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Abstract

While both text and Knowledge Graphs (KG)
may be used to answer a question, most current
Question Answering and Generation models
only work on a single modality. In this paper,
we introduce a multi-task model such that ques-
tions can be generated and answered from both
KG and text. The model has wide coverage and
handles both simple (one KG fact) and complex
(more than one KG fact) questions. Extensive
internal, cross-modal and external consistency
checks, and analysis of the quality of the gen-
erated questions, show that our approach out-
performs previous work. Our data and model-
ing also leads to improvements in downstream
tasks, including better performance with fine-
tuning Open-Domain QA architectures and bet-
ter correlation with human judgments than the
Data-QuestEval metric which was previously
proposed for evaluating the semantic adequacy
of KG-to-Text generations.

1 Introduction

Previous work on question generation (QG) and
question-answering (QA) mainly focused on a sin-
gle modality such as Natural Language (NL) (Lyu
et al., 2021), Knowledge Graphs (KG) (Hu et al.,
2019) or images (Shah et al., 2019). Although
QG and QA should be able to operate consistently
across semantically equivalent sources regardless
of their modality, previous work is hampered by
the lack of large-scale aligned cross-modal QA-QG
data that also ensures wide QG coverage. As ar-
gued in (Rebuffel et al., 2021), such cross-modal
QG-QA models can also be used to assess semantic
consistency between KG and Text in KG-to-Text
generation (i.e. Do questions on the generated text
yield the same answer on the input graph and vice-
versa?). Finally, cross-modal KG/NL models are
key for interacting with KGs in natural language.

Building on datasets pairing KG graphs with text,
we develop a multitask, KG/NL model (QTT) that,
given a text in English language or a subgraph from

the Wikidata KG, can generate and answer simple
and complex questions across the two modalities.

We evaluate the model in terms of QG cover-
age, internal, cross-modal and external QA con-
sistency. We also examine the quality of the gen-
erated questions using human evaluation. The re-
sults show that our approach outperforms previ-
ous work across the board. We further demon-
strate that our approach also brings improvements
to two downstream tasks namely, better perfor-
mance with fine-tuning Open-Domain QA architec-
tures and better correlations with human judgments
when used for the Data-QuestEval metric (Rebuffel
et al., 2021). Our code, data and pretrained mod-
els are available at https://gitlab.inria.
fr/hankelvin/quartet_qgqa.

2 Related Work

QG and QA from KG. Early rules- or template-
based KGQG approaches (Olney et al., 2012;
Seyler et al., 2015; Song and Zhao, 2016) required
significant human effort and faced issues with gen-
eralisation, making them difficult to deploy at scale.
While neural KGQG models such as (Reddy et al.,
2017; Serban et al., 2016; Elsahar et al., 2018; Liu
et al., 2019; Han et al., 2022) address some of the
limitations, they — and KGQA ones such as (Bor-
des et al., 2015; Wu et al., 2019; Huang et al., 2019)
— mainly focused on the generation and answering
of simple questions i.e., questions which verbalise
a single KG fact. More recently, some researchers
have started to address complex KGQG and KGQA
i.e. questions on more than one KG fact (Kumar
et al., 2019; Zhang et al., 2022; Saha et al., 2018;
Christmann et al., 2019; Lecorvé et al., 2022; Perez-
Beltrachini et al., 2023). However most of these
efforts are focused on generating and answering
questions from Knowledge Graphs only.

QG and QA from NL. A large body of work
utilises the SQuAD dataset (Rajpurkar et al., 2016)

https://gitlab.inria.fr/hankelvin/quartet_qgqa
https://gitlab.inria.fr/hankelvin/quartet_qgqa
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to develop neural models for text-based joint QA
and QG (Wang et al., 2017; Duan et al., 2017; Lyu
et al., 2021; Luo et al., 2022). Some work uses re-
trieval and conditions a pretrained language model
on both the query and the retrieved documents to
generate the answer (Lewis et al., 2020; Guu et al.,
2020; Khattab et al., 2021). Other work has inves-
tigated the use of synthetically-generated data with
round trip filtering techniques and shown improved
QA performance (Alberti et al., 2019; Puri et al.,
2020; Kwiatkowski et al., 2019). Similarly, we
used data augmentation and round trip filtering to
improve generalisation; however, we do this for
QG and QA for both text and KG.

