the amount of task data when
recovering syntax from the word vectors.

1 Introduction

Large Language Models (LLMs) are the backbone
for most NLP architectures. Their performance has
not yet reached a plateau, and factors such as scale,
language objective, token segmentation or amount
of pre-training time - among many others - play a
role in their capabilities.

To shed light on what is being learned, work on
interpretability explains what these models encode
in their representational space. Authors have ex-
plored whether these models exhibit stereotypical
biases (Nadeem et al., 2021), encode facts (Poerner
et al., 2020) or capture structural knowledge in
multi-modal environments (Milewski et al., 2022).
Whether LLMs encode syntaxin their latent space
has also been studied. In this respect, different
probing frameworks (Kulmizev and Nivre, 2022;
Belinkov, 2022) have been introduced to measure
the syntactic capability of models, although authors
such as Maudslay and Cotterell (2021) point out
that we need to take this concept with caution, since
they might not be completely isolating syntax.

Still, interpretability work on parsing focuses on
either multilingual and mono-paradigm setups, or
English and multi-paradigm setups. But we are not
aware of multi-dimensional work. This relates to
the problem of square one bias in NLP research
(Ruder et al., 2022), that states that most work
expands the current knowledge along just one di-
mension (e.g., a single language, or a single task).
Related to our work, Kulmizev et al. (2020) study
if LLMs showed preferences across two annota-
tion styles: deep syntactic and surface-syntactic
universal dependencies, but both schemes were
dependency-based. Vilares et al. (2020) did study
two different syntactic formalisms, dependencies
and constituents, and used a sequence-labeling-like
recovery framework, relying on the pretraining ar-
chitectures to associate output vectors with syntac-
tic labels. We will build on top of this framework.
Yet, they only studied English, and their analysis
focused on static vectors and early LLMs; apart
from other limitations that we discuss later.

Contribution We move from square one bias
in syntax assessment, and propose the first multi-
paradigm, multilingual, recovery framework for
dependency and constituent structures learned by
LLMs. We select representative LLMs that vary
in scale, language pretraining objectives, and to-
ken representation formats. We then study their
capability to retrieve syntax information from the
pretrained representations on a diverse set of con-
stituent and dependency treebanks, that vary in
factors such as language family or size, as well
as the presence or absence of their languages
among the pretraining data of the LLMs. The code
is available at https://github.com/amunozo/
multilingual-assessment.

2 Related work

There is a long-standing effort in the NLP commu-
nity to model syntax, either as a final goal or as

https://github.com/amunozo/multilingual-assessment
https://github.com/amunozo/multilingual-assessment
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a way to model compositionality. Yet, the ways
in which this has been pursued have evolved with
time.

Modeling syntax in the pre-neural times.
Learning grammars through corpus-based ap-
proaches (Marcus et al., 1993; Collins, 1996; Char-
niak, 1997; Petrov and Klein, 2007) has been the
dominating approach in the last decades. However,
early models required extensive feature engineer-
ing to obtain competitive parsers. This suggested
that support vector machines (SVMs) had severe
limitations understanding language structure, and
needed the help of parsing algorithms (Nivre, 2008;
Martins et al., 2010), language-dependent features
(Ballesteros and Nivre, 2012), or tree-kernels (Lin
et al., 2014; Zhang and Li, 2009) to model syntax
properly.

Modeling syntax in neural times. With the
rise of word vectors (Mikolov et al., 2013),
LSTMs (Hochreiter and Schmidhuber, 1997) and
Transformers (Vaswani et al., 2017), modeling
structure has become less relevant to obtain a good
performance, both for parsing and downstream
tasks. For instance, while the classic parser by
Zhang and Nivre (2011) used a rich set of features
(including third-order, distance, and valency fea-
tures, among others) to be competitive, the parser
by Chen and Manning (2014) only needed 18 word
and PoS tag features (and 6 dependency features)
to obtain strong results, which was possible thanks
to their reliance on pre-trained word vectors and
neural networks. The need for feature engineering
was reduced further with bidirectional LSTMs, e.g.,
Kiperwasser and Goldberg (2016) showed that four
vectors corresponding to elements in the buffer and
the stack sufficed to obtain state-of-the-art perfor-
mance, while Shi et al. (2017) showed that com-
petitive accuracies were possible with only two
features.

Modeling syntax in the era of language mod-
els. In the context of these (almost) end-to-end
parsers performing very competitively without the
need of explicitly modeling syntactic linguistic fea-
tures, recent efforts have been dedicated to interpret
to what extent syntax is encoded in the representa-
tional space of neural networks, and in particular of
LLMs. Tenney et al. (2019) and Liu et al. (2019a)
proposed probing frameworks for partial parsing, in
the sense that they tried to demonstrate that certain
syntactic information, such as dependency types,

was encoded in pre-trained models. Vilares et al.
(2020) defined a probing framework for full depen-
dency and constituent parsing. They cast depen-
dency and constituent parsing as sequence labeling
and associated output vectors with syntactic labels
by freezing their models. Hewitt and Manning
(2019) proposed a structural probing framework
and identified that pre-trained models encoded a
linear transformation that indicates the distance
between words in a dependency tree. The frame-
work was later upgraded to extract directed and la-
beled trees, while using fewer parameters (Müller-
Eberstein et al., 2022a). Hewitt and Liang (2019)
pointed out that we need to be careful with probing
frameworks, since the probe might be learning the
linguistic task itself, instead of demonstrating the
presence of the target linguistic property. For that,
they recommend to use control experiments, and
relied on control tasks, i.e., learning a random task
with the same dimensional output space. Maudslay
and Cotterell (2021) showed that semantic cues
in the data might guide the probe and therefore
they might not isolate syntax, although their ex-
periments still outperformed the baselines. Müller-
Eberstein et al. (2022b) found the most suitable
pre-trained LLMs to plug into a dependency parser
for a given treebank. Particularly, they proposed
to rank frozen encoder representations by deter-
mining the percentage of trees that are recoverable
from them, and based on that ranking choose which
LLM to plug. Focused on morphology, Stanczak
et al. (2022) showed that subsets of neurons model
morphosyntax across a variety of languages in mul-
tilingual LLMs.

3 Multilingual probing frameworks

Let w = [w1, w2, ..., wn] be an input sentence.
We are interested in linear probing frameworks
that can associate a sequence of word vectors w⃗
= [w⃗1, w⃗2, ..., w⃗n] to a given linguistic property
[p1, p2, ..., pn]. For some properties, the mapping
can be quite direct, such as for instance the case of
part-of-speech (PoS) tagging (by putting a linear
layer on top of w and outputting the PoS tag cate-
gory), or lexical semantics (e.g. computing word
vector similarity). We want an analogous mapping,
but for multiple syntactic formalisms. In this case,
the association is not trivial since syntactic pars-
ing is a tree-based structured prediction problem.
Also, we are interested in multilingual pre-trained
models, which have gained interest in recent years.
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Then, the goal is to associate their word vectors
to an estimate of to what extent characteristics of
a given formalism are encoded in their represen-
tational space, and whether this can differ across
dimensions such as tested models, formalisms, and
treebanks.

