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Abstract

While Chain-of-Thought (CoT) prompting
boosts Language Models’ (LM) performance
on a gamut of complex reasoning tasks, the
generated reasoning chain does not necessar-
ily reflect how the model arrives at the answer
(aka. faithfulness). We propose Faithful CoT,
a reasoning framework involving two stages:
Translation (Natural Language query — sym-
bolic reasoning chain) and Problem Solving
(reasoning chain — answer), using an LM and
a deterministic solver respectively. This guaran-
tees that the reasoning chain provides a faithful
explanation of the final answer. Aside from in-
terpretability, Faithful CoT also improves em-
pirical performance: it outperforms standard
CoT on 9 of 10 benchmarks from 4 diverse do-
mains, with a relative accuracy gain of 6.3% on
Math Word Problems (MWP), 3.4% on Plan-
ning, 5.5% on Multi-hop Question Answering
(QA), and 21.4% on Relational Inference. Fur-
thermore, with GPT-4 and Codex, it sets the
new state-of-the-art few-shot performance on
7 datasets (with 95.0+ accuracy on 6 of them),
showing a strong synergy between faithfulness
and accuracy.'

1 Introduction

Complex reasoning tasks, such as commonsense
reasoning and math reasoning, have long been the
Achilles heel of LMs (Bengio, 2019), until a recent
line of work on Chain-of-Thought (CoT) reasoning
(Wei et al., 2022; Wang et al., 2022, i.a.) brought
striking performance gains. CoT prompts an LM to
generate a reasoning chain along with the answer,
given only a few in-context exemplars.

Besides performance improvement, CoT is also
claimed to “provide an interpretable window into
the behavior of the model” (Wei et al., 2022). How-
ever, it is unclear how accurately these reason-

* Equal contribution.
'Our code, data, and prompts are available at https://
github.com/veronica320/Faithful-COT.

A: He started with 13 lego sets. He sold
them for $15 each. So he must have
gotten 13 * $15 = $195 from selling
them. He used this money to buy 8
video games for $20 each. This means

Q: John plans to sell all his
toys and use the money to
buy video games. He has 13
lego sets and he sells them
for $15 each. He ends up
buying 8 videogames for $20
each and has $5 left. How
many lego sets does he still
have?

he spent 8 * $20 = $160 on the video
games. He had $5 left, so in total he
must have had $195 + $5 = $200. The
answer is 0.

Figure 1: An example of unfaithful output from CoT
prompting (Wei et al., 2022) on GSMS8K. The answer
(green) does not follow from the reasoning chain (blue).

ing chains reflect the underlying reasoning pro-
cess behind the model’s prediction, namely, how
faithful they are as explanations (Jacovi and Gold-
berg, 2020, i.a.). In standard CoT, faithfulness is
not guaranteed and even systematically violated
(Turpin et al., 2023), as the final answer does not
necessarily follow from the generated reasoning
chain. In other words, CoT can “lie” about the
model’s true reasoning process. Figure 1 exempli-
fies such an unfaithful CoT generation from Wei
et al. (2022) on GSMB8K: the answer “0” is not even
mentioned in the reasoning chain. This, along with
more examples in Appendix B.1, illustrates that
standard CoT does not provide interpretability of
how the model predicts the answer.

The lack of faithfulness in CoT can be danger-
ous in high-stake applications because it may mis-
lead people into believing that the model is self-
interpretable, while there is no actual causal rela-
tionship between the reasoning chain and the an-
swer. Even worse, when an unfaithful explanation
looks plausible (i.e., convincing to humans) (Jacovi
and Goldberg, 2020), this makes it easier for peo-
ple (e.g., legal practitioners) to over-trust the model
(e.g., arecidivism predictor) even if it has implicit
biases (e.g., against racial minorities) (Pruthi et al.,
2020; Slack et al., 2020).

To address this concern, we propose Faithful
CoT, a reasoning framework where the answer is
the result of deterministically executing the rea-
soning chain. Specifically, we break down a com-

305

Proceedings of the 13th International Joint Conference on Natural Language Processing and the 3rd Conference of
the Asia-Pacific Chapter of the Association for Computational Linguistics (Volume 1: Long Papers), pages 305-329
November 14, 2023. ©2023 Association for Computational Linguistics


https://github.com/veronica320/Faithful-COT
https://github.com/veronica320/Faithful-COT

{ Query (NL) ]

Language Model

Translation

Reasoning Chain
(NL +SL)

Deterministic Solver

{ Answer ]

Figure 2: An overview of our Faithful CoT framework,
consisting of Translation, where an LM translates a
query (in NL/Natural Language) into a reasoning chain
(which interleaves NL and SL/Symbolic Language), and
Problem Solving, where an external solver executes the
reasoning chain to derive the answer.

Problem Solving

plex reasoning task into two stages: Translation
and Problem Solving (Figure 2). During Trans-
lation, an LM translates a query into a reasoning
chain, which interleaves NL and Symbolic Lan-
guage (SL). The NL component decomposes the
original query into multiple simpler, interdepen-
dent subproblems. Then, each subproblem is tack-
led in a task-dependent SL, such as Python, Dat-
alog, or Planning Domain Definition Language
(PDDL). In the Problem Solving stage, the reason-
ing chain is executed by a deterministic solver, e.g.,
a Python/Datalog interpreter, or a PDDL planner,
to derive the answer.

Our reasoning chain (outcome of Translation) is
guaranteed to provide a faithful explanation of how
the final answer is produced (outcome of Problem
Solving), therefore making our method more inter-
pretable than standard CoT methods.> While in-
terpretability is not the same as correctness (i.e.
our method can reveal the reasoning process be-
hind both correct and wrong answers), we find that
it does empirically improve correctness: when
evaluated on 10 reasoning datasets from 4 diverse
domains (MWP, Planning, Multi-hop QA, and Re-
lational Inference), Faithful CoT brings consistent
performance gains over three existing baselines,
across different LMs and decoding strategies. With
Codex, our approach outperforms vanilla CoT on 9
of the 10 datasets, with a relative accuracy gain of
6.3% on MWP, 3.4% on Planning, 5.5% on Multi-
hop QA, and 21.4% on Relational Inference. With
GPT-4, our method sets the new SOTA few-shot

Note that we do not claim that the process of generat-
ing the reasoning chain itself, i.e., the Translation stage, is
interpretable. See more discussion in Limitations.

performance on 7 datasets, with 95.0+ accuracy
on 6 of them. This suggests that interpretability
does not have to come at the cost of performance;
instead, there exists a strong synergy in between.
Our key contributions are as follows:
(a) We propose Faithful CoT, a framework that
decomposes reasoning into Translation and Prob-
lem Solving. The reasoning chain interleaves user-
understandable natural language comments and ex-
ecutable symbolic language programs, thus pro-
viding faithful interpretability of how the model
arrives at the answer.
(b) Our approach is generalizable to multiple do-
mains beyond arithmetic reasoning and simple sym-
bolic reasoning, thanks to its flexible integration
with any choice of SL and external solver. We set
the new SOTA performance on 7 out of the 10 rea-
soning datasets, showing a strong synergy between
faithfulness and accuracy.
(c) We provide an extensive analysis of the
strengths and weaknesses of our method, show-
ing its generalizability across LMs, robustness to
the choice of exemplars and prompt phrasing, the
pivotal role of the solver, the plausibility of gen-
erated reasoning chains, as well as frequent error
patterns where it still struggles.

2 Related Work

Faithfulness. In interpretability, faithfulness
(also called fidelity or reliability) means that an ex-
planation should “accurately represent the reason-
ing process behind the model’s prediction”, which
is a fundamental requirement of an explanation
(Harrington et al., 1985; Ribeiro et al., 2016; Gilpin
et al., 2018; Jacovi and Goldberg, 2020).3 It should
be contrasted with plausibility (a.k.a. persuasive-
ness or understandability), which refers to “how
convincing an explanation is to humans” (Herman,
2019; Jacovi and Goldberg, 2020). In the context
of CoT prompting, a faithful reasoning chain needs
to accurately reflect how the model arrives at the
final answer, whereas a plausible reasoning chain is
one that looks reasonable and coherent to humans.
Standard CoT (Wei et al., 2022) generates the rea-

*Note that this differs from the notion of faithfulness in
the Natural Language Generation (NLG) literature, primarily
in what constitutes the ground truth. In interpretability, we
talk about the faithfulness of an explanation w.r.t. the model’s
underlying reasoning mechanism — the ground truth is usu-
ally unknown. In NLG, we talk about the faithfulness of the
generated text (e.g., a translated sentence, or a summary) w.r.t.
some explicit source (e.g., the source sentence, or the full
document) — the ground truth is transparent.
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soning chain in pure NL, which may often look
plausible; nevertheless, the final answer does not
need to causally follow from the reasoning chain,
thus not guaranteeing faithfulness.
Chain-of-Thought-style prompting. In CoT-
style prompting, given a complex question (), an
LM is prompted to generate a reasoning chain C
along with the final answer A. Specifically, the
prompt consists of a few examples of (Q,C, A)
triples, called in-context exemplars. This allows
pre-trained LMs (e.g., GPT-3 (Brown et al., 2020))
to solve unseen questions with much higher accu-
racy than standard prompting, where the exemplars
do not contain the reasoning chain C.

We create a taxonomy of existing CoT-style
prompting methods into three types: all-at-once,
ensemble-based, and modularized. All-at-once
prompting means that the LM produces C' and A
as one continuous string, without any dependencies
or constraints in between. Scratchpad (Nye et al.,
2021), standard CoT (Wei et al., 2022), and “Let’s
think step by step” (Kojima et al., 2022), are all
examples of this kind. Ensemble-based prompting
is designed to overcome the local optimality issue
of the one-shot generation in previous methods by
sampling multiple (C, A) pairs and choosing the
best answer via strategies like majority voting. Ex-
amples include Self-Consistent CoT (Wang et al.,
2022), Minerva (Lewkowycz et al., 2022), and DI-
VERSE (Li et al., 2022), which differ mainly in the
voting granularity and the underlying LM. Modu-
larized methods break down () into subproblems
and then conquer them individually (Jung et al.,
2022; Qian et al., 2022, i.a.). In particular, Least-
to-Most prompting (Zhou et al., 2022) has a similar
question decomposition process to ours, but there
is still no faithfulness guarantee since the reasoning
chain is entirely in NL.