Cross-Modal text/graph QG and QA. An early
direction (Fader et al., 2014; Das et al., 2017) for
leveraging both structured (KG, tables, lists etc)
and unstructured (text) information used informa-
tion extraction methods such as OpenIE (Banko
et al., 2007) and UniversalSchema (Yao et al., 2012)
to fill the coverage gaps of KGs so as to employ
semantic parsing- or rules-based KGQA methods.

More recent work instead casts structured infor-
mation as text to access their knowledge through
TextQA methods. (Agarwal et al., 2021) verbalise a
large KG Wikidata (Vrandečić and Krötzsch, 2014)
to add to a retrieval LM corpus, obtaining perfor-
mance improvements on benchmark QA datasets.
(Oguz et al., 2022) obtain improvements by adding
Wikipedia tables and lists to the data mix.

Similar to our work, (Rebuffel et al., 2021) cre-
ated synthetic multimodal-QA/QG datasets, by us-
ing a QG model trained on SQuAD to generate
questions on texts paired with graphs in existing
datasets. They use this and SQuAD to train mul-
timodal models and show that the models can be
used to evaluate KG-to-Text generation models;
they report better correlations between their mea-
sure, the Data-QuestEval metric, with human judg-
ments of semantic adequacy than existing auto-
matic metrics. They however do not provide a
systematic evaluation of their models; in contrast,
we provide a detailed evaluation of our model and
compare it against theirs. We also examine how us-
ing our model instead impacts the Data-QuestEval
metric’s correlations with human judgments.

3 Method

Our approach comprise the creation of graph-text
aligned QG-QA datasets covering simple and com-
plex questions (Section 4); and multimodal, multi-

task training of a generative QG-QA model (Sec-
tion 5) – we call this model QTT for the number
(4, or QuarTeT) of its main fine-tuning tasks.

WebNLG Data

Graph rAs xAkita Museum of Art, floor count, 3y

rBs xAkita Museum of Art, opening date, 2013-09-28y

rCs xAkita Museum of Art, address, 1-4-2 Nakadoriy
rDs xAkita Museum of Art, floor area, 3746.66 (sqm)y

Text rEs The Akita Museum of Art at 142 Nakadori has 3
floors with a total area of 3746.66 square metres and was
inaugurated on 28th September 2013.

QTT Data

X = graph rBs, rCs
aX = g ent Akita Museum of Art
Complex
Questions

{What museum opened in 2013-09-28 in Nakadori?
What is the name of the museum that opened in
2013-09-28 in Nakadori?}

X = graph rBs
aX = g ent 2013-09-28
Simple
Questions

{In what year was the Akita Museum of Art opened?
Which year was the Akita Museum of Art opened?}

X = text rEs
aX = t span {The Akita Museum of Art}
Complex
Questions

{What is the name of the museum that has 3 floors with a
total area of 3746.66 square metres?}

X = text rEs
aX = t span {2013}
Simple
Questions

{What year was the Akita Museum of Art inaugurated?
Which year was the museum inaugurated?}

Table 1: QTT-DATA instances derived from WebNLG
Data. Enclosed letters refer to the triple/text above.

Terminology and Notation. We use the term
graphs (denoted by g) to refer to subgraphs of the
Wikidata KG (Vrandečić and Krötzsch, 2014) and
texts (t) to refer to English texts. A KG graph is a
set of triples (also called facts) of the form xsubject,
predicate, objecty. We write X to denote the (text
or graph) context of a question and X 1 to denote
its semantically equivalent counterpart in the other
modality; g1 is a subgraph of g that corresponds
to a question q and its answer; nf is the number
of facts related to a given q (i.e. the size of its
corresponding subgraph |g1| ); ÝÑq is a list of NL
questions; and aX is an answer in X whereby a
graph answer ag is either a subject or an object
entity in g whereas a text answer at is a span in
t. Table 1 contains examples of these from the
QTT-DATA (Section 4) dataset we created; further
examples for Q-KELM (Section 4) can be found
in Table 9 in the Appendix.

4 Data

To train our QTT model, we derive a dataset
of pg, ag, t, at, g1, nf, qq tuples from two existing
KG/NL datasets, KELM and WEBNLG.
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‚ KELM (Agarwal et al., 2021) is a dataset of
15M (Wikidata graph, English text) pairs where
texts were generated from Wikidata graphs using
a T5 (Raffel et al., 2020) pre-trained model fine-
tuned on TekGen, a large dataset of (g, t) pairs cre-
ated using distant supervision. We use a subset of
KELM filtered for (g, t) pairs where g has between
2 and 5 triples (as larger sizes lead to unnatural
questions).1

‚ WEBNLG (Gardent et al., 2017a) is com-
prised of 38,872 (g, t) pairs where the graphs are
from Wikidata2 and the texts were crowdsourced
to match the graphs.