Linear probing framework for parsing We
take the study by Vilares et al. (2020) as our starting
point. However, we first identify some weaknesses
in their work: (i) it is limited to English, (ii) they do
not give specific estimates of the amount of trees
recoverable with respect to control experiments,
and (iii) they only test one type of tree linearization.
For the latter, the main motivation, in particular
for the case of dependency parsing, was that the
chosen linearization had performed the best in pre-
vious work (Strzyz et al., 2019) when training from
scratch a transducer without pre-training. How-
ever, later work suggests that that is debatable: for
instance, Muñoz-Ortiz et al. (2021) show that dif-
ferent tree linearizations might be better suited to
different languages, and Vacareanu et al. (2020)’s
results indicate that other encodings worked better
when pre-trained language models are used.

To recover dependency and constituent structures,
we will represent the trees using existing encod-
ings for parsing as sequence labeling (Gómez-
Rodríguez and Vilares, 2018; Strzyz et al., 2019).
Under this configuration, the interaction between
learning a model and searching for linguistic prop-
erties is now direct. We can use probing architec-
tures that rely entirely on the pretrained represen-
tations, and simply add a linear layer on top to
map continuous vectors to discrete labels. We can
expect that the capabilities of the output layer are
not enough to learn the syntactic tasks at hand by
themselves, so it must rely on the quality of the pre-
trained representations. Yet, we also will include
control baselines that we will discuss later.

Research questions We want to answer two
questions: (i) how much syntax is recoverable from
different LLMs? and (ii) how is it affected by as-
pects such as the models, the type of formalism,
and the pretraining and assessment data?

In what follows, we describe the sequence label-
ing encodings, both for dependency and constituent
paradigms (§3.1), and the specifics of the probing
setup used for our experiments (§3.2).

3.1 Sequence labeling encodings of syntax

Parsing as sequence labeling can be defined as
learning a function fn : V n → Ln to map a se-
quence of words into a sequence of linearized la-
bels that can be decoded to fully recover a con-
stituent or dependency tree. Here we are not in-
terested in the parsers per se, but in whether the
sequence-labeling encodings defined for them pro-
vide a simple, lossless representation of depen-
dency and constituent trees that is useful for prob-
ing. In what follows, we briefly describe these
representations.

3.1.1 Dependency parsing
Dependencies between tokens can be encoded us-
ing labels of the form (xi, li), where xi is a subset
of the arcs related to the token wi, and li denotes
the dependency relation (Strzyz et al., 2019). There
are different ways of encoding xi

1. We compare
three families of linearizations (due to brevity, we
refer to the references below for the details):

ROOT This1 painting2 is3 great4 .5
rh +1 +1 +2 -4 -2
2pb . . <\ . < . <\\ /* . >*

ahtb SH_LA SH SH_LA_LA SH_RA SH

Figure 1: Example of a dependency tree linearization.
Dependency types are omitted. For 2pb, the dot indi-
cates no bracket in the first and/or second plane.

Head-selection (Spoustová and Spousta, 2010;
Li et al., 2018; Strzyz et al., 2019). xi encodes the
dependency arc pointing directly to wi. This can
be done using an absolute index or a relative offset
computing the difference between wi’s index and
its head. We use (rh) encoding where the head of
wi is the xith word to the right, if xi > 0, and the
xith word to the left if xi < 0.2

Bracketing-based (Yli-Jyrä and Gómez-
Rodríguez, 2017; Strzyz et al., 2020). xi encodes
the arcs using strings of brackets to represent a
subset of the incoming and outgoing arcs of wi and
its direct neighbors. We use a 2-planar bracketing

1To ensure that the labels produce a valid tree, we apply
the postprocessing described in the paper of each encoding.

2There are other head-selection encodings where the offset
depends on some word property, e.g., PoS tags like in (Vilares
et al., 2020), but using these encodings can blur the probing,
since we need to access such external information.
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encoding (2pb) that uses two independent planes
of brackets to encode non-projective trees.

Transition-based (Gómez-Rodríguez et al.,
2020). xi encodes a sub-sequence of the transitions
that are generated by a left-to-right transition-based
parser. Given a transition list t = t1, ..., tm with
n read transitions, t is split into n sub-sequences
such that the ith sub-sequence is assigned to wi.
We use a mapping from the arc-hybrid algorithm
(ahtb) (Kuhlmann et al., 2011). These mappings
are implicit and often perform worse than more
direct encodings, but they are learnable.

These encodings produce labels with different in-
formation. Following Figure 1, for w2 (painting),
the 2pb encoding states that the previous word w1

has one incoming arc from the right ("<" symbol,
but it does not say from where, as that informa-
tion is encoded in other labels) and that w2 has
one outgoing arc to the left ("\" symbol, but it does
not specify where). For the transition-based en-
coding, the mapping is less straightforward across
words, but still connected to them. For instance,
for w1 (‘This’) the label indicates that the w1 has
no connection to w0, that it is a dependent of w1,
and that it has no children. The motivation to com-
pare encodings is to test: (i) the consistency of
the framework, i.e., if trends across LLMs remain,
and (ii) to see what information is easier to recover
when the LLM weights are frozen.

3.1.2 Constituent parsing

We here use the encoding approach by Gómez-
Rodríguez and Vilares (2018), which encodes com-
mon levels in the tree between pairs of tokens.3 The
labels are of the form (ni, ci, ui). The element ni

encodes the number of tree levels that are common
between wi and wi+1, computed as the difference
with respect to ni−1. The element ci encodes the
lowest non-terminal symbol that is shared between
those two words. ui encodes the leaf unary branch
located at wi, if it exists. An example is shown in
Figure 2.

3To our knowledge, when we did the experiments, this
encoding (together with variants) was the only available fam-
ily of sequence-labeling encodings for constituency parsing.
Contemporaneously to the end of this work, another family
of encodings - based on the tetra-tagging (Kitaev and Klein,
2020) - has been proposed and implemented as a pure tagging
approach (Amini and Cotterell, 2022).

S

VP

VP

ADJP

JJ
great

-1,S,ADJP

VBZ
is

1,VP,

NP

NN
painting
-1,S,

DT
This
2,NP,

Figure 2: Example of a constituent tree linearization.

3.2 Probing architecture

We use a 1-layered feed-forward network on top
of the LLMs to predict the labels. We propose
three setups (training hyperparameters are detailed
in Appendix A):

Frozen weights (frz) The LLM weights are
frozen and only the weights of the linear output
layer are updated during fine-tuning.