Concurrent with our work, Chen et al. (2022)
and Gao et al. (2022) both generate Python pro-
grams (i.e., SL-only reasoning chains) to derive the
answer. We want to highlight the following quali-
tative differences:* (a) In terms of motivation, our
approach is interpretability-driven, whereas theirs
are performance-driven. (b) Our reasoning chain
involves a structured decomposition of the prob-
lem in NL, allowing users without a programming
background to better understand and potentially in-
teract with the system. (c) They only use Python as
the SL and only tackle math and simple symbolic

“Also see Appendix B.3 for an empirical comparison.

reasoning tasks, whereas we demonstrate the gen-
eralizability of our approach to multiple symbolic
languages and various other domains. In particu-
lar, we innovatively recast a diverse set of realis-
tic tasks (Planning, Multi-hop QA, and Relational
Inference) into a symbolic representation, which
allows us to tackle them with a single framework.
(d) We perform a more comprehensive analysis
compared to previous work, especially a human
evaluation of the reasoning chain correctness.

3 Method

Our method, Faithful CoT, is a 2-stage pipeline,
as seen in Figure 2. Like previous CoT-style work,
our prompt consists of (@, C, A) triples. Notable
differences lie in our unique interleaving of NL
(natural language) and SL (symbolic language) in
C, as well as the way we derive the final answer A.

In the Translation stage, given a complex query
(2 in NL, we prompt an LM to translate it into a rea-
soning chain C, which interleaves NL comments
and SL programs. The NL component decomposes
the original query into multiple simpler, interdepen-
dent subproblems. Then, each subproblem is tack-
led in a task-dependent SL, such as Python, Data-
log, or PDDL. In the Problem Solving stage, we
call a deterministic external solver, e.g., a Python
interpreter, a Datalog executor, or PDDL planner,
depending on the task, to obtain the answer A from
the reasoning chain C'. As shown in Figure 3, we
define C'iy1, to be the NL component (black) and
Csy, to be the SL component (blue) in C. Though
we separate the two components notationally, they
are interleaved in the generation. Using this ap-
proach, C'is guaranteed to be a faithful model ex-
planation, since our final A is the result of determin-
istically executing C'gr,. Moreover, C, allows the
user to better understand the reasoning process.’

We apply this method to 4 types of complex rea-
soning tasks: MWP, Multi-hop QA, Planning, and
Relational Inference. Next, we will illustrate how
our method works for each of them, with examples
from Figure 3.

3.1 Math Word Problems (MWP)

Given a grade-school math question () written in
NL (“If there are 3 cars in the parking lot and 2
more cars arrive, how many cars are in the park-
ing lot?”, shown in green in Figure 3), we want to

SWhile no constraints are enforced between C '~z and Csr,
in our main experiments, we analyze this in Section C.4.
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If there are 3 cars in the
parking lot and 2 more
cars arrive, how many
cars are in the parking lot?

-[ Reasoning Chain }

are 3 cars in the parking lot"])
n_cars_begin = 3

n_cars_arrive = 2

4 1. How many cars are there in the beginning? (independent, support: ["there

# 2. How many cars arrive? (independent, support: ["2 more cars arrive"]) 5

# 3. Final answer: How many cars are in the parking lot? (depends on 1, 2)
n_cars_total = n_cars_begin + n_cars_arrive

// 2. What is the density of water?
// Water has a density of 1 g/cm”3.

Would an apple sink in

water? Has_density ("apple", 0.75).

Has_density("water", 1).

.decl Answer ()
Answer ()

.output Answer

// 1. What is the density of an apple?
// The density of an apple is about 0.75 g/cm"3.

// Then, we represent these answers in Datalog:
// 1. The density of an apple is about 0.75 g/em*3.
.decl Has_density (Object:symbol, Density:float)

// 2. Water has a density of 1 g/cm*3.

// Now, we derive the final answer: Would an apple sink in water?
N // The answer is Yes only if an apple is more dense than water.

:- Has_density("apple", densityl), Has_density("water",
density2), densityl > density2.

No

Deterministic
Solver

[Gabrielle] drove her
daughter [Dorothy] to the
hospital. [Dorothy]'s son
[Vincent] showed up shortly
after. How is [Vincent]
related to [Gabrielle]?

relation (Vincent, Dorothy) = son

relation (Dorothy, Gabrielle)

# 1. How is [Vincent] related to [Dorothyl? (independent, support: " L
[Dorothy]'s son [Vincent] showed up shortly after.")

4 2. How is [Dorothy] related to [Gabrielle]? (independent, support: "
[Gabrielle] drove her daughter [Dorothy] to the hospital.")

relation (Dorothy, Gabrielle) = daughter

# 3. Final answer: How is [Vincent] related to [Gabrielle]? (depends on 1, 2)
relation(Vincent, Gabrielle) = relation(Vincent, Dorothy) @

grandson

Goal in PDDL:
(:goal
; I need to do both things
(and
; first throw away the coke
(at coke trash)

| spilled my coke on the
table, could you throw it
away and bring something

to clean with?
(at sponge user)

)

; then bring the user a sponge as a cleaning tool

1. find(coke)
2. pick(coke)
3. find(trash)
4. put(coke)
5. find(sponge)
6. pick(sponge)
7. find(user)
8. put(sponge)

Figure 3: Examples from each task (Math Word Problems, Multi-hop QA, Relational Inference, and Planning)
showing our 2-stage Translation and Problem Solving pipeline.

obtain A as a real-valued number (5). In the Trans-
lation stage, we prompt the LM to take in ) and
generate a reasoning chain C, which interleaves
Cnr and Cgy,. Specifically, the Cny component
consists of three types of information:

(a) Subquestions: () is broken down into multi-
ple smaller-scale subquestions, e.g., “1. how many
cars are there in the beginning?”, “2. how many
cars arrive?”, and “3. how many cars are in the
parking lot?”.

(b) Dependency Graph: Each subquestion can
either be answered directly via context (subques-
tions 1 and 2 are “independent”) or rely on answers
to previous subquestions (subquestion 3 “depends
on 1 and 27).

(c) Rationales: Each subquestion is accompa-
nied with rationale(s) to support the answer (the
“support” field). The rationales can be either a sub-
set of the original context (‘2 more cars arrive”
or any external knowledge (“there are 7 days in a
week”) relevant to the subquestion.

Each subquestion and its corresponding depen-
dencies and rationales inform the subsequent gen-
eration of C'sy. In our example in Figure 3, Cgy,
consists of Python code generated to answer each
subquestion in Cr,. During the Problem Solving
stage, we execute C'sy, using our solver, a Python
interpreter, to derive A (5 cars in the end).

3.2 Multi-hop QA

Given a complex question () that involves multi-
ple steps of reasoning (e.g., “Would a pear sink
in water?”, shown in red in Figure 3), we want to
obtain the answer A as a Boolean value or string
value variable. Similar to our MWP task formula-
tion, C' interleaves C'y 7, (NL comments), and Cgy,
(symbolic program). Depending on the nature of
the task, the format of the reasoning chain C is
slightly different: for some datasets, the LM first
generates all subquestions and their answers in NL,
and then represents these answers as SL to derive
A (see Figure 3); for others, the LM interleaves the
NL subquestions and the SL program, similar to
the case of MWP (see Table 14 and Table 15 for
examples). In terms of SL, we use both Python
and Datalog, also depending on the dataset. As
Multi-hop QA problems involve multi-step reason-
ing to solve, C'sy, often utilizes Boolean algebra
and string comparisons (in Python) along with re-
lation definitions and logic programming (in Data-
log). We use their corresponding interpreter as our
deterministic solver to execute C'sy, and obtain A.

In the example from Figure 3, the LM first
generates the subquestions, “1. What is the den-
sity of a pear?’ and “2. What is the den-
sity of water?”, which are individually answered
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in NL. The answers (“Water has a density of
1g/cm3”) are converted to Datalog statements
(Has_density(“water”, 1)), which are then
combined to formalize the truth condition of the
final answer. Finally, we execute the Datalog pro-
gram to determine that a pear would not sink in
water.

3.3 Planning

In a user-robot interaction scenario, given a house-
hold task query @) from a user, we want to come
up with a plan of actions A that the robot should
take in order to accomplish the task. For example,
in Figure 3, given user query “I spilled my coke
on the table, could you throw it away and bring
something to clean with?”, a possible plan can be
“find(coke), pick(coke), find(trash), put(coke) ...”.
In the Translation stage, an LM translates ) into C,
consisting of Cxr, (which breaks down () into sub-
tasks) and C'sy, (which represents the subtasks as a
symbolic goal in PDDL® — a language to define
and solve classical planning problems). Figure 3
shows this translation, with Cgy, in blue and Cy,
in black. Finally, we call a PDDL Planner as the de-
terministic solver to obtain A, a plan to accomplish
the goal Csy, under the predefined scenario.

3.4 Relational Inference

Given a relational inference problem () written in
NL, we want to obtain A as a string-valued vari-
able. For example, the CLUTRR (Sinha et al.,
2019) dataset involves inferring the family relation-
ship (e.g., “grandson”) between two people from
a short story (e.g., “[Gabrielle] drove her daughter
[Dorothy] to the hospital. [Dorothy]’s son [Vin-
cent] showed up shortly after. How is [ Vincent] re-
lated to [Gabrielle]?”, shown in yellow in Figure 3).
During the Translation stage, we prompt the LM to
generate C, consisting of C'yy, and Cgr,. Similar
to previous tasks, C'yr, breaks down () into sub-
questions (“How is [Vincent] related to [Dorothy]”
and “How is [Dorothy] related to [Gabrielle]”),
as well as provide input extracts as rationales to
support the answer (“[Dorothy]’s son [Vincent]
showed up shortly after”, etc.). Each subquestion
in Cyy, is answered in C'gy, via a relational ex-
pression representing the relation between the men-
tioned entities, for example, relation(Vincent,
Dorothy)=son denotes that Vincent is Dorothy’s

6https://en.wikipedia.org/wiki/Planning_
Domain_Definition_Language. A goal is a special
construct in PDDL.

son. In the Problem Solving stage, our solver is
a simple relational inference engine that relies on
a set of transitivity rules provided by Zhang et al.
(2022) among possible family relationships, e.g.,
son@daughter=grandson (the son of one’s daugh-
ter is one’s grandson). Our solver recursively ap-
plies these rules on C'sy, to derive A, and determine
that Vincent is Gabrielle’s grandson.

4 Experimental setup

4.1 Datasets

Here, we summarize the evaluation datasets used
for each domain. We select the same number (6 to
10, depending on the task) of exemplars as in Wei
et al. (2022) to form our few-shot prompt, which
can be found in our repository. Unless otherwise
stated, we use the official splits: training set for ex-
emplar selection, validation set for prompt tuning,
and test set for evaluation.’