We derive our training data from KELM

and WEBNLG in three steps. First, we cre-
ate pg, ag, t, at, g1, nf, qq tuples by applying text-
based QG and QA on the texts and heuristically
aligning text answers with the corresponding graph
answers – we call the resulting datasets Q-KELM
and Q-WEBNLG0. Second, we use Q-KELM to
train two general multimodal QG models. Thirdly,
we apply the models to WEBNLG and add to Q-
WEBNLG0, thereby extending the coverage of the
data for training QTT. Figure 1 illustrates the pro-
cess, and we describe the three steps below.

‚ Associating Graphs and Texts with Ques-
tions and Answers (Step 1). Given pg, tq, an
instance of any aligned KG-to-Text dataset, we
create synthetic Multimodal QG-QA Data by: (i)
generating a question q from t using text-based
QG; (ii) extracting the text answer at using QA
to obtain pt, at, qq;3 and heuristically aligning at
with the corresponding graph answer ag. To im-
prove quality, we filter out any questions that QA
found unanswerable, or whose text answer cannot
be aligned with a graph entity. We also heuristically
align each generated question with the matching
subgraph g1 Ď g and label it with its size nf i.e.,
the number of facts each question denotes. Ap-
pendix C.1 contains the implementation details for

1We also filtered out the KELM (g, t) pairs that have: (i)
properties not found in the Wikidata SPARQL endpoint or
have a functional nature, e.g. containing terms such as ‘identi-
fier’, ‘image of’, which tend to have superfluous t in KELM;
and (ii) t with low fidelity to their g, using a contrastive loss-
trained similarity measure for RDF graph-text pairs.

2In WEBNLG, the graphs are from the DBpedia KG. Here
we use a version where some of the DBPedia graphs have been
mapped to Wikidata (Han et al., 2022), or else removed of
underscores and camelcase to align with the Wikidata format.

3In our work, we used t5-base-e2e-qg, a T5-base
QG model fine-tuned on SQuAD 1.0 data and the deepset
RoBERTA-based QA model fine-tuned on SQuAD 2.0.

Figure 1: Procedure for generating Q-WebNLG.

these steps.
The size information permits distinguishing be-

tween simple (SQ) and complex (CQ) questions
which allows us to take a differentiated approach
in Step 2 and generate more QA-QG data.

Our filtering above comes however at the cost of
question coverage – when our full data generation
procedure is applied to WEBNLG, only 2,044 CQs
remain (Table 2). Nonetheless, we keep these (as
stated earlier, we call this set Q-WEBNLG0) to
have as wide coverage as possible.4 Applying the
procedure on KELM, we get much larger sets of
SQs and CQs, which we call SQ-KELM and CQ-
KELM, and which together form Q-KELM. Some
examples of Q-KELM instances are in Table 9
in Appendix A. Table 2 shows the sizes of the
resulting datasets.

# Facts Q-KELM Q-WEBNLG0 QTT-DATA

1 544,464 – 19,467
2 341,082 1,858 61,346
3 234,170 175 25,170
4 22,607 11 13,918
5 7,031 - -

TOTAL 1,149,354 2,044 119,901

Table 2: Data Statistics. Number of questions in the
QA datasets; nf : the size of the question (no. of facts).
Training multimodal QG models on Q-KELM and ap-
plying them to WEBNLG drastically enlarges the Q-
WEBNLG0 training data.

4This was not necessary for SQs since SQ-GEN in our
next step (3) generates SQs across varying qtype and facts.

https://huggingface.co/valhalla/t5-base-e2e-qg
https://huggingface.co/deepset/roberta-base-squad2
https://huggingface.co/deepset/roberta-base-squad2
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‚ Training QG Models on Q-KELM (Step 2)
We use Q-KELM to train two multimodal QG
models, one (SQ-GEN) fine-tuned on SQ-KELM
for simple questions, and another (CQ-GEN) tuned
on CQ-KELM for complex ones. Both are based
on the T5-base public checkpoint, and are able to
generate questions from text and from graph.

Using a set of textual prompts (see Table 11 in
Appendix C.1) at the start of the input sequence
to train the CQ-GEN model allows us to control-
lably generate a complex question from input of the
form pX, aX , atype, nfq. Here, atype is the seman-
tic type of the answer entity detected by ELQ (Li
et al., 2020) or Duckling; it is retrieved from the
2021-12-29 Wikidata RDF dump (for entities) or
the prediction from Duckling (for values). atype
is added to improve QG. SQ-GEN is similar to CQ-
GEN except that the question type (qtype) is used
in the input to increase the number and variety of
the generated questions.