Random weights (rnd) Only the weights of the
linear classifier layer are updated, but the weights
of the encoders are randomized. We aim to prevent
misleading conclusions in the hypothetical case
that the linear layer can learn the mapping itself,
i.e., we use this setup as a lower bound baseline.
It is also a control experiment, as the difference
between the results of this setup and the frz setup
would be the measure we are looking for to estimate
the amount of syntax information encoded in the
representational space of pre-trained LLMs.

Fine-tuned weights (ftd) A fine-tuned LLM
where all weights are updated, i.e., this setup is
used as an upper bound baseline.

3.3 Multilingual Language Models

The method here proposed is model-agnostic. Our
aim is not to obtain the highest results or to use
the largest LLM. We select a few LLMs that are
representative and runnable with our resources:

mBERT (Devlin et al., 2019) It uses WordPiece to-
kenization. While subword tokenizers are effective
with representative splits, they yield suboptimal
subtokens for low-resource languages (Agerri et al.,
2020; Virtanen et al., 2019), as wrong subtokens
will not encode meaningful information. mBERT
is pretrained on 104 languages from the dump of
the largest Wikipedias.
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xlm-roberta (Conneau et al., 2020) A multi-
lingual LLM trained as RoBERTa (Liu et al.,
2019b). It has the same architecture as BERT,
but only pretrained on the masked word prediction
task and uses a byte-level BPE for tokenization.
It has been pretrained on 2.5TB of filtered Com-
monCrawl data that contains text in 100 languages
(XLM-100), and for longer time than mBERT.

canine (-c and -s) (Clark et al., 2022) It
uses char-based tokenization, which is believed to
perform better in languages that are challenging
for subword tokenization, such as those with
vowel harmony. It eliminates the issue of unknown
tokens. It is pre-trained on masked language
modeling and next sentence prediction on the
same data as mBERT: canine-c is pretrained using
a char-level loss, while canine-s includes a
previous subword tokenization to predict masked
subword tokens.

In all models, labels are first broken down into
subtokens before being processed by the LLMs to
assign them to the n input tokens. The classifier
layer then assigns a label to each subtoken (i.e. sub-
word for mBERT and xlm-roberta and character for
canine). Then, we select the label assigned to the
first sub-element, which is a common approach.

4 Methodology and Experiments

Data for dependency parsing For the assess-
ment of dependency structures, we selected 13 Uni-
versal Dependencies (UD 2.9; Nivre et al., 2020)
treebanks from different language families and with
different amounts of annotated data. Although
mBERT, xlm-roberta, and canine have been pre-
trained on different (multilingual) crawled datasets,
we select treebanks whose languages are either
present in all our LLMs’ pretraining data or in none
of them (although presence proportions might vary
in the case of xlm-roberta). For more details, see
Table 1. Data sizes have been obtained from Wu
and Dredze (2020) for Wiki-100 and Conneau et al.
(2020) for XLM-100.

Data for constituent parsing We assess con-
stituent structures on the PTB (Marcus et al., 1993),
the CTB (Xue et al., 2005), and 8 constituent tree-
banks from the SPMRL shared task (Seddah et al.,
2014)4, whose languages are shown in Table 2.

4We do not have the license for the Arabic treebank.

Treebank Family # Trees # Tokens Wiki-100 XLM-100
size (GB) size (GB)

Skolt SamiGiellagas Sami 200 2 461 - -
GuajajaraTuDeT Tupi-Guarani 284 2 052 - -
LigurianGLT Romance 316 6 928 - -
BhojpuriBHTB Indic 357 6 665 - -
KicheIU Mayan 1 435 10 013 - -
WelshCCG Celtic 2 111 41 208 <0.1 0.8
ArmenianArmTDP Armenian 2 502 52 630 0.2-0.4 5.5
VietnameseVTB Viet-Muon) 3 000 43 754 0.4-0.7 137.3
ChineseGSDSimp Sinitic 4 997 128 291 1.4-2.8 46.9
BasqueBDT Basque 8 993 121 443 0.1-0.2 2.0
TurkishBOUN Turkic 9 761 122 383 0.4-0.7 20.9
BulgarianBTB Slavic 11 138 146 159 0.2-0.4 57.5
Ancient GreekPerseus Greek 13 919 202 989 - -

Table 1: Dependency treebanks used in this work.

Language disparity We use (mostly) different
languages for each paradigm. For constituent tree-
banks, we only have access to rich-resource lan-
guages, so we prioritize diversity for dependencies.
Comparing languages across syntax paradigms is
not particularly useful, due to varying metrics, an-
notation complexity, and treebank comparisons. In-
stead, we compare error reductions against control
models to estimate the recoverability of specific
syntactic formalisms by an LLM (see §5).

Treebank Family # Trees # Tokens Wiki-100 XLM-100
size (GB) size (GB)

Swedish Germanic 5 000 81 333 0.7-1.4 12.1
Hebrew Semitic 5 000 133 047 0.4-0.7 31.6
Polish Slavic 6 578 73 357 1.4-2.8 44.6
Basque Basque 7 577 103 946 0.1-0.2 2.0
Hungarian Finno-Ugric 8 146 178 278 0.8-1.4 58.4
French Romance 14 759 457 873 2.8-5.7 56.8
Korean Korean 23 010 319 457 0.4-0.7 54.2
English Germanic 39 832 989 861 11.3-22.6 300.8
German Germanic 40 472 760 003 2.8-5.7 66.6
Chinese Sinitic 50 734 1 235 267 1.4-2.8 46.9

Table 2: Constituent treebanks used in this work

Metrics For dependency parsing, we use Labeled
Attachment Score (LAS). For constituent parsing,
we use the labeled bracketing F1-score.

5 Results

We present the assessment for dependency struc-
tures in §5.1, and for constituent structures in §5.2.

5.1 Dependency parsing results

We break down the results comparing frozen vs: (i)
random, and (ii) fine-tuned weights.