Math Word Problems (MWP). We follow
Wei et al. (2022) and consider the same five
MWP benchmarks: GSM8K (Cobbe et al., 2021),
SVAMP (Patel et al., 2021), MultiArith (Roy and
Roth, 2015), ASDiv (Miao et al., 2020), and AQuA
(Ling et al., 2017). For all datasets, the input ques-
tion is phrased in NL. The answer is a string-valued
mathematical expression for AQuA, and one or
more integer(s) for all other datasets. We use the
same 8-shot prompt for all datasets except AQuA.
Multi-hop QA. We consider the three datasets:
StrategyQA (Geva et al., 2021), a dataset of open-
domain questions that require an implicit multi-
step strategy to answer, e.g., “Did Aristotle use a
laptop?” involves answering “1. When did Aris-
totle live?”, “2. When was the laptop invented?”,
and “3. Is #2 before #1?”; Date Understanding
from BIG-bench (BIG-Bench collaboration, 2021),
which asks the model to infer a date from a con-
text, by performing computation on relative peri-
ods of time; and finally, Sports Understanding
from BIG-bench, which asks the model to decide
whether an artificially constructed statement related
to sports is plausible or implausible. Since the latter
two datasets do not have a training set, we follow
Wei et al. (2022) and select 10 examples from the
test set to form the prompt and use the rest for
evaluation.

Planning. We use the SayCan dataset (Ahn et al.,
2022), which assumes a scenario of a robot operat-

"See Appendix E for dataset statistics, examples, data
cleaning method, splits, prompt construction strategy, etc.
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Query
Royce takes 40 minutes more than double Rob to shingle a house. If Rob takes 2 hours, how many minutes does Royce take?

Standard Prompting

Model Output

The answer is 4 hours and 20 minutes. x

Chain of Thought (CoT) Prompting
(Wei et al., 2022)

Least-to-Most Prompting
(Zhou et al., 2023)

Model Output

To answer the question, we need to know:

Q1. How many minutes does Rob take?
Rob takes 2 hours.

Q2. How many minutes does Royce take?
Royce takes 40 minutes more than double

Faithful CoT Reasoning (ours)

— Model Output

# To answer this question, write a Python program to answer the
following subquestions:

# 1. How many minutes does Rob take to shingle a house?
(independent, support: ['If Rob takes 2 hours"])

minutes_rob = 2 x 60

# 2. How many minutes does Royce take to shingle a house?
(depends on 1, support: ["Royce takes 40 minutes more than

Rob.

Model Output

Royce take?
Royce takes 40 minutes more than

double Rob. That means Royce takes 2 *
2 + 40 =80 + 40 = 120 minutes.
The answer is 120. x

The answer is 84.

Final Answer: How many minutes does

Royce takes 2*2 + 40 = 84 minutes.

double Rob"])

minutes_royce = minutes_rob * 2 + 40

# 3. Final Answer: How many minutes does Royce take?
(depends on 2, support: [])

answer = minutes_royce

X >>> a Python Interpreter >>> 280 v

Figure 4: A sample output for a math question from three baselines and Faithful CoT (our method). The ground-truth
answer is 280, and only our method correctly computes the answer.

ing in a kitchen, helping the user with household
tasks, e.g., “bring a coke to the table”. There are
a number of locations and objects that the robot
can interact with. The robot can only perform a
fixed set of actions, including find, pick, and put.
The task is to map a user query in NL to a plan of
predefined actions. Following Wei et al. (2022), we
manually write 7 exemplars, since no training set
is provided.

Relational inference. @~ We use the CLUTRR
(Sinha et al., 2019) benchmark described in Sec-
tion 3.4. The dataset has multiple splits based on
the number of intermediate steps K required to
reach the answer. We construct the prompt using
8 exemplars with K € {2, 3}, and test the models
on the remaining examples with K up to 10.

4.2 Evaluation Metrics

We evaluate the model performance with final an-
swer accuracy as the main metric. Following previ-
ous work (Wei et al., 2022; Wang et al., 2022; Chen
et al., 2022), for all MWP datasets (except AQuA)
where the answer contains integer(s), a correct an-
swer is defined as the exact match between the
prediction and the ground truth both converted to
the nearest integer; for StrategyQA and Sports Un-
derstanding where the answer is a Boolean value, it
is defined as the exact match between the prediction
and the ground truth both evaluated as a Boolean
variable; for SayCan, the generated plan is consid-
ered correct if it is among the ground truth plans;
for all other datasets, we rely on the exact match
between the prediction string and the ground truth
string. Additionally, we evaluate the human-rated
plausibility of the reasoning chain in Appendix D.

4.3 Baselines

We compare our method to three other few-shot
prompting baselines, shown in Figure 4: standard
prompting, popularized by Brown et al. (2020),
with demonstrations of only the question and the
answer; CoT (Wei et al., 2022), which addition-
ally includes an NL reasoning chain; and Least-
to-Most (L.tM) (Zhou et al., 2022), which decom-
poses the question in NL but does not involve SL.
All prompting methods are compared under two
decoding strategies: greedy decoding, where the
LM samples the most probable next token from
the vocabulary (i.e., temperature = 0.0); and self-
consistency decoding (Wang et al., 2022), where
the LM generates multiple reasoning chains and
chooses the final chain based on majority voting on
the evaluated answer (we use a temperature of 0.4
and 40 generations for all datasets).® We reproduce
the baseline results ourselves in cases when they
are not reported on certain tasks or when we clean
the test set.

44 LMs

We use OpenAl Codex (Chen et al.,, 2021)
(code-davinci-002) in Section 5 and experi-
ment with four other code-generation LMs in Ap-
pendix C.3.

5 Results

Our results on all datasets are shown in Table 1.
With code-davinci-002 as the Translator, Faith-
ful CoT outperforms all baselines across the vast

$Note that we do not report the performance of standard
prompting with self-consistency decoding, since when the
number of sampled outputs is large enough, this converges to
standard prompting with greedy decoding (Wang et al., 2022).
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Math Word Problems Planning Multi-hop QA Relation
Method GSM8K SVAMP MultiArith  ASDiv. AQuA | SayCan | StrategyQA Date Sport | CLUTRR
Greedy Decoding
Standard 19.6 69.5 43.8 72.1 315 82.5 63.9 513 719 42.0
CoT 63.3 77.3 96.5 80.0 42.1 86.4 72.5 59.9 98.6 48.5
LtM 38.3 80.3 74.0 76.5 40.6 71.7 722 76.6 995 472
Faithful CoT (ours) 72.3 834 98.8 80.2 47.2 89.3 63.0 81.6 99.1 58.9
Self-Consistency Decoding
CoT 78.0 86.8 100.0 84.2 52.0 89.3 79.8 63.8 98.0 45.7
LtM 38.8 80.5 74.0 76.3 44.9 76.7 71.9 772 994 50.9
Faithful CoT (ours) 80.0 88.8 99.2 84.4 61.4 94.2 65.2 855 99.0 71.9

Table 1: Accuracy of different prompting methods on 10 reasoning datasets from 4 domains. We compare our
method, Faithful CoT, with standard (Brown et al., 2020), CoT (Wei et al., 2022), and Least-to-Most prompting
(Zhou et al., 2022), with code-davinci-002 as the LM. The best results within each decoding strategy are bolded.

majority of datasets and domains under both decod-
ing strategies. With greedy decoding, Faithful CoT
outperforms all baselines on 8 of the 10 datasets,
by a relative improvement of up to 14.2% on MWP,
3.4% on Planning, 6.5% on Date Understanding
from Multi-hop QA, and a surprising 21.4% on Re-
lational Inference. Generally, we see larger gains
on harder datasets. Take MWP as an example: on
simpler datasets where CoT already performs de-
cently (e.g., MultiArith and AsDiv, where most
questions require only 1-2 steps to solve), the gains
are smaller (0.3% to 2.4%); however, we see the
largest gain (14%) on the most difficult GSM8K,
which requires up to 8 steps to solve. With self-
consistency decoding, Faithful CoT still performs
the best on 7 out of the 10 datasets. Compared to
greedy decoding, the relative gain increases on 4
datasets (AQUA: 12.1% — 18.1%, SayCan: 3.4%
— 5.5%, Date Understanding: 6.5% — 10.8%, and
CLUTRR: 21.4% — 41.3%), but decreases or re-
mains unchanged for the remaining three MWP
datasets (GSMS8K: 9.0% — 2.6%, SVAMP: 3.9%
— 2.3%, ASDiV 0.2% — 0.2%).

On the other hand, we do not see clear empirical
gains on two multi-hop QA datasets, Sports Under-
standing on StrategyQA. On Sports Understanding,
Faithful CoT and LtM both have near perfect ac-
curacy (99+), suggesting that the dataset is almost
saturated. On StrategyQA, however, the perfor-
mance of our method is still far from the baselines.
To understand why, we specifically compare the
examples where CoT makes a correct prediction
but our method fails. As shown in Figure 11 in
Appendix F, we find that the likely primary cause
is the sparsity of Datalog in the pretraining data
for Codex, as an overwhelming 29% of errors are
syntax-related. Moreover, including Datalog in the
prompt also interferes with NL generation, making
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it harder for Codex to produce relevant subques-
tions (17%), retrieve knowledge correctly (10%),
and come up with valid reasoning from the knowl-
edge to the answer (10%). Another potential cause
is the nature of the task, as the difficulty for many
StrategyQA questions does not lie in reasoning but
rather in knowledge retrieval, which makes the ad-
vantages of our deterministic solver less obvious.
Still, with further pretraining on Datalog, we be-
lieve that there is room for improvement.

To see how generalizable our method is, we also
experiment with four alternative LMs and observe
consistent gains brought by Faithful CoT over the
baselines, as shown in Appendix C.3. In particular,
with GPT-4, we set the new few-shot SOTA results
on 7 datasets, achieving 95.0+ accuracy in four out
of five MWP and two out of three Multi-hop QA
datasets. Overall, these results suggest that faith-
fulness does empirically improve performance.

6 Analysis

In this section, we perform an extensive analysis of
the strengths and weaknesses of our method, to bet-
ter understand the role of different components, the
robustness to design choices, the plausibility of gen-
erated reasoning chains, as well as frequent error
patterns where it still struggles. Here, we only show
the first two aspects; see the rest in Appendix C. Un-
less otherwise stated, we choose one dataset from
each domain (GSM8K, Date Understanding, Say-
Can, and CLUTRR) and use code-davinci-002
outputs with greedy decoding.

6.1 Ablation Study

Given the strong performance of Faithful CoT, we
now address a natural question: how much does
each part of the prompt contribute to the accu-
racy? We perform an ablation study where we re-
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Figure 5: Ablation study results: accuracy when we
remove different parts of the prompt. See Section 6.1
for details.

move different parts of the prompt and see how the
performance changes. In addition to the original
prompt (“Full”), we test four variations, illustrated
with the example from Figure 4:

No rationale. We remove the rationales, i.e., every-
thing in the brackets from the NL comments, e.g.,
“independent, support: [“There are 15 trees’]”.