‚ Extending Q-WebNLG0 (Step 3) By apply-
ing the controllable QG models from Step 2 to
WEBNLG, we can extend Q-WEBNLG0 from
Step 1. This gives us the final training data for
QTT and we call it QTT-DATA.

Our QG models (CQ-GEN, SQ-GEN) generate
a question given a context and an answer. Hence,
a set of answers must first be selected from the
context. For a given X in WEBNLG, we use the
same answer selection method as (Rebuffel et al.,
2021). For g, the set of possible graph answers is
comprised of the subjects and objects in g. For t, it
is the set of named entities (NEs) and noun phrases
(NPs) detected in t using the spacy package.

For SQs from graphs, we follow (Han et al.,
2022)’s work on SQ generation from RDF triples
and use their qtype prediction model, which returns
the set of plausible qtype for an answer given its
position in the triple and its semantic type.

Finally, we add an answerability+consistency
filter on the generated questions by posing them to
two QA models5 and keep only questions where
both QA models return an answer which (i) has a
confidence score ě 0.7, and (ii) shares at least a
token overlap with the other model’s answer and
with the answer used to condition QG.

In sum, by iterating over possible answers, nf
from 1 to 4, and qtype for SQ-GEN, our control-
lable approach to QG drastically increases the num-

5The deepset QA above and one based on DeBERTaV3.

Text Graph

nf avg/min/max # Qs avg/min/max # Qs

1 2.9 / 1 / 7 10,205 2.9 / 1 / 10 9,262
2 2.2 / 1 / 9 52,517 1.6 / 1 / 11 8,829
3 1.5 / 1 / 6 17,734 1.9 / 1 / 17 7,436
4 1.4 / 1 / 6 8,841 1.9 / 1 / 21 5,077

Table 3: QTT DATA. Average, minimum and maximum
number of questions for text and graph inputs of size nf
(the size is the number of facts matched by the question)

ber of generated questions. A breakdown of QTT-
DATA’s composition is in Table 2.

5 QTT, a multimodal QG-QA Model

Our model (QTT) is trained in a multi-task manner
to handle both QA and QG. It is based on the T5-
small checkpoint (60.5M parameters), allowing for
direct comparison with (Rebuffel et al., 2021). We
fine-tune on QTT-DATA using four main and four
auxiliary tasks, all of which are cast in a sequence-
to-sequence manner. Using a single Nvidia A40
GPU, it takes approximately 20 hours to fine-tune
QTT. The four main and four auxiliary tasks are:

‚ QG from text/graph Given (X, aX , nf ), gen-
erate a set of questions ÝÑq . We obtain this set by
first gathering together questions in QTT-DATA

that were generated from a given context X , and
which share the same size nf and answer, and then
adding to these the questions generated from other
"smaller" pieces of contexts (whose information is
fully contained in X), and also sharing the same
attributes (nf and answer). This gathering process
is detailed in Appendix D.1.1.

‚ QA from text/graph Given (q,X), generate an
answer âX . We leverage sets of pX, aX , qq from
QTT-DATA for training these tasks. Additionally,
to maximise the use of the data for training QA,
we also associate questions answerable by a text
t to larger pieces of text that semantically contain
t (details in Appendix D.1.2). To allow QTT to
abstain from an answer if the question cannot be
answered from the context, we use two strategies
(details in Appendix D.1.4) to generate negative
unanswerable (q,␣X) pairs.

‚ KG-to-Text/Text-to-KG These auxiliary tasks
consist in either verbalising a graph or deriving
a graph from a text. We instantiate each of the
WEBNLG graph-text pairs as training instances.

https://github.com/facebook/duckling
https://huggingface.co/deepset/deberta-v3-base-squad2
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‚ Entity typing on graph/text These auxiliary
tasks combine entity detection and typing. Given
a context X , the task identifies the entities/values
mentioned in X , and their semantic types. We use
BLINK (Wu et al., 2020), Duckling and Wiki-
data to obtain the target information for the tasks.

As the number of instances vary across QTT-
DATA, we upsampled between modalities and tasks
to balance them. Details of each task, and upsam-
pling, can be found in Appendices D.2 and D.1.5.
Also, when the input is a graph, we linearise it us-
ing the same format for data-to-text tasks in the
GEM benchmark (Gehrmann et al., 2021). During
training, we use cross-entropy loss as the objective.
At inference, we generate with greedy search.