Frozen (frz) vs random weights (rnd) setups
Table 3 shows the LAS results across treebanks and
dependency encodings (head-based, bracketing-
based, and transition-based). For mbert and
xlm-roberta the performance in the frz setup
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Treebank
mBERT xlm-roberta canine-c canine-s

2pb ahtb rh 2pb ahtb rh 2pb ahtb rh 2pb ahtb rh

rnd frz rnd frz rnd frz rnd frz rnd frz rnd frz rnd frz rnd frz rnd frz rnd frz rnd frz rnd frz

Skolt Sami 11.5 9.2 8.0 8.4 10.4 13.5 14.2 6.9 6.5 3.0 10.5 8.5 7.6 7.2 9.0 5.1 9.2 6.2 10.5 10.3 9.3 8.0 9.2 8.0
Guajajara 31.8 30.9 26.4 26.4 27.9 22.2 35.3 19.0 26.4 12.1 31.1 12.2 29.2 22.2 24.0 15.3 27.9 22.2 29.4 29.8 22.0 21.5 27.9 27.9
Ligurian 2.9 7.2 12.1 21.7 16.6 21.2 3.8 1.6 14.6 9.8 16.7 6.6 4.4 3.6 12.8 8.2 13.2 10.5 4.8 5.7 10.8 11.7 13.5 12.5
Bhojpuri 14.4 17.0 17.3 26.0 24.3 28.3 13.2 11.8 17.5 18.6 24.6 26.8 13.3 9.1 16.9 4.8 22.4 13.8 13.4 11.3 17.7 10.3 22.4 17.8
Kiche 45.2 51.0 43.0 49.0 42.3 45.6 41.6 33.4 41.2 31.5 39.5 33.1 47.4 25.7 43.2 24.3 43.1 25.3 47.8 43.1 43.3 40.7 43.1 40.3
Welsh 22.4 44.9 23.0 42.6 22.3 43.6 23.6 28.0 23.3 29.7 21.6 30.1 25.7 12.5 24.6 11.9 27.9 15.6 25.8 20.5 24.3 19.8 27.9 23.9
Armenian 15.1 38.8 13.5 33.7 19.9 34.8 13.3 31.0 12.4 25.9 18.1 30.9 15.1 13.8 13.5 10.3 18.9 16.8 14.8 19.9 13.8 15.2 18.9 21.2
Vietnamese 14.7 37.4 19.6 37.8 14.7 31.8 14.7 24.6 18.4 26.7 14.6 19.2 13.9 10.0 13.3 6.3 16.1 12.0 14.1 15.3 13.4 13.3 16.1 16.7
Chinese 11.0 42.1 14.2 39.1 21.0 38.8 1.9 17.6 5.7 18.9 11.5 25.1 13.6 15.6 15.0 14.7 20.1 19.4 13.6 24.9 15.0 23.5 20.4 27.3
Basque 17.9 45.5 16.3 41.9 19.6 40.2 17.2 40.9 15.6 37.6 18.7 32.8 18.8 14.8 16.2 12.6 20.7 16.4 18.8 22.4 16.2 19.5 20.7 22.9
Turkish 20.0 42.9 19.2 41.5 25.1 40.8 19.4 41.3 18.7 40.2 23.9 39.1 18.9 18.5 16.4 14.1 21.8 20.1 18.8 23.7 16.5 21.5 21.8 24.3
Bulgarian 20.8 63.4 22.4 56.4 25.7 54.3 22.3 55.3 22.7 47.9 26.2 46.0 23.9 18.0 21.4 16.2 26.3 21.2 23.8 29.4 21.2 25.5 26.3 30.5
A. Greek 6.6 23.7 14.5 24.3 14.9 23.8 5.4 23.7 12.9 27.3 14.3 25.6 13.4 11.3 15.4 14.0 17.3 16.4 13.6 18.4 15.4 20.3 17.3 20.6

Average 18.0 34.9 19.2 34.5 22.2 34.2 17.4 25.8 18.1 25.3 20.9 25.8 18.9 13.9 18.6 12.1 21.9 16.6 19.2 21.1 18.4 19.3 22.0 22.6

Table 3: LAS for the test sets of the dependency treebanks. LLMs and dependency encodings analyzed for the frz
and rnd setups. Languages in italics are absent among the crawled data used to pre-train the LLMs.

clearly surpasses the rnd baseline, i.e., the con-
trol experiment. The results suggest that under the
frozen setups, mbert is better than xlm-roberta
at recovering dependencies, although pre-trained
xlm-roberta models are usually better at down-
stream tasks (Liu et al., 2019b). The ranking of the
LLMs is stable across treebanks. The LAS scores
across encodings are in a similar range, and the av-
erage LAS across different encodings is very simi-
lar too (bottom row in Table 3). On the other hand,
the results for canine do not surpass the lower
bound baseline in most cases. This is unlikely
to be because of a bad fitting, since the random
weights baselines perform almost the same across
pre-trained models, encodings and treebanks. Also,
while canine-s outperforms the random baseline
for the highest-resourced languages, canine-c un-
derperforms it for all languages except for Chinese.

For a clearer picture, Figure 3 shows the rela-
tive LAS error reductions ϵLAS(rnd,frz) for the 2-
planar encoding and sorted by the size of the train-
ing set used for the probe. Next, we focus on 2pb

as previous work has demonstrated its robustness
across various configurations (Muñoz-Ortiz et al.,
2021; Strzyz et al., 2019, 2020).5 For larger tree-
banks, whose languages are supported by LLMs,
the error reductions between the frz and rnd se-
tups are large, showing that the LLMs encode to
some extent dependency structures in their repre-
sentational space. For languages that are not sup-
ported by the LLMs, the error reductions are clearly
smaller. This happens for low-resource treebanks,
in which only mBERT is able to obtain improvements
over the rnd baseline, but also for high-resource

5The trends for the other encodings are similar and they
can be seen in Appendix B.

ones, such as Ancient Greek (the largest tested tree-
bank), suggesting that the treebank size is not a
key factor for the probes (we discuss this in detail
§5.3).

Figure 3: ϵLAS(rnd,frz) on the dependency treebanks
test sets for the 2pb encoding.

Frozen (frz) vs fine-tuned (ftd) setup Table 4
shows the scores for the fine-tuned models. In this
case, xlm-roberta sequence labeling parsers ob-
tain a larger average error reduction, while mbert
obtains slightly better results for the ftd setup. The
results show that even if under the frz setup de-
pendency structures can be recovered, fine-tuning
the whole architecture gives significant improve-
ments. Also, the performance across the board for
the fine-tuned models is very competitive for all
treebanks supported by the LLMs. Note that even
if such results lag below the state of the art (not the
target of our work), we rely exclusively on multi-
lingual pretraining vectors, without any powerful
parser decoder, such as Kitaev and Klein (2018)
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for constituent parsing, or Dozat et al. (2017) for
dependencies.

Encoding comparison Results from Table 3
show that the three encodings are able to recover
a similar amount of syntax. It is worth noting that,
although rh performs better for the rnd setup, this
does not translate into a better recovering from frz
representations. It seems also that 2pb recovers
more syntactic information in higher-resourced se-
tups (i.e. Bulgarian), while rh and ahtb perform
better in lower-resourced configurations (i.e Skolt
Sami, Ligurian).

Dependency displacements Figure 4 shows the
performance across arcs of different length and di-
rection for the frz models with the 2pb encoding
over 4 languages: the one with most left arcs (Turk-
ish), with most right arcs6 (Vietnamese), and two
balanced ones (Basque and Welsh). The multilin-
gual LLMs capture the particularities of languages
(for the case of the WelshCCG treebank, even if it is
balanced in terms of the number of left/right arcs,
left arcs are on average of a distance of 1.6±1.8
units while right arcs are of 3.9±4.9 units). Also,
the LLMs keep the trends across displacements,
i.e., no LLM notably changes their expected per-
formance with respect to the others for a specific
subset of dependencies.