No NL but nudge. We remove all NL comments
except the “nudge” line: e.g., “# To answer this
question, we write a Python program to answer the
following subquestions”.

No NL. We remove all NL comments.

No solver. Instead of calling the external solver,
we add “Answer: {answer}” to the end of every
exemplar and let the LM predict the answer itself.

Figure 5 shows the results of all prompt varia-
tions. On GSM8K, Date Understanding, and Say-
Can, NL comments contribute little to the perfor-
mance, and sometimes even slightly hurt it. On
CLUTRR, however, their role is crucial, since the
exclusion of each component (rationale, nudge,
subquestions) results in a clear accuracy drop. In
particular, comparing No NL but nudge and No
NL, the nudge line itself brings a striking improve-
ment by 31.3 points.

The external solver relieves the burden of prob-
lem solving from the LM. Without it, the accuracy
suffers a huge decline on GSMS8K, Date Under-
standing, and CLUTRR (-50.8, -22.9, and -19.4
respectively), while on SayCan it improves by 2.9
nonetheless. One potential influencing factor is that
SayCan might be too homogeneous, as it contains a
set of only 3 predefined actions. This can make the
task relatively easy, which allows all model vari-
ants to achieve around 90% accuracy and renders
the solver unnecessary. Another potential reason is
the level of correspondence between the final an-
swer and the reasoning chain for different datasets:
as shown in Figure 3, the answer in SayCan is a
sequence of actions (e.g., find(redbull)), each
directly corresponding to one step in the reasoning

Exemplars GSM8K Date SayCan CLUTRR
Set 0 (Table 1) 723  81.6 89.3 58.9
Set 1 72.6 81.3 91.3 59.0

Set 2 71.1  85.0 85.4 57.2

Set 3 723 825 88.3 58.0

Set 4 712 774 88.3 55.5

Set 5 715 85.0 89.3 56.0
Mean 71.8 821 88.7 574
Std 06 28 1.9 1.5

Table 2: Robustness to the choice of exemplars.

chain (e.g., at redbull trash). However, the
answer in the other three datasets is only a single
number or string, which can only be derived af-
ter executing all the steps in the reasoning chain.
Therefore, the latter type of tasks further necessi-
tates the presence of an external solver.

6.2 Robustness to Exemplars

We now answer the next question: how much does
the choice of exemplars matter? To do this, we
annotate 20 examples in total, randomly sample k
(7-10, depending on the dataset) to construct the
prompt, and repeat the process five times. Table 2
shows the performance of all six runs, including
the original (from Table 1). The mean accuracy is
close to the original (-1.5 to +1.2), still above the
baselines by a large margin (7 to 17) on all datasets
except the arguably easiest SayCan, considering
the standard deviation (1.3 to 2.9). This strongly
suggests that the benefits of Faithful CoT are mini-
mally influenced by the choice of exemplars.

6.3 Human Evaluation of Plausibility

Our main experiments use final answer accuracy
as the performance measure, but this does not nec-
essarily correspond to the validity of the reasoning
chain. Technically, a model can sometimes acci-
dentally arrive at the correct answer with an invalid
reasoning chain. We then ask: when the answer is
correct, how often is the reasoning chain truly
correct? In other words, we want to evaluate the
plausibility of the reasoning chains.

We conduct a human evaluation study on Prolific:
given a generated reasoning chain that results in
a correct answer, a crowd-worker selects whether
it is A) completely correct, or, if incorrect, specify
why with B) incorrect NL and/or C) incorrect SL.
Alternatively, they can select D) flawed question
and E) I am confused.’

The results of our study are shown in Figure 6
(see Table 8 in the Appendix for numerical results).

9See Appendix D for more details on the human study.
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Figure 6: Human evaluation results of reasoning chain
plausibility. Each column represents the percent of dif-
ferent answer choices selected by human evaluators in
each domain/dataset.

For most domains, we see that annotators often
find the reasoning chain fully correct — Sports, Say-
Can, and MWP have a 90%+ correctness rate. To
gain more insight into when the reasoning chain
can be "incorrect", we perform an in-depth analysis
of user annotations for the three worst-performing
datasets — StrategyQA (66.7% correctness), Date
(87.9% correctness), and CLUTRR (88.0% correct-
ness). From our inspection, we find that annotators
mistakenly mark a correct reasoning chain as incor-
rect at different rates based on the task (8.3% of the
time for StrategyQA, 41.7% for Date Understand-
ing, and 100% for CLUTRR). We find annotators
are inaccurate for Date because they incorrectly be-
lieve the generated code misuses a Python library
(relativedelta), or they complain that there is a
better way to answer the question. For CLUTRR,
annotators mark chains as incorrect due to known
ambiguity in the dataset. For example, the grand-
mother of one’s child may not necessarily be their
parent, but also a parent-in-law.

As for the remaining truly incorrect reasoning
chains, we find the LM can sometimes add un-
necessary steps or arrive at the correct answer by
chance. The latter is especially an issue in Strate-
gyQA - given that all questions have a True/False
answer, it is common for an incorrect reasoning
chain to result in a correct answer. For example, the
LM correctly answers the question "Was Karachi a
part of Alexander the Great’s success?" as "True."
However, the reasoning chain contains the flawed
subquestion "Which countries are in Pakistan? Pak-
istan includes Pakistan, Afghanistan, and India."
Though the final answer is correct and faithful to
the LM generation, the reasoning chain contains
wrong knowledge.

Overall, Faithful CoT does generate valid reason-
ing chains for the vast majority of the time when
the answer is correct. However, we still see excep-
tions where the model arrives at the right answer
via an incorrect reasoning chain. Though this hap-
pens infrequently, it raises concerns about when
people should trust LMs. To our knowledge, we
are the first to conduct a systematic human study
on the plausibility of CoT-style reasoning chains,
and we hope to see future work further investigate
and improve on the flaws that our study brings to
light.

7 Conclusion

We propose Faithful CoT, a framework that de-
composes complex reasoning into Translation and
Problem Solving. It guarantees that the reasoning
chain is a faithful explanation of how the model
arrives at the answer. We demonstrate the efficacy
of our approach on 4 types of complex reasoning
problems: Math Word Problems, Multi-hop QA,
Planning, and Relational Inference. Our method
sets new SOTA performance on 7 of the 10 datasets,
while additionally providing a faithful explanation
for the final answer. These results give empiri-
cal evidence that improving model interpretability,
by guaranteeing the faithfulness of an explanation,
does not come at the expense of overall perfor-
mance; in fact, we see a strong synergy in between.
Through a comprehensive analysis of the strengths
and weaknesses of our method, we show its robust-
ness to the choice of exemplars, the pivotal role of
the solver, as well as frequent error patterns where
it still struggles.

Limitations

One crucial limitation of our study is that on March
23rd, 2023, OpenAl discontinued the use of code-
davinci-002. This has rendered part of our results
unreplicable for any teams or researchers who have
not been granted continued access to the model.
This discontinuation was unexpected during our
study. It raises important questions about using
closed-source models for academic research.
Meanwhile, one methodological limitation of
our approach lies in the scope of faithfulness. Cur-
rently, we guarantee that Problem Solving stage
is faithful. However, the Translation stage is still
opaque, meaning it is not self-interpretable how the
LM generates the reasoning chain from the ques-
tion. It is still an under-explored question whether
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it is possible to improve the interpretability of the
LM generation process in general, and a few recent
studies have made promising early progress (Yin
and Neubig, 2022; Sarti et al., 2023) that might be
used to improve the faithfulness of the Translation
stage.

Finally, it still needs further exploration of
the role NL comments in the reasoning chain.
From our ablation study, in terms of performance,
whether to include the NL comments in the reason-
ing chain does not make a big difference on many
of the datasets, especially those where the task is
not knowledge-intensive. Nevertheless, speaking
of interpretability, NL comments can make the rea-
soning chain more structured and understandable
to the end user. Further, NL comments can be an
interface that allows users without a programming
background to interact with and debug the model,
which we leave for future work.

Ethics Statement

With the recent success of generative large LMs,
they are now being used to solve complex reason-
ing problems. When using the output of an LM for
reasoning, there is a danger that if the reasoning ap-
pears realistic, then the final answer or conclusion
will also be considered reliable. As we highlighted
in Figure 1 and 7, this is often not true, since
an LM may produce a reasoning chain that looks
plausible, but the final answer is still wrong. This
work is a step in the direction of making the use
of LMs more trustworthy by using the LM for just
expressing its reasoning in a symbolic program and
executing the program independently. In this work,
we have ensured the faithfulness of the reasoning
chain w.r.t how the final answer is produced in a
variety of domains, but admittedly the Translation
phase is still opaque. Therefore, our pipeline is still
not entirely interpretable. Furthermore, as we have
stressed in Section 1, faithfulness does not guaran-
tee correctness, so our method can still sometimes
produce erroneous answers, which may pose a risk
for users that rely on it for decision making.
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A Implementation Details

In all our experiments, we use OpenAl GPT-3
(text-davinci-001 and text-davinci-002)
and Codex (code-davinci-001 and
code-davinci-002) models through the Python
API available at beta.openai.com, from Sept,
2022 to Jan, 2023. The inference cost per example
is $0 for all Codex models since they are in limited
beta period, and $0.01 - $0.03 for GPT-3 models
depending on the dataset. It takes 2-15 seconds to
run inference on one example with Codex models
under a rate limit of 150,000 tokens/minute, and
1-8 seconds with GPT-3 models under 250,000
tokens/minute, also depending on the dataset.
For example, on the GSM8K test set of 1,319
examples, it takes 3.5h to finish the inference with
Codex and 2.3h with GPT-3.

We use the following hyper-parameters through-
out all experiments:

temperature: 0.0 for greedy decoding, 0.4 for
self-consistent decoding;
max_tokens: 1000;
n: 1 for greedy decoding, 40 for self-consistent
decoding;
frequency_penalty: O;
presence_penalty: 0.

Any unspecified hyper-parameters are set to
the default value on https://beta.openai.com/
docs/api-reference/completions/create.

B Extended Results

In this section, we present more results that do not
fit into the main text.

B.1 Examples of Unfaithful CoT Output

Figure 7 shows examples of unfaithful output from
the CoT method (Wei et al., 2022) on three datasets:
GSMSK (MWP), StrategyQA (Multi-hop QA), and
SayCan (Planning). Note that here we only show
model outputs that are apparently unfaithful. In
other cases, there is no known inconsistency be-
tween the reasoning chain and the answer, but this
still does not imply that the reasoning chain is a
faithful explanation, since the ground truth (how
the model predicts the answer) is unknown.