(a) TurkishBOUN (b) BasqueBDT

(c) VietnameseVTB (d) WelshCCG

Figure 4: Average F1 score using 2pb for different de-
pendency displacements (signed lengths) and LLMs.
We removed displacements occurring less than 10 times.

6Guajajara is excluded due to dataset size limitations.

Treebank mBERT xlm-roberta canine-c canine-s
frz ftd err frz ftd err frz ftd err frz ftd err

Skolt Sami 9.2 14.6 5.9 6.9 11.2 4.6 7.2 2.6 -5.0 10.3 6.3 -4.5
Guajajara 30.9 46.6 22.6 19.0 39.0 24.7 22.2 16.6 -7.2 29.8 29.9 0.1
Ligurian 7.2 28.4 22.8 1.6 24.7 23.5 3.6 0.5 -3.2 5.7 0.8 -5.2
Bhojpuri 17.0 24.9 9.5 11.8 15.0 3.6 9.1 7.4 -1.9 11.3 14.2 3.6
Kiche 51.0 69.2 37.1 33.4 61.8 42.6 25.7 22.8 -3.9 43.1 51.1 13.9
Welsh 44.9 68.9 43.6 27.9 69.0 57.0 12.5 8.0 -5.1 20.5 31.5 13.8
Armenian 38.8 71.7 53.8 31.0 74.5 63.1 13.8 16.7 3.2 19.9 31.9 15.0
Vietnamese 37.4 58.5 33.7 24.6 60.8 48.0 10.0 7.7 -2.6 15.3 24.4 10.7
Chinese 42.1 76.2 58.9 17.6 75.9 70.7 15.6 20.0 6.3 24.9 50.4 34.0
Basque 45.5 77.4 58.8 40.9 79.3 65.0 14.8 32.9 21.2 22.4 31.9 31.6
Turkish 42.9 68.8 45.4 41.3 48.7 53.8 18.5 37.1 22.8 23.7 48.7 32.8
Bulgarian 63.4 90.4 74.0 55.3 88.1 82.1 18.0 54.1 44.0 29.4 67.0 53.3
A. Greek 23.7 51.7 36.7 23.7 67.7 57.7 11.3 37.1 29.0 18.4 45.8 33.6

Average 34.9 57.5 38.7 25.7 55.1 45.9 14.0 20.3 7.5 21.1 34.4 17.9

Table 4: LAS for the frz and ftd setups on the test sets,
together with ϵLAS(frz,ftd) for the 2pbb encoding for
all treebanks and LLMs tested. Languages in italics are
absent in the pretraining data of the LLMs.

5.2 Constituent parsing results
We break down the results comparing frozen vs: (i)
random, and (ii) fine-tuned weights.

Frozen (frz) vs random weights (rnd) setups
Table 5 shows the bracketing F1 score across tree-
banks and the encodings for the two setups. The
trend from dependency parsing remains: mBERT
outperforms xlm-roberta for all languages, while
canine-s outperforms canine-c. In this case,
canine-s improves over the random baseline for
all treebanks, while canine-c only outperforms
the random baseline for 3 out of 10 models, which
suggests the difficulties that these character-level
language models have to model syntax, even if they
perform well on other downstream tasks. The ex-
ceptions are Korean, German and Chinese. Chinese
was also an exception in the case of dependency
parsing, so an explanation might be that its writ-
ing systems encode more information per character
than other languages. Chinese characters repre-
sent a whole morpheme, being more similar to a
subword token, while Korean Hangul encodes a
syllable per character, instead of a single sound as
alphabets of the other languages tested.

Figure 5 shows the error reductions across the
board, sorted by the size of the training data used
for the probing. In this case, all tested languages are
supported by the LLMs, but there are large differ-
ences in the size of the training data (e.g., Swedish
with 5 000 sentences vs German with 40 472 sen-
tences). However, we do not see an increase in error
reduction when the size of training data grows.

Frozen (frz) vs fine-tuned (ftd) setup Table 6
compares the bracketing F1-scores for the frozen
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Treebank mBERT xlm-roberta canine-c canine-s
rnd frz rnd frz rnd frz rnd frz

Swedish 29.8 56.0 30.1 42.3 25.5 22.7 25.5 28.7
Hebrew 41.5 74.5 43.3 60.0 40.8 29.8 41.0 40.2
Polish 42.8 77.0 41.8 68.0 40.1 33.9 40.1 42.9
Basque 32.5 56.6 33.7 47.1 36.2 33.0 36.2 41.4
Hungarian 40.0 69.9 39.6 66.0 37.4 31.5 37.4 41.0
French 14.5 50.1 15.4 32.4 14.1 12.1 13.9 20.1
Korean 33.2 57.4 32.9 53.2 33.8 37.5 33.8 42.0
English 12.9 57.3 14.4 40.5 9.9 9.6 9.9 17.5
German 18.9 45.4 18.1 41.2 16.4 18.5 16.4 24.0
Chinese 16.1 56.6 8.2 45.6 16.9 25.6 17.3 39.3

Average 28.2 60.1 27.8 49.6 27.0 25.4 27.2 33.7

Table 5: F-score for the test sets of the constituent tree-
banks. LLMs analyzed for the frz and rnd setups.

Figure 5: ϵF1(rnd,frz) on the constituent test sets.

and fine-tuned setups, and the behaviors are similar
to those obtained in the case of dependency parsing,
except for what looks like some empirical outlier,
e.g., the fine-tuned mBERt for Hebrew. Hebrew also
obtains the lowest error reductions for all LLMs.

Treebank mBERT xlm-roberta canine-c canine-s
frz ftd err frz ftd err frz ftd err frz ftd err

Swedish 56.0 79.4 53.2 42.3 79.9 65.2 22.7 29.6 8.9 28.7 47.8 65.2
Hebrew 74.5 75.4 3.5 59.9 76.2 40.6 29.8 36.4 9.4 40.1 53.8 22.9
Polish 77.0 93.4 70.9 68.0 94.0 81.2 33.9 56.6 34.3 42.9 73.9 54.3
Basque 56.6 85.0 65.4 47.1 85.1 71.6 33.0 49.1 24.0 41.4 62.7 36.2
Hungarian 69.8 91.5 71.9 66.0 92.1 76.8 31.5 52.7 30.9 41.0 65.8 42.0
French 50.1 82.2 64.3 32.4 82.6 74.3 12.1 70.2 66.1 20.1 76.0 70.0
Korean 57.4 86.4 68.1 53.2 88.0 74.4 37.5 66.0 45.6 41.9 71.4 50.8
English 57.2 91.9 81.1 40.5 92.8 87.9 9.6 82.4 80.5 17.5 86.6 83.8
German 45.4 87.3 76.7 41.1 88.4 80.3 18.5 71.7 65.3 24.0 77.3 70.1
Chinese 56.6 85.5 66.6 45.6 88.9 79.6 25.6 67.0 55.6 39.3 74.4 57.8

Average 60.1 85.8 62.2 49.6 86.8 73.2 25.4 58.2 42.1 33.7 69.0 55.3

Table 6: F-score for the test sets of the constituent tree-
banks, LLMs analyzed for the ftd vs the frz setup.