The GSM8K example is explained in Section 1.
In the StrategyQA example, though the reason-
ing chain correctly identifies that a hummingbird
weighs much more than a pea, the answer is still
“yes”; in the SayCan example, the reasoning chain
only mentions “visit the table and the counter”,

Math Word Problem (GSM8K)

Q: John plans to sell all his
toys and use the money to
buy video games. He has 13
lego sets and he sells them
for $15 each. He ends up
buying 8 videogames for $20
each and has $5 left. How
many lego sets does he still
have?

—{(CoT output }———————

A: He started with 13 lego sets. He sold
them for $15 each. So he must have
gotten 13 * $15 = $195 from selling
them. He used this money to buy 8
video games for $20 each. This means
he spent 8 * $20 = $160 on the video
games. He had $5 left, so in total he
must have had $195 + $5 = $200. The
answer is 0.

Q: Could a bee hummingbird
balance a scale with a single
peaon it?

Multi-hop QA (StrategyQA)

A: The bee hummingbird is the smallest
bird in the world. The average weight of
a bee hummingbird is about 2 grams. A
single pea weighs about 0.1 grams.

Thus, a bee hummingbird could balance

a scale with a single pea on it. So the
answer is yes.

Planning (SayCan)

The user has asked me to visit the table
Visit the table and the and the counter, | will do so in that order.
counter. 1. find(table), 2. pick(table), 3.
find(counter), 4. put(counter), 5. done()

Figure 7: Examples of unfaithful output from CoT
prompting (Wei et al., 2022) on three datasets. The an-
swer (green) does not follow from the reasoning chain
(blue).

but the plan contains unnecessary “pick” and “put”
operations.

Wei et al. (2022) claim that CoT “provides an in-
terpretable window into the behavior of the model,
suggesting how it might have arrived at a partic-
ular answer and providing opportunities to debug
where the reasoning path went wrong". As we have
pointed out in Section 1, since CoT does not guar-
antee faithfulness, how the model arrives at the
answer could differ drastically from what is shown
in the reasoning chain. Furthermore, it is still hard
for the user to debug the model: even if they manu-
ally correct the reasoning chain and let the model
regenerate the answer, it might still be wrong, since
there is no causality between the reasoning chain
and the answer.

B.2 Comparison with Few-shot SOTA

We compare the results of Faithful CoT with the
published few-shot SOTA in Table 3. The Faithful
CoT results are obtained with the best-performing
LM among all five LMs we experiment with (see
Section C.3 on each dataset. The SOTA results are
obtained from the following sources:

GSMSK: OpenAl (2023);

MultiArith, ASDiv, StrategyQA: Wang et al.
(2022);

SVAMP: Chen et al. (2022);

AQuA: Pitis et al. (2023);
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Math Word Problems Planning Multi-hop QA Relation

Method ‘ GSM8K SVAMP MultiArith  ASDiv  AQuA ‘ SayCan | StrategyQA  Date Sport ‘ CLUTRR
Few-shot SOTA 92.0 89.1 100.0 87.8 76.4 88.3 81.6 762 985 50.9
Faithful CoT (ours) 95.0 95.4 99.2 95.6 73.6 93.2 652 958 993 71.9
Oace +3.0 +6.3 -0.8 +7.8 -2.8 +4.9 -164  +19.6  +0.8 +21.0

Table 3: Comparison between the existing few-shot SOTA results and the optimal Faithful CoT results (with the
best-performing LM (code-davinci-002 for SayCan and CLUTRR, and gpt-4 for the rest of the datasets). See

Appendix B.2 for sources of SOTA results.
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Figure 8: Accuracy of our method and two concur-
rent methods, Program of Thoughts (POT) (Chen et al.,
2022) and Program-Aided Language Models (PAL)
(Gao et al., 2022), on 10 reasoning datasets.

SayCan, Sports Understanding: (Wei et al.,
2022);

Date Understanding: (Gao et al., 2022);

CLUTRR: Our implementation of LtM prompt-
ing (Zhou et al., 2022) (no existing work reports
few-shot performance on CLUTRR with K up to
10).

With Codex and GPT-4, Faithful CoT sets new
SOTA performance on 7 out of the 10 datasets
across four domains, achieving 95.0+ accuracy on
6 of them.

B.3 Empirical Comparison with Concurrent
Work

Two pieces of concurrent work, Program of
Thoughts (PoT) (Chen et al., 2022) and Program-
Aided Language Models (PAL) (Gao et al., 2022),
were announced on arXiv within three months of
our work. Essentially, they both generate Python
programs, or SL-only reasoning chains, to derive
the answer. Our approach differs from them mainly
in the additional component of structured NL com-
ments, which decomposes the original problem into
simpler, inter-dependent subproblems.

Aside from the qualitative differences high-
lighted in Section 2, we perform an empirical per-
formance comparison with them on the same set
of 10 datasets used in our main evaluation. Since

both papers have only tackled math reasoning and
symbolic reasoning tasks, we reimplement their
methods by using the “noNL” prompt in our ab-
lation study from Section 6.1. The comparison is
done with code-davinci-@02 as the underlying
LM and greedy decoding.

As shown in Figure 8, on 6 of the 10 datasets
(including most MWP datasets, SayCan, and Date
Understanding), PAL/PoT and Faithful CoT have
very close accuracy (<2.0 difference). On AQuA,
PAL/PoT is visibly better. On the remaining three
datasets (StrategyQA, Sports Understanding, and
CLUTRR), Faithful CoT reasonably outperforms
PAL/PoT. This may suggest that our method has
an advantage when the task requires extensive ex-
ternal knowledge (e.g., StrategyQA and Sports Un-
derstanding) or when the SL is not frequent in the
LM’s pretraining data (e.g., Datalog, or our self-
defined relational expressions).

Finally, note that the key contribution of our
method lies in interpretability. Though the addition
of structured NL comments sometimes does not
make a difference in performance, it does make the
reasoning chain more understandable to the user.
Furthermore, it may even enable users without a
programming background to debug the model, by
only interacting with the NL subproblems (e.g.,
adding/removing/editing a subproblem), which is
worth further exploration in the future.

C Extended Analysis

C.1 Ablation Study

Table 4 shows the full results of the ablation study
from Section 6.1.

C.2 Robustness to Prompt Phrasing

We study the sensitivity of our method to subtle dif-
ferences in the prompt design. We experiment with
three prompt variations: 1. randomly permuting
the order of independent subquestions/reasoning
steps; 2: Changing the variable names; 3. chang-
ing the nudge line (e.g. from “# To answer this
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Prompt GSM8K Date SayCan CLUTRR
Full 72.3 81.6 89.3 58.9
No rationale 754 83.0 - 51.8
No NL but nudge 73.5 80.2 - 39.6
No NL 72.8  79.7 90.3 9.3
No solver 21.5 579 90.3 40.9

Table 4: Ablation study results that accompany Figure 5.
We report accuracy when we remove different parts of
the prompt.

Prompt GSM8K Date SayCan CLUTRR
Original 723 81.6 89.3 58.9
Variation 1 69.1 84.4 88.3 -
Variation 2 70.3 81.6 90.3 56.2
Variation 3 70.2  80.5 87.4 559
Mean 70.5 82.0 88.8 57.0
Std 1.3 1.7 1.3 1.7

Table 5: Robustness to prompt phrasing.

question, write a Python program to answer the fol-
lowing subquestions” to “# To solve this question,
we answer each of the following subquestions with
a Python program”).

We rerun the evaluation of all three variations on
4 datasets (when applicable) used in the Section 6,
under greedy decoding. Table 5 shows the results.
Overall, the performance is quite stable, always
above each baseline on all four datasets.

CJ3

In this section, we want to answer the ques-
tion: how much does the choice of LM mat-
ter? All results in Section 5 are obtained us-
ing code-davinci-002. Here, we examine the
effect of using four alternative code-generation
models as the Translator: code-davinci-001,
text-davinci-002, text-davinci-003, gpt-4.
We compare our method with the three baselines
using each of the above LM on five MWP datasets,
using the greedy decoding strategy.

As shown in Table 6, regardless of the underly-
ing LM, Faithful CoT consistently outperforms all
baselines on the vast majority of the datasets, and
performs very closely with the best method (<2.0
difference) on the remaining ones. On average, it
has a relative accuracy gain of 16.1%, 11.0%, 9.4%,
and 4.6 % over the best-performing method among
the baselines, for each LM respectively. This in-
dicates that even though the absolute performance
varies depending on the LM, Faithful CoT brings a
relatively consistent accuracy gain.

Model Sensitivity

Notably, with GPT-4 as the underlying LM,
Faithful CoT results in 95.0+ accuracy in 4 of the 5
MWP datasets, far outperforming the previous few-
shot SOTA on three of them (GSMS8K, SVAMP,
and ASDiv).

C.4 Enforcing Constraints

Since our generated reasoning chain contains struc-
tured components (e.g., dependency graphs), an-
other natural question to ask is: will it be helpful
to enforce certain constraints on the generation?
Using MWP datasets as a case study, we examine
the effect of three such constraints:

Graph validity. The dependency graph must
be a Directed Cyclic Graph (DAG), e.g., it is not
allowed for a subquestion to depend on itself.

No over-dependency. The code cannot depend
on any variable that its corresponding subquestion
has not mentioned, e.g. in Figure 4, since Q5 says
“depend on 47, then the corresponding code should
not use the variable eggs_in_dozen, since it is not
the output of Q4.

No under-dependency. The code must depend
on all variables that its corresponding subquestion
has mentioned, e.g. in the same example, since Q5
says “depend on 47, then the corresponding code
must use the variable eggs_in_dozen.

We investigate the effect of adding constraints
on the generations under self-consistent decoding.
Starting with our original results (without any con-
straint), we add a different set of constraints at each
time and report the accuracy change in Table 7. In-
dividually, the graph validity constraint results in
little to no change in the performance, but the other
two constraints lead to a more unstable change—
mostly a decrease—across datasets. Adding two or
more constraints further lowers the performance in
almost all cases except on MultiArith (the easiest
dataset), revealing the tradeoff between accuracy
and satisfying the constraints. It also indicates that
a proportion of generations (1.0% to 8.9%) in our
existing results do not satisfy all constraints. How-
ever, it may still be worth enforcing some of these
constraints (e.g., graph validity) at the cost of per-
formance, in order for users to better control and
interact with the model.

D Human Evaluation Details

We hire crowd workers on Prolific to evaluate the
correctness of model-generated reasoning chains
that result in a correct answer. We sample
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Method / Dataset | GSM8K SVAMP MultiArith  ASDiv  AQuA ‘ Average
LM: code-davinci-001

Standard 52 28.7 8.6 38.5 22.8 20.8

CoT 14.7 41.2 57.2 50.4 224 37.2

LtM 9.8 449 18.5 46.6 20.5 28.1

Faithful CoT (ours) 274 50.8 63.3 53.7 20.9 43.2
LM: text-davinci-002

Standard 154 65.2 34.1 64.8 24.0 40.7

CoT 47.2 68.0 91.1 69.9 40.6 63.4

LtM 329 73.8 68.3 70.9 34.6 56.1

Faithful CoT (ours) 62.7 80.0 92.8 754 413 70.4
LM: text-davinci-003

Standard 16.9 69.4 38.8 59.1 29.5 42.7

CoT 59.6 79.5 95.0 69.1 46.9 70.0

LtM 34.6 79.5 73.7 70.0 44.5 60.5

Faithful CoT (ours) 71.7 85.1 94.5 80.7 50.8 76.6

LM: gpt-4

Standard 46.9 88.4 98.7 70.2 50.4 70.9

CoT 64.9 80.0 94.0 71.6 75.2 77.1

LtM 91.8 92.9 98.3 86.7 72.0 87.5

Faithful CoT (ours) 95.0 95.4 98.5 95.6 73.6 91.6

Table 6: Accuracy of different prompting methods with each underlying LM on 5 MWP reasoning datasets.

Constraint | GSM8K SVAMP MultiArith  ASDiv AQuA
None 80.0 88.8 99.2 84.4 61.4
+G 0.0 0.0 0.0 -0.1 -0.8
+0 -0.9 -0.1 -0.1 +0.4 -3.9
+U -1.0 -3.6 0.0 -1.2 +1.2
+GO -1.7 -0.4 -0.1 +0.2 -3.9
+GU -1.0 -3.7 0.0 -1.2 +0.8
+O0U -4.0 -5.4 -0.1 -2.6 -4.3
+ GOU -5.0 -5.9 -0.1 -3.2 -5.5

Table 7: Accuracy change after enforcing different con-
straints on the generation. The “None” row shows the
original performance without any constraint (from Ta-
ble 1). Each row below adds a different set of con-
straints: G stands for “graph validity”, O for “no over-
dependency”, and U for “no under-dependency”. Re-
sults are on all MWP datasets under self-consistent de-
coding.

100 reasoning chains for each domain generated
by code-davinci-002 with the greedy decod-
ing strategy, where each set of 100 contains an
equal number of samples from all datasets within
the domain. We further require annotators to
have experience coding in the programming lan-
guage of the dataset they annotate (Python for
MWP/CLUTRR/Sports/Date, and Scala for Strat-
egyQA, as Datalog was not an option in Prolific).
We have a single survey for each domain, with
the exception of Multi-hop QA (in this case, we
have separate surveys for StrategyQA, Date, and
Sports, given the different nature of each dataset).
Additionally, there was no way to ensure annota-
tors knew PPDL on Prolific. In order to ensure
high-quality annotations for SayCan, the authors

Correct Answer = granddaughter
Language Model's Answer = granddaughter

Figure 9: Example of our annotation interface for the
CLUTRR survey

annotate this dataset themselves.

Annotation Process FEach of the 100 questions
for each domain is annotated by at least three an-
notators. Each annotator is given 10 questions to
annotate. A screenshot of our survey interface is
shown in Figure 9. At the start of the survey, an-
notators are given examples of a correct reasoning
chain, a reasoning chain with incorrect NL, and a
reasoning chain with incorrect SL. The examples
match the domain of reasoning chains in each sur-
vey. As an attention and understanding check, we
ask annotators to label an example they had just
seen. If the annotator fails this question, they are
sent to the end of the survey and their responses
are filtered out. We also manually filter out all
spammers (annotators who answer with the same
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Domain Correct  Incorrect N Incorrect SL  Flawed Question ~ Confused \ Agreement
MWP 92.0 3.0 2.0 2.0 1.0 0.790
Planning 94.0 39 2.1 0.0 0.0 0.947
StrategyQA 66.7 30.3 3.0 0.0 0.0 0.455
Date 87.9 6.1 6.1 0.0 0.0 0.788
Sports 100.0 0.0 0.0 0.0 0.0 0.899
Relation 88.0 6.0 0.0 5.0 1.0 0.683

Table 8: Numerical results for human evaluation of reasoning chain correctness, accompanying Figure 6. Each row
represents the percent (0-100) of different answer choices selected by human evaluators in each domain/dataset, as

well as the inter-annotator agreement.

response repeatedly or complete the survey in un-
der 3 minutes). After the surveys are complete,
we compute annotator agreement and then take the
majority label for each reasoning chain as the fi-
nal label in our analysis. Our annotator population
consists of 100 annotators with an average age of
25 years and an average income of 40k per year.
87.9% of the annotators are males and 56% have a
four year college degree. Annotators are compen-
sated at $16/hr, and average 2 minutes per question.
Our full study cost $280. Sample instructions for
the CLUTRR survey can be found in the Supple-
mentary Materials.

E Dataset Details

E.1 Statistics

We show the dataset details in Table 9, including
the statistics, the number of few-shot exemplars
used in the prompt, and example inputs and out-
puts.

In particular, we notice that in one of our base-
lines Wei et al. (2022), the reported number of
exemplars used in the prompt is inconsistent be-
tween the main text (10) and the appendix (6). To
ensure fair comparison, we rerun the baseline with
10 exemplars for our results in Table 1, which is
what we use for our method.

E.2 URLs and Licenses

We use the same distribution of datasets following
Wei et al. (2022):

Math Word Problems

* GSM8K (Cobbe et al., 2021): https://
github.com/openai/grade-school-math,
MIT license: https://github.com/
openai/grade-school-math/blob/
master/LICENSE.
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* SVAMP (Patel et al., 2021): https://
github.com/arkilpatel/SVAMP, MIT li-
cense: https://github.com/arkilpatel/
SVAMP/blob/main/LICENSE.

* MultiArith (Roy and Roth, 2015), license: CC
BY 4.0.

e ASDiv (Miao et al., 2020): https://github.
com/chaochun/nlu-asdiv-dataset.

* AQuA (Ling et al., 2017): https:
//github.com/deepmind/AQuA, license:
https://github.com/deepmind/AQuA/
blob/master/LICENSE.

Multi-hop QA

» StrategyQA (Geva et al.,, 2021): we use
the open-domain setting (question-only
set) from (BIG-Bench collaboration, 2021):
https://github.com/google/BIG-bench/
tree/main/bigbench/benchmark_tasks/
strategyga.

Date Understanding and Sports Under-
standing from BIG-Bench (BIG-Bench
collaboration, 2021): Apache License v.2:
https://github.com/google/BIG-bench/
blob/main/LICENSE.

Planning

e SayCan (Ahn et al, 2022): SayCan
dataset can be accessed at https://say-can.
github.io/ under CC BY 4.0 license.

Relational Reasoning

e CLUTRR (Sinha et al., 2019): https://
github.com/facebookresearch/clutrr,
license: https://github.com/
facebookresearch/clutrr/blob/main/
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Q: Natalia sold clips to 48 of her friends in April, and then she sold half as many
clips in May. How many clips did Natalia sell altogether in April and May?

Q: Each pack of dvds costs 76 dollars. If there is a discount of 25 dollars on each
pack. How much do you have to pay to buy each pack?

Q: For Halloween Debby and her sister combined the candy they received. Debby
had 32 pieces of candy while her sister had 42. If they ate 35 pieces the first night,
how many pieces do they have left?

Q: Seven red apples and two green apples are in the basket. How many apples are

Q: A car finishes a journey in 20 hours at the speed of 60 km/hr. If the same
distance is to be covered in 10 hours, how much speed does the car gain?

Q: Did Aristotle use a laptop?
Q: Yesterday was April 30, 2021. What is the date tomorrow in MM/DD/YYYY?

Q: Is the following sentence plausible: “Lebron James hit the turnaround jumper”?

Q: Could you get me a drink with caffeine?
A: “1.find(redbull) 2.pick(redbull) 3.find(user) 4.put(redbull)

Q: [Carlos] is [Clarence]’s brother. [Carlos] and his sister, [Annie], went shopping.
[Annie] asked her mom [Valerie] if she wanted anything, but [Valerie] said no.

Domain  Dataset #Shot # Test Example
GSM8K 8 1,319
A: 72
SVAMP 8 1,000
A: 51
Math MultiArith 8 600
Word
Problems A: 39
ASDiv 8 2,096
in the basket?
A:9
AQuA 8 254
A: “120 kmph”
StrategyQA 6 2,290
. A: False
Eﬂ““" Date 10 359
QX Understanding A: “05/02/2021”
Sports 10 977
Understanding A: True
SayCan 7 103
Planning
5.done().”
CLUTRR 8 1,042
Relational
Inference

How is [Valerie] related to [Clarence]?

A: “mother”

Table 9: Datasets used for evaluation. “# Shot” stands for the number of few-shot examples in the prompt (following
Wei et al. (2022)) and “# Test” stands for the number of test examples.

LICENSE.  We obtain the publicly dis-
tributed version available at https:
//drive.google.com/file/d/1SEq_
e1IVCDDzsBIBhoUQ5p0OVH5kxRoZF /view,
specifically the data_089907f8 split.

We use all the above datasets for research pur-
poses only, consistent with their intended use.

E.3 Data Cleaning

We perform manual cleaning on ASDiv, Date Un-
derstanding, Sports Understanding, and SayCan as
we discover a number of annotation issues. In our
experiment, we rerun all baselines on our cleaned
version of the test sets. They are provided in our
repository to assist future research.

Specifically, we clean each of the datasets as
follows:

ASDiv: We start with the test set used by Wei
et al. (2022), which removes all questions with
float-valued and string-valued answers. However,
in their released version, we notice an error in the
answer extraction step for questions with more than
one value in the answer (e.g., “what is the width and

length of X?”, where the answer consists of two val-
ues). In their implementation, only the first value
is extracted as the ground truth answer, which is
then compared against model outputs. This might
artificially inflate the final accuracy. To fix this, we
extract all values in the answer as a set and compare
model outputs against it.

Date Understanding: We find a number of
wrong answers in the test set. For example, for the
question “Jane and John married on Jan 2, 1958. It
is their 5-year anniversary today. What is the date
today in MM/DD/YYYY?”, the provided answer is
“01/02/1961”, whereas the correct answer should be
“01/02/1963”. We manually correct these answers,
and the resulting test set has the same number of
examples as the original one.

Sports Understanding: We notice a few am-
biguities with the Sports Understanding dataset.
For instance, running out of bounds is illegal in
many sports. The phrase "Domantas Sabonis ran
out of bounds" is labeled as implausible, however,
Domantas Sabonis is a basketball player, and bas-
ketball players can indeed run out of bounds on
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the court. We remove 8 questions with such action-
based ambiguities. Additionally, since the release
of this dataset, a few new athletes have risen to
fame with identical names to those mentioned in
the dataset. For example, the question "Chris Paul
struck out the side" is implausible, as the refer-
enced “Chris Paul” is a famous basketball player.
However, “Chris Paul” is also the name of a new
MLB baseball player, in which case this statement
is plausible. We remove 5 questions with such
name-based ambiguities.