Span lengths Plotting the F1-score for each span
length is the rough alternative to dependency dis-
placements in the context of constituent parsing. In
Figure 6 we again show specific examples for some
of the studied languages: the most left-branching
language (Korean), two balanced ones (Basque and
Hungarian), and the most right-branching one (En-
glish). Similarly to the case of dependency parsers,

(a) Basque (b) Hungarian

(c) English (d) Korean

Figure 6: Average F1 score for different span lengths
and LLMs.

the trends across models persist across different
span lengths. They show that, regarding LLMs,
mbert obtains the highest F-score for longer spans,
while xlm-roberta shows great differences be-
tween shorter and longer spans. The canine mod-
els perform worse for all lengths.

5.3 Discussion
We now discuss the main insights and potential
limitations of the proposed assessment framework.

Pretraining data versus Assessment data An
interesting question that arises from multilingual
recovery is whether the probe is able to recover the
trees due to the size of the training data used for the
assessment, although in theory it should be hard to
learn by itself by an initially clueless classifier (the
random baseline). The experiments show evidence
that the size of the training data is not a primary
factor to do multilingual, multi-formalism linear
probing as sequence labeling. For constituent pars-
ing, we observed that larger treebanks did not come
with an increment in the error reductions between
the frozen and the random setups, and that the con-
trol experiment can thus be used to give an estimate
of the amount of structure recoverable from pre-
trained representations. Similarly, in the context
of dependency parsing, we encountered an analo-
gous situation. Despite the existence of treebanks
for languages unsupported by the LLMs, spanning
both large (Ancient Greek) and small treebanks
(Skolt Sami or Bhojpuri), we observe that treebank
size does not significantly impact the reduction in
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errors between the frozen and random setups.
Either with big or small data, the error reduc-

tion between the random and the frozen models
is clearly lower than for the treebanks where the
language is supported by the LLMs. Among rich-
resource treebanks, the size of the data does not
have a great influence on the error reductions be-
tween the random and frozen weights setups, sug-
gesting that dataset size does not influence the esti-
mates of the dependency structure that are recover-
able from the representations.

Language model differences The results on the
tested LLMs suggest that subword tokenization
is necessary to represent syntax, in contrast with
token-free models, even if these can later per-
form well on downstream tasks that require com-
positionality. Particularly, not only do subword-
based models outperform char-based ones, but also
canine-s, which is trained using subword loss
even though it is a char-level model, performs sig-
nificantly better than canine-c. It is noteworthy
that xlm-roberta generally outperforms mBERT in
most downstream tasks, including parsing, as pre-
vious studies showed (Conneau et al., 2020) and in
our fine-tuned results, it performs on par on depen-
dency parsing (Table 4) and outperforms mBERT in
constituency parsing (Table 6). Yet, for the frozen
weights setup, mBERT’s representations recovered
slightly but consistently better syntactic representa-
tions. This suggests that the improvements in how
xlm-roberta was trained with respect to mBERT,
e.g., training for longer time, or more data, are not
key factors to better encode syntax. Additionally,
based on our experiments, it appears that mBERT
demonstrates a certain level of proficiency in re-
covering syntax information for the smallest tree-
banks, particularly for languages not included in
the pretraining data (such as Ligurian, Bhojpuri,
and Kiche). This suggests a capacity to extend
its syntactic knowledge to previously unseen lan-
guages, albeit to a limited extent, unlike the other
models.

Syntactic formalism Previous studies (e.g., Vi-
lares et al. (2020)), hypothesized that pre-trained
word vectors might fit better constituent- than
dependency-based tasks, since the masked lan-
guage objective links better with the former for-
malism, i.e., when a model is learning to unblur a
masked token, the constituent structure is to some
extent implicit (e.g., an adjective is missing be-

tween the determiner and the noun, forming a noun
phrase), while dependencies are less obvious. We
could not find a clear evidence of this. Although
some of the frz models are unable to surpass the
rnd baseline in the case of dependencies (while
this is not the case for constituents), these instances
are languages that are not present in the pretraining
data, except for the canine models.

6 Conclusion

We proposed a sequence-labeling framework to
recover multi-formalism syntactic structures from
multilingual LLMs. By mapping syntactic trees to
labels we associated output word vectors to labels
that encode a portion of the tree, while using a sin-
gle assessment framework for both constituent and
dependency structures. We compared three popular
multilingual language models. The results show
that subword LLMs can recover a percentage of
these structures. We evaluated the outcomes by
calculating the reduction in errors compared to con-
trol models, aiming to gauge the extent to which
an LLM can recover specific syntactic structures.
The assessment appears reliable and unaffected by
variables like the training set’s size employed for
probing, highlighting that pretraining data is an im-
portant factor for recoverability. Last, we found no
clear evidence that contextualized vectors encode
constituent structures better than dependencies (nor
the opposite).

Limitations

Physical resources We did not consider larger
language models as we do not have access to the
necessary computational resources to run then,
hence limiting the scope of our study. We only had
access to 2 GeForce RTX 3090, having a total GPU
memory of 48 GB, insufficient for fine-tuning many
LLMs over different treebanks and formalisms, as
in this work.

Language diversity The constituent treebanks
used are all from languages that are relatively rich-
resource and are present on the pretraining data
of the LLMs. To the best of our knowledge there
are no available constituent treebanks from lower-
resource languages that are also absent in multilin-
gual LLMs. In consequence, we could not test the
effect of absence of pretraining data in order to see
if the trends obtained in dependency treebanks pre-
vail here. In addition, for dependency parsing, even
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a large multilingual resource like Universal Depen-
dencies only has data for about 100 languages, a
tiny fraction of the 7 000 existing human languages.

Interpretation As mentioned in the introduction,
we have to be careful when dealing with probing
frameworks. Although we developed solid experi-
ments, and also included control experiments, syn-
tax knowledge is hard to isolate, measure and in-
terpret, so we have tried to be careful with our
conclusions.