SayCan: We discover a few issues in the test
set: (1) the environment setup (e.g., the list of ob-
jects, the list of locations, and the initial location
of each object) is not the same for all examples; (2)
the annotation of the ground truth answer is often
incomplete (i.e., for a given task like “visit all loca-
tions”, there exist many possible plans in terms of
the order of locations visited, but not all of them are
included in the annotation); (3) there are ambigu-
ous descriptions in certain queries, for example,
in “Could you get me something refreshing?”, it
is unclear what drinks are considered “refreshing”.
For these questions, we complete the annotation
whenever possible, and filter out the rest. The re-
sulting test set contains 103 examples out of the
original 120.

E.4 Dataset Splits

As stated in Section 4.1, we use the official splits
whenever possible: training set for exemplar selec-
tion, validation set for prompt tuning, and test set
for evaluation. In cases where they are available,
we adopt the following strategies for each dataset:

GSMBSK: it only has training and test sets. We
form the validation set by randomly sampling 1,000
examples from the training set.

Other MWP datasets: for AQuA, we use the
official training/validation/test split. For the other
datasets, only the test sets are used, since we have
the same prompt for GSMS8K and them.

Date Understanding and Sports Understand-
ing: they only have test sets. We follow Wei et al.
(2022) to select the same number of examples from
the test set to form the few-shot prompt and use the
remaining examples as a new test set.

SayCan: Following Wei et al. (2022), we manu-
ally write 7 few-shot exemplars, since no training
set is provided. We evaluate the models on our
cleaned version of the test set, described in the
previous subsection.

CLUTRR: this dataset is split into multiple
folds. There is a training fold with K € {2,3}
(where K is the number of intermediate steps re-
quired to reach the answer), and one test fold for
each K from 2 to 10. We construct the few-shot
prompt using exemplars from the training fold, and
test our method on the concatenation of all test
folds.

F Error Analysis

To further investigate where our method still fails,
we inspect 100 errors'? from model predictions on
each of the four datasets and manually annotate the
error categories.

F.1 GSMSK

Missing Subquestion 3.0 %
Wrong Gold Label 5.0 %
Generation Cutoff 7.0 %

Semantic 12.0 %
Understanding Error

Wrong Code 24.0 %

Figure 10: Error analysis for GSM8K. For a detailed
description of the error categories, see Appendix F.1.

49.0%
Wrong Subquestion

As shown in Figure 10, we categorize the errors
on GSMSK into 6 types, inversely sorted with fre-
quency:

Wrong Subquestion (49%): The LM produces a
wrong NL subquestion, which eventually leads to
the incorrect answer. While this is the majority
error type in our sample, it is worth noting that in a
typical human-in-the-loop collaboration, these er-
rors are easily fixable. Even if the user is unfamiliar
with programming, they can inspect the NL sub-
questions and potentially correct the model error
by simply deleting or editing a wrong subquestion.
Wrong Code (24%): The NL subquestion is cor-
rect, but the code fails to answer the subquestion
correctly. For example, the code uses a variable
that has not been previously defined.

Semantic Understanding Error (12%): The LM
incorrectly interprets certain semantic subtleties in
the query. This is the most complex and most in-
teresting error category. For example, consider the

1%To encourage sample diversity, we embed all the errors
using text-davinci-@02 and cluster the embeddings using
spectral clustering. This produces around 70 clusters of differ-
ent sizes, from which we gather 100 samples using importance
sampling.
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# 1. How many pounds will Martin lose per week if he eats Cheerios every day for breakfast? (independent, support:

["he’ll lose 1.25 pounds/week"])
pounds_lost_cheerios = 1.25

# 2. How many pounds will Martin gain per week if he eats donuts every day for breakfast? (independent, support:
["he’ll gain 1.75 pounds/week"]) pounds_gained_donuts = 1.75
# 3. How many weeks are there in 5 weeks? (independent, support: ["External knowledge: there are 7 days in a

week"])
weeks_in_5_weeks =5

# 4. How many pounds will Martin lose in 5 weeks if he eats Cheerios every day for breakfast? (depends on 1 and 3,

support: [])

pounds_lost_cheerios_5_weeks = pounds_lost_cheerios * weeks_in_5_weeks
#5. How many pounds will Martin gain in 5 weeks if he eats donuts every day for breakfast? (depends on 2 and 3,

support: [])

pounds_gained_donuts_5_weeks = pounds_gained_donuts * weeks_in_5_weeks
# 6. What will be the difference in his weight at the end of 5 weeks between the two breakfast options? (depends on

4 and 5, support: [])

difference_5_weeks = pounds_gained_donuts_5_weeks - pounds_lost_cheerios_5_weeks
# 7. Final Answer: What will be the difference in his weight at the end of 5 weeks between the two breakfast

options? (depends on 6, support: [])
answer = difference_5_weeks

Table 10: Generated code for the question in Appendix F.1, as an example of "semantic understanding error".

following problem:

If Martin eats Cheerios every day for
breakfast, he’ll lose 1.25 pounds/week.
If he eats donuts every day for breakfast,
he’ll gain 1.75 pounds/week. What will
be the difference in his weight at the end
of 5 weeks between the two breakfast op-
tions?

The generated code, as shown in Table 10, does not
assign opposite polarities (signs) for “pounds lost”
vs. “pounds gained”. For other examples in this
category, we notice errors like missing that a pair
of something has 2 items in it, missing to subtract
2 for “two years ago” when it occurs as a subjunc-
tive, and so on. Fixing these errors, in general, will
require more than providing additional examples
in the prompt.

Generation Cutoff (7%): The generation stops
midway, mainly due to the LM producing the same
steps over and over again. These errors could be
easily detected in postprocessing and possibly fixed
by re-prompting the LM.

Wrong Gold Label (5%): We find 5 (out of our
100) examples that are genuine annotation errors
in the gold labels.

Missing Subquestion (3%): The LM misses a rel-
evant subquestion needed for the rest of the reason-
ing chain to work. These errors are also potentially
fixable via human-in-the-loop interaction, where
the user can insert a subquestion into the reasoning
chain.

F.2 StrategyQA

As mentioned in Section 5, Figure 11 shows the
error type distribution on a sample of 70 instances
from StrategyQA, where we specifically compare
the cases where the prediction of CoT is correct
whereas ours is wrong.

Unknown

Knowledge Representation 2.9 %

1.4%
Answer Definition 5.7 %
Wrong Knowledge10.0 %

Wrong 10.0 %
Reasoning

Syntax Errors
28.6 %

Wrong 17.1 %

Subquestions 243%
Infinite Loop

Figure 11: Error analysis for StrategyQA. For a detailed
description of the error categories, see Section F.2.

There are 8 error types, from most to least fre-
quent:

Syntax (29%): these are syntax-related errors
that result in an invalid Datalog program. For exam-
ple, the LM redefines a relation that is previously
declared, uses an invalid string comparison opera-
tion, generates an ungrounded variable in the an-
swer definition, and so on. With further pretraining
on Datalog, we believe Codex is able to overcome
these errors to a reasonable extent.

Infinite Loop (24%): the LM generates an in-

324



finite loop of subquestions, which are oftentimes
rather philosophical. For example, for the question
“Are potatoes native to the European continent?”,
the LM generates a list of 40 subquestions (poten-
tially more, if not truncated by the token limit):

1. Where are potatoes native to?
Potatoes are native to the Andes.

2. Which continent is the Andes in?
The Andes is in South America.

3. Which continent is South America in?
South America is in the Americas.

4. Which continent is the Americas in?
The Americas is in the Western Hemi-
sphere.

5. Which hemisphere is the Western
Hemisphere in?

The Western Hemisphere is in the Earth.
6. Which continent is the Earth in?

The Earth is in the Solar System.

11. Which continent is the Universe in?
The Universe is in the Multiverse.

12. Which continent is the Multiverse
in?

The Multiverse is in the Omniverse.

13. Which continent is the Omniverse
in?

The Omniverse is in the Metaverse.

14. Which continent is the Metaverse in?
The Metaverse is in the Hyperverse.

39. Which continent is the Quattuorde-
caverse in?

The Quattuordecaverse is in the Quinde-
caverse.

40. Which continent is the Quindeca-
verse in?

We notice that this type of errors also happen if
the prompt does not include Datalog code but just
the NL subquestions, but much less often.

Wrong Subquestions (17%): The LM generates
an irrelevant subquestion to the original question.
For instance, given the question, “Would toast for a
vegan have margarine instead of butter?”’, one sub-
question that is generated is “What is the difference
between a vegan and a vegetarian?”, which does
not help with reaching the final answer.

Wrong Reasoning (10%): The subquestions are
correct, but the reasoning from the retrieved facts
to the final answer is problematic. For example,

to answer the question, “Do solo pianists require
a conductor?”, the model correctly generates the
relevant subquestions and their respective answers:

1. What is the definition of a solo pianist?
A solo pianist is a pianist who performs
alone.

2. What is the definition of a conductor?
A conductor is a person who leads an or-
chestra.

3. What is the definition of an orchestra?
An orchestra is a large instrumental en-
semble that contains string, brass, wood-
wind, and percussion instruments.

But in deriving the final answer, the reasoning
is wrong: “Now, we derive the final answer: Do
solo pianists require a conductor? The answer is
Yes only if a solo pianist is not a conductor.”

Wrong Knowledge (10%): the LM fails to re-
trieve the correct knowledge to answer the subques-
tions. For example, given the original question
“Is the largest city in New Mexico also known as
Yoot6?”, the model correctly generates the subques-
tions “What is the largest city in New Mexico?”
(answer: Albuquerque) and “Is Albuquerque also
known as Yoot6?”. However, when answering the
second subquestion, it retrieves a wrong piece of
knowledge (“Albuquerque is also known as Yooto.”,
whereas in reality, it should be “Santa Fe” that is
known as Yooto).

Answer Definition (6%): In our prompt, we
always derive the answer in the format of “The
answer is Yes only if ...”, which is followed by a
Datalog rule containing conditions that should be
satisfied for the answer to be true. However, the
LM sometimes generates this as “The answer is No
only if ...”, which outputs the reversed answer.

Knowledge Representation (3%): The re-
trieved knowledge in NL is correct, but the rep-
resentation of it in Datalog is wrong. For example,
for the piece of knowledge “The Lucy Show is not
the same TV series as JAG (TV series)”, the model
represents it as follows:

.decl Same_TV_series(TV_series1:symbol,
TV_series2:symbol)

Same_TV_series("The Lucy Show"”, "JAG (TV
series)"”).”

which actually means the reverse (they are the
same).