Acknowledgments

We acknowledge the European Research
Council (ERC), which has funded this re-
search under the Horizon Europe research and
innovation programme (SALSA, grant agree-
ment No 101100615), ERDF/MICINN-AEI
(SCANNER-UDC, PID2020-113230RB-C21),
Xunta de Galicia (ED431C 2020/11), grant
FPI 2021 (PID2020-113230RB-C21) funded by
MCIN/AEI/10.13039/501100011033, and Centro
de Investigación de Galicia “CITIC”, funded by
the Xunta de Galicia through the collaboration
agreement between the Consellería de Cultura,
Educación, Formación Profesional e Universidades
and the Galician universities for the reinforcement
of the research centres of the Galician University
System (CIGUS).

References
Rodrigo Agerri, Iñaki San Vicente, Jon Ander Cam-

pos, Ander Barrena, Xabier Saralegi, Aitor Soroa,
and Eneko Agirre. 2020. Give your text represen-
tation models some love: the case for Basque. In
Proceedings of the Twelfth Language Resources and
Evaluation Conference, pages 4781–4788, Marseille,
France. European Language Resources Association.

Afra Amini and Ryan Cotterell. 2022. On parsing as
tagging. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 8884–8900, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Miguel Ballesteros and Joakim Nivre. 2012. MaltOp-
timizer: A system for MaltParser optimization. In
Proceedings of the Eighth International Conference
on Language Resources and Evaluation (LREC’12),
pages 2757–2763, Istanbul, Turkey. European Lan-
guage Resources Association (ELRA).

Yonatan Belinkov. 2022. Probing classifiers: Promises,
shortcomings, and advances. Computational Linguis-
tics, 48(1):207–219.

Eugene Charniak. 1997. Statistical parsing with a
context-free grammar and word statistics. AAAI/IAAI,
2005(598-603):18.

Danqi Chen and Christopher Manning. 2014. A fast and
accurate dependency parser using neural networks.
In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 740–750, Doha, Qatar. Association for Com-
putational Linguistics.

Jonathan H. Clark, Dan Garrette, Iulia Turc, and John
Wieting. 2022. Canine: Pre-training an efficient
tokenization-free encoder for language representa-
tion. Transactions of the Association for Computa-
tional Linguistics, 10:73–91.

Michael John Collins. 1996. A new statistical parser
based on bigram lexical dependencies. In 34th An-
nual Meeting of the Association for Computational
Linguistics, pages 184–191, Santa Cruz, California,
USA. Association for Computational Linguistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Timothy Dozat, Peng Qi, and Christopher D. Manning.
2017. Stanford’s graph-based neural dependency
parser at the CoNLL 2017 shared task. In Proceed-
ings of the CoNLL 2017 Shared Task: Multilingual
Parsing from Raw Text to Universal Dependencies,
pages 20–30, Vancouver, Canada. Association for
Computational Linguistics.

Carlos Gómez-Rodríguez, Michalina Strzyz, and David
Vilares. 2020. A unifying theory of transition-based
and sequence labeling parsing. In Proceedings of
the 28th International Conference on Computational
Linguistics, pages 3776–3793, Barcelona, Spain (On-
line). International Committee on Computational Lin-
guistics.

Carlos Gómez-Rodríguez and David Vilares. 2018.
Constituent parsing as sequence labeling. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1314–1324,
Brussels, Belgium. Association for Computational
Linguistics.

https://aclanthology.org/2020.lrec-1.588
https://aclanthology.org/2020.lrec-1.588
https://doi.org/10.18653/v1/2022.emnlp-main.607
https://doi.org/10.18653/v1/2022.emnlp-main.607
http://www.lrec-conf.org/proceedings/lrec2012/pdf/715_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/715_Paper.pdf
https://doi.org/10.1162/coli_a_00422
https://doi.org/10.1162/coli_a_00422
https://doi.org/10.3115/v1/D14-1082
https://doi.org/10.3115/v1/D14-1082
https://doi.org/10.1162/tacl_a_00448
https://doi.org/10.1162/tacl_a_00448
https://doi.org/10.1162/tacl_a_00448
https://doi.org/10.3115/981863.981888
https://doi.org/10.3115/981863.981888
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/K17-3002
https://doi.org/10.18653/v1/K17-3002
https://doi.org/10.18653/v1/2020.coling-main.336
https://doi.org/10.18653/v1/2020.coling-main.336
https://doi.org/10.18653/v1/D18-1162


369

John Hewitt and Percy Liang. 2019. Designing and in-
terpreting probes with control tasks. In Proceedings
of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2733–2743, Hong Kong,
China. Association for Computational Linguistics.

John Hewitt and Christopher D. Manning. 2019. A
structural probe for finding syntax in word represen-
tations. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4129–4138, Minneapolis, Minnesota. Association for
Computational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Simple
and accurate dependency parsing using bidirectional
LSTM feature representations. Transactions of the
Association for Computational Linguistics, 4:313–
327.

Nikita Kitaev and Dan Klein. 2018. Constituency pars-
ing with a self-attentive encoder. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2676–2686, Melbourne, Australia. Association
for Computational Linguistics.

Nikita Kitaev and Dan Klein. 2020. Tetra-tagging:
Word-synchronous parsing with linear-time inference.
In Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pages 6255–
6261, Online. Association for Computational Lin-
guistics.

Marco Kuhlmann, Carlos Gómez-Rodríguez, and Gior-
gio Satta. 2011. Dynamic programming algorithms
for transition-based dependency parsers. In Proceed-
ings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 673–682, Portland, Oregon, USA.
Association for Computational Linguistics.

Artur Kulmizev and Joakim Nivre. 2022. Schrödinger’s
tree – on syntax and neural language models. Fron-
tiers in Artificial Intelligence, 5:796788.

Artur Kulmizev, Vinit Ravishankar, Mostafa Abdou,
and Joakim Nivre. 2020. Do neural language mod-
els show preferences for syntactic formalisms? In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4077–
4091, Online. Association for Computational Lin-
guistics.

Zuchao Li, Jiaxun Cai, Shexia He, and Hai Zhao. 2018.
Seq2seq dependency parsing. In Proceedings of the
27th International Conference on Computational Lin-
guistics, pages 3203–3214, Santa Fe, New Mexico,
USA. Association for Computational Linguistics.

Chen Lin, Timothy Miller, Alvin Kho, Steven Bethard,
Dmitriy Dligach, Sameer Pradhan, and Guergana
Savova. 2014. Descending-path convolution kernel
for syntactic structures. In Proceedings of the 52nd
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 81–86,
Baltimore, Maryland. Association for Computational
Linguistics.

Nelson F. Liu, Matt Gardner, Yonatan Belinkov,
Matthew E. Peters, and Noah A. Smith. 2019a. Lin-
guistic knowledge and transferability of contextual
representations. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 1073–1094, Minneapolis, Minnesota.
Association for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: The Penn Treebank. Computational
Linguistics, 19(2):313–330.