Unknown (1%): There is a very small propor-
tion of errors (1 out of 70) where we are unsure
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of the cause. Specifically, we expect the solver to
output True, but it outputs False instead.

F.3 Date Understanding

Invalid Graph 4.3 % \

Wrong Subquestions 1.4 % Missed Subguestion

18.8%

Wrong 15.9%
Gold Label

43%

Ambiguous Problem
Statement

Wrong Code 55.1 %

Figure 12: Error analysis for Date Understanding. For
a detailed description of the error categories, see Ap-
pendix F.3.

Unlike GSMS8K, we only have 69 errors out of
the 359 test examples, so we annotate them all, as
shown in Figure 12. The error categories for date
understanding are similar to GSM8K, except that
we do not see any generation errors in the samples,
but we see questions with ambiguous phrasing al-
lowing both the gold and predicted answers to be
correct based on interpretation.

F4 SayCan

Wrong Object
36.4%

Additional Subgoals
63.6 %

Figure 13: Error analysis for SayCan. For a detailed
description of the error categories, see Section F.4.

Since SayCan only has 120 test examples and
Faithful CoT produces 7 errors, we annotate all 7
of them, as shown in Figure 13. These 7 examples
can be categorized into two types:
Additional Subgoals (64%): Cases where the
model generated unnecessary subgoals in the de-
composition of the original task, leading the plan-
ner astray. This is illustrated by the request “Clear
the jalapeno chips off the counter’:

(:goal

(and
(not (at jalapeno-chips counter))
(not (at jalapeno-chips table))
(not (at jalapeno-chips trash))
(not (at jalapeno-chips bowl))
(not (at jalapeno-chips user))

)

)

Wrong Object (36%): Here the model gener-
ates the wrong object/object types in the goal. For
example, a request such as “I opened a pepsi ear-
lier. How would you bring me an open can?” fails
because the model generates actions with water
instead of Pepsi.

F.5 CLUTRR

Nonexistent Relation 4.0 %

Wrong Path 12.0 %
Wrong Relation
30.0%

Wrong 13.0 %
Gold Label

Inversed Relation41.0 %

Figure 14: Error analysis for CLUTRR. For a detailed
description of the error categories, see Section F.5.

For CLUTRR, we group all error cases by K,
the number of steps in their gold reasoning chain,
as a proxy for problem complexity, and perform
importance sampling on these groups to select 100
examples. Our annotation of these examples re-
veals 5 error categories, as shown in Figure 14:
Inversed Relation (41%): This stands out as the
majority of the errors. These errors are caused by
the reversal of directional relationships for the ac-
tors in the problem, i.e., predicting “mother” or
“nephew” when the answer is “daughter” or “uncle”
respectively.

Wrong Relation (30%): Here the model extracts
the relation incorrectly (not even the inverse). For
example, for the subquestion “How is [Donald]
related to [Jason]?” with the correctly identi-
fied support “[Jason] is father of their father”, the
model produces relation(Donald, Jason) =
son when the correct relation should be “grand-
son”.

Nonexistent Relation (4%): The model halluci-
nates a non-existent relation (e.g. “adopted” for
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daughter).

Wrong Path (12%): Here, the model does not gen-
erate a correct reasoning path from target entity A
to target entity B in the question.

Wrong Gold Label (13%): These are annotation
errors in the CLUTRR dataset. In one example, for
the sentence, “[Gloria] asked her mother [Laura]
if she could go outside and play with her friends.”,
the annotation says Laura is Gloria’s grandmother.

G Prompts

Due to the space limit, we show one exemplar in
the prompt for each dataset here. The full prompts
can be found in our repository.

Among all the MWP datasets, our prompt for
AQUuA is different from the rest, because the an-
swers are in a multiple-choice format instead of
integers. To produce a multiple-choice answer, we
take a two-step approach by first producing a nu-
merical answer in the same way as for the other
math datasets. Then, we perform an additional step
of converting the numerical answer into an answer
choice by again prompting the language model to
generate which answer choice is closest to the pre-
viously produced numerical answer. An exemplar
of this 2-step prompt is shown in Table 11.
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EXEMPLAR FOR AQUA

Step 1: Answer Prediction
# Question: In a flight of 600 km, an aircraft was slowed down due to bad weather. Its average speed for the trip was reduced by
200 km/hr and the time of flight increased by 30 minutes. The duration of the flight is:

# Answer option: [’A)1 hour’, *B)2 hours’, ’C)3 hours’, D)4 hours’, "E)S hours’]

# Write Python code to solve the following questions. Store your result as a variable named *answer’.

# 1. What was the duration of the flight? (independent, support: ["The duration of the flight is"])

duration = Symbol(’duration’, positive=True)

# 2. What is the delay of the flight? (independent, support: ["the time of flight increased by 30 minutes"])

delay =30/ 60

# 3. What was the total flight distance? (independent, support: ["In a flight of 600 km"])

total_distance = 600

# 4. What was the original speed? (depends on 1 and 3, support: ["External knowledge: speed is distance over time"])
original_speed = total_distance / duration

#5. What was the reduced speed? (depends on 1, 2, and 3, support: [])

reduced_speed = total_distance / (duration + delay)

# 6. What was the duration of the flight if the original speed was 200 km/hr faster than the reduced speed? (depends on 4, 5, and
1, support: [])

solution = solve_it(original_speed - reduced_speed - 200, duration)

answer = solution[duration]

Step 2: Multiple Choice Conversion

# Question: In a flight of 600 km, an aircraft was slowed down due to bad weather. Its average speed for the trip was reduced by
200 km/hr and the time of flight increased by 30 minutes. The duration of the flight is:

# Answer option: [’A)1 hour’, *B)2 hours’, *C)3 hours’, D)4 hours’, "E)S hours’]

# Prediction: 1.00000000000000

# Closest Option: A

Table 11: An exemplar from our prompt for AQuA.

EXEMPLAR FOR GSMS8K, SVAMP, MULTIARITH, AND ASDIV

# Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are done, there will be 21 trees.
How many trees did the grove workers plant today?

# To answer this question, write a Python program to answer the following subquestions:

# 1. How many trees are there in the beginning? (independent, support: ["There are 15 trees"])
trees_begin = 15

# 2. How many trees are there in the end? (independent, support: ["there will be 21 trees"])
trees_end = 21

# 3. How many trees did the grove workers plant today? (depends on 1 and 2, support: [])
trees_today = trees_end - trees_begin

#4. Final Answer: How many trees did the grove workers plant today? (depends on 3, support: [])
answer = trees_today

Table 12: An exemplar from our prompt for GSM8K, SVAMP, MultiArith, and ASDiv.

EXEMPLAR FOR STRATEGYQA
/1 Q: Would a pear sink in water?

// To answer this question, we answer the following subquestions:
/I 1. What is the density of a pear?

// The density of a pear is about 0.6g/cm?.

/1 2. What is the density of water?

// Water has a density of 1g/cm?.

/I Then, we represent these answers in Datalog:
/I 1. The density of a pear is about 0.6g/cm?®.
.decl Has_density(Object:symbol, Density:float)
Has_density("pear", 0.6).

/1 2. Water has a density of 1g/cm?.
Has_density("water", 1).

/I Now, we derive the final answer: Would a pear sink in water?

/l The answer is Yes only if the density of a pear is more than the density of water.

.decl Answer()

Answer() :- Has_density("pear", density1), Has_density("water", density2), density1 > density?2.
.output Answer

Table 13: An exemplar from our prompt for StrategyQA.
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EXEMPLAR FOR DATE UNDERSTANDING
# Q: Yesterday was April 30, 2021. What is the date tomorrow in MM/DD/YYYY?

# To answer this question, we write a program to answer the following subquestions:

# import relevant packages

from datetime import date, time, datetime

from dateutil.relativedelta import relativedelta

# 1. What is the date yesterday? (independent, support: ["Yesterday was April 30, 2021"])
date_yesterday = date(2021,4,30)

# 2. What is the date today? (depends on 1, support: ["Yesterday was April 30, 2021"])
date_today = date_yesterday + relativedelta(days=1)

# 3. What is the date tomorrow? (depends on 2, support: [])

date_tomorrow = date_today + relativedelta(days=1)

# 4. Final Answer: What is the date tomorrow in MM/DD/YYYY? (depends on 3, support: [])
answer = date_tomorrow.strftime("%m/%d/%Y")

Table 14: An exemplar from our prompt for Date Understanding.

EXEMPLAR FOR SPORTS UNDERSTANDING
# Q: Is the following statement plausible? Sam Darnold passed the puck

# To answer this question, write a Python program to answer the following subquestions:

# 1. Sam Darnold is a player in which sport? (independent, support: ["Sam Darnold is an NFL Quarterback", "NFL is the
National Football League"])

player_sport = "football"

# 2. The phrase "passed the puck” implies playing which sport? (independent, support: ["Players pass the puck in hockey"])
playing_sport = "hockey"

# 3. Is the following statement plausible? Sam Darnold passed the puck (depends on 1 and 2, support: ["Sam Darnold is an NFL
Quarterback", "NFL is the National Football League", "Players pass the puck in hockey"])

plausibility = (player_sport == playing_sport)

# 4. Is the following statement plausible? Sam Darnold passed the puck (depends on 3, support: [])

answer = int(plausibility)

Table 15: An exemplar from our prompt for Sports Understanding.

EXEMPLAR FOR SAYCAN
User query: Bring me something not sweet to eat.

Goal in PDDL:
(:goal
; I need to find a snack
(exists (?s - snack)
; it has to satisfy the following conditions
(and
; the snack must not be sweet
(not (is-sweet ?s))
; bring it to the user
(at 7s user)

Table 16: An exemplar from our prompt for SayCan.

EXEMPLAR FOR CLUTRR

# Context: [Jason] always had some great adventure planned for his granddaughter [Guillermina] when she came to visit. So,
naturally, when [Myrna] told her daughter [Guillermina] that they would be going to visit [Jason] she could hardly contain
herself.

# Question: How is [Jason] related to [Myrna]?

# To answer this question, we write a program to answer the following subquestions:

# 1. How is [Jason] related to [Guillermina]? (independent, support: "[Jason] always had some great adventure planned for his
granddaughter [Guillermina] when she came to visit.")

relation(Jason, Guillermina) = grandfather

# 2. How is [Guillermina] related to [Myrna]? (independent, support: "So, naturally, when [Myrna] told her daughter
[Guillermina] that they would be going to visit [Jason] she could hardly contain herself.")

relation(Guillermina, Myrna) = daughter

# 3. Final answer: How is [Jason] related to [Myrna]? (depends on 1, 2)

relation(Jason, Myrna) = relation(Jason, Guillermina) @ relation(Guillermina, Myrna)

Table 17: An exemplar from our prompt for CLUTRR.
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