André Martins, Noah Smith, Eric Xing, Pedro Aguiar,
and Mário Figueiredo. 2010. Turbo parsers: Depen-
dency parsing by approximate variational inference.
In Proceedings of the 2010 Conference on Empirical
Methods in Natural Language Processing, pages 34–
44, Cambridge, MA. Association for Computational
Linguistics.

Rowan Hall Maudslay and Ryan Cotterell. 2021. Do
syntactic probes probe syntax? experiments with
jabberwocky probing. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 124–131, Online. As-
sociation for Computational Linguistics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositionality.
Advances in neural information processing systems,
26.

Victor Milewski, Miryam de Lhoneux, and Marie-
Francine Moens. 2022. Finding structural knowl-
edge in multimodal-BERT. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
5658–5671, Dublin, Ireland. Association for Compu-
tational Linguistics.

Max Müller-Eberstein, Rob van der Goot, and Barbara
Plank. 2022a. Probing for labeled dependency trees.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 7711–7726, Dublin, Ireland.
Association for Computational Linguistics.

https://doi.org/10.18653/v1/D19-1275
https://doi.org/10.18653/v1/D19-1275
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.1162/tacl_a_00101
https://doi.org/10.1162/tacl_a_00101
https://doi.org/10.1162/tacl_a_00101
https://doi.org/10.18653/v1/P18-1249
https://doi.org/10.18653/v1/P18-1249
https://doi.org/10.18653/v1/2020.acl-main.557
https://doi.org/10.18653/v1/2020.acl-main.557
https://aclanthology.org/P11-1068
https://aclanthology.org/P11-1068
https://doi.org/10.18653/v1/2020.acl-main.375
https://doi.org/10.18653/v1/2020.acl-main.375
https://aclanthology.org/C18-1271
https://doi.org/10.3115/v1/P14-2014
https://doi.org/10.3115/v1/P14-2014
https://doi.org/10.18653/v1/N19-1112
https://doi.org/10.18653/v1/N19-1112
https://doi.org/10.18653/v1/N19-1112
https://aclanthology.org/J93-2004
https://aclanthology.org/J93-2004
https://aclanthology.org/D10-1004
https://aclanthology.org/D10-1004
https://doi.org/10.18653/v1/2021.naacl-main.11
https://doi.org/10.18653/v1/2021.naacl-main.11
https://doi.org/10.18653/v1/2021.naacl-main.11
https://doi.org/10.18653/v1/2022.acl-long.388
https://doi.org/10.18653/v1/2022.acl-long.388
https://doi.org/10.18653/v1/2022.acl-long.532


370

Max Müller-Eberstein, Rob van der Goot, and Barbara
Plank. 2022b. Sort by structure: Language model
ranking as dependency probing. In Proceedings of
the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1296–1307,
Seattle, United States. Association for Computational
Linguistics.

Alberto Muñoz-Ortiz, Michalina Strzyz, and David Vi-
lares. 2021. Not all linearizations are equally data-
hungry in sequence labeling parsing. In Proceed-
ings of the International Conference on Recent Ad-
vances in Natural Language Processing (RANLP
2021), pages 978–988, Held Online. INCOMA Ltd.

Moin Nadeem, Anna Bethke, and Siva Reddy. 2021.
StereoSet: Measuring stereotypical bias in pretrained
language models. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 5356–5371, Online. Association for
Computational Linguistics.

Joakim Nivre. 2008. Algorithms for deterministic incre-
mental dependency parsing. Computational Linguis-
tics, 34(4):513–553.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
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A Hyperparameters

We selected a learning rate of 5 · 10−5 for the ftd
models and 2 · 10−3 for the rnd and frz models
based on the results of our preliminary experiments,
as the ftd models showed faster convergence. For
the three setups, we trained the models during 20
epochs (models had converged at this point). We
trained our models on two GeForce RTX 3090 us-
ing a batch of 32 on each and a gradient accumu-
lation of 2 for a total batch of 128. Training time
of the final models accounts for approximately 60
GPU hours (24 for constituent, 6 per LLM, and 36
for dependency, 8 per LLM).

A.1 mBERT hyperparameters

Hyperparameter Value

"attention_probs_dropout_prob" 0.1
"classifier_dropout" null
"directionality" "bidi"
"hidden_act" "gelu"
"hidden_dropout_prob" 0.1
"hidden_size" 768
"layer_norm_eps" 1e-12
"max_position_embeddings" 512
"model_type" "bert"
"num_attention_heads" 12
"num_hidden_layers" 12
"pad_token_id" 0
"pooler_fc_size" 768
"pooler_num_attention_heads" 12
"pooler_num_fc_layers" 3
"pooler_size_per_head" 128
"pooler_type" "first_token_transform"
"position_embedding_type" "absolute"
"torch_dtype" "float32"
"transformers_version" "4.25.1"
"type_vocab_size" 2
"use_cache" true
"vocab_size" 119547

Table 7: Hyperparameters for mBERT models.

A.2 xlm-roberta-base hyperparameters

Hyperparameter Value

"attention_probs_dropout_prob" 0.1
"classifier_dropout" null
"eos_token_id" 2
"hidden_act" "gelu"
"hidden_dropout_prob" 0.1
"hidden_size" 768
"layer_norm_eps" 1e-05
"max_position_embeddings" 514
"model_type" "xlm-roberta"
"num_attention_heads" 12
"num_hidden_layers" 12
"pad_token_id" 1
"position_embedding_type" "absolute"
"torch_dtype" "float32"
"transformers_version" "4.25.1"
"type_vocab_size" 1
"use_cache" true
"vocab_size" 250002

Table 8: Hyperparameters for xml-roberta models.

A.3 canine hyperparameters

Hyperparameter Value

"attention_probs_dropout_prob" 0.1
"bos_token_id" 57344
"downsampling_rate" 4
"eos_token_id" 57345
"hidden_act" "gelu"
"hidden_dropout_prob" 0.1
"hidden_size" 768
"layer_norm_eps" 1e-12
"local_transformer_stride" 128
"max_position_embeddings" 16384
"model_type" "canine"
"num_attention_heads" 12
"num_hash_buckets" 16384
"num_hash_functions" 8
"num_hidden_layers" 12
"pad_token_id" 0
"torch_dtype" "float32"
"transformers_version" "4.25.1"
"type_vocab_size" 16
"upsampling_kernel_size" 4
"use_cache" true

Table 9: Hyperparameters for canine-c and -s mod-
els.



373

B Error reduction for rh and ahtb

Figure 7: ϵLAS(rnd,frz) for the rh encoding for all
LLMs tested.

Figure 8: ϵLAS(rnd,frz) for the ahtb encoding for all
LLMs tested.

C Evaluation scripts

We used the evaluation scripts conll18_eval. for
dependencies and EVALB for constituencies.