6 Experiments

We compare QTT to the original models (DQE,
hereafter) used in the Data-QuestEval metric (Re-
buffel et al., 2021) in terms of QG coverage, QA
accuracy and consistency as well as performance
in two downstream tasks. In the following, we de-
scribe DQE, our evaluation data and methodology.

Baseline: the DQE models DQE comprises four
T5-small (Raffel et al., 2020) models fine-tuned for
QG-QA from graph and text. For text, their QA
model (DQE-TextQA) was fine-tuned on SQuAD
2.0 and the QG model (DQE-TextQG) on SQuAD
1.0. For graphs, both their QG (DQE-KGQG) and
QA models (DQE-KGQA) were fine-tuned on a syn-
thetic QG dataset of (g, ag, q) triples created by
applying DQE-TextQG to a (g, t) corpus.

Evaluation data We reserved the test part of
WEBNLG, which comprise 1,779 (graph, text)
instances, for evaluation. The parallel (g, t) data
here ensures that a question can be answered us-
ing graph or text, allowing us to check the models’
cross-modal consistency (Section 6). We apply
both DQE and our model to the test set and gener-
ate questions for every graph and text.

Evaluating QG Coverage We compare the cov-
erage of QTT against DQE by measuring the num-
ber of unique questions they each generated on the
WEBNLG test set. We also compare the semantic
coverage of the questions using BERTScore (BSc)
(Zhang et al., 2020), by taking one model’s ques-
tion for a given entry as prediction and the other’s
generated questions for the same entry as multi-
references. This is repeated with both approaches
swapped. The intuition is that if approach A scores

Figure 2: QA Accuracy. Bold lines denote QA com-
parisons within/between modalities and/or approaches.
Dotted arrows indicate the context X or X 1 that the
question (qX ) is posed against to obtain the answers.

higher with approach B’s questions as references
than vice-versa, A’s questions are "contained" in
B’s and conversely, B has wider semantic coverage.

Evaluating QA Consistency In what follows,
we refer to aX , the answer used to condition the
generation of qX , as the ground truth (GT) or the
reference answer. We use âX to denote a generated
answer. For a given question, âX is the answer de-
rived from modality X and âX 1 is from modality
X 1. We use superscripts (e.g. âAX and âBX ) to dis-
tinguish answers generated by different models for
the same question q and input context X .

Accounting for the various ways in which a ques-
tion can be answered (i.e. aX , âX , âX 1), we evalu-
ate the quality of multimodal QG-QA models by
computing three consistency metrics.6 Internal
Same-mod (GT) compares the generated answers
âX against the reference answers aX , indicating
the approach’s self-consistency. Internal X-mod
(GT) compares the ground truth aX with the an-
swer derived from the other modality âX 1 . Finally,
Internal X-mod (Gen Ans) compares âX 1 and âX ,
the answers derived from each modality.

6QTT and DQE generates differing numbers of questions
for a given X; to ensure a fair evaluation, when an Approach
A generates more questions for X , we randomly sample from
its set as many questions that Approach B generates for X .

https://huggingface.co/ThomasNLG/t5-qa_squad2neg-en
https://huggingface.co/ThomasNLG/t5-qg_squad1-en
https://huggingface.co/ThomasNLG/t5-qg_webnlg_synth-en
https://huggingface.co/ThomasNLG/t5-qa_webnlg_synth-en
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We also investigate QA across approaches, al-
lowing an external indication of each’s QG-QA
capabilities. Here, we examine the two answers
that can be generated by approach B (âBX and âBX 1)
when given qAX , a question generated by A. We do
this on three levels: (i) X-Appr Same-mod (GT),
by comparing âBX against aAX on the same modal-
ity that qAX came from; (ii) X-Appr X-mod (GT)
comparing B’s generated answer with the reference
answer across modalities (i.e. âBX 1 vs aAX ); and (iii)
X-Appr X-mod (Gen Ans) where âBX 1 is compared
against âAX . A graphical overview of these QA
consistency comparisons can be found in Figure 2.

Downstream: QA with FiD For another external
verification of QTT’s (and DQE’s) QG, we con-
ducted experiments with Fusion-in-Decoder (FiD)
(Izacard and Grave, 2021). We use a checkpoint
that was trained on TriviaQA (Joshi et al., 2017) as
the questions there are factual in nature, i.e. com-
patible with the texts in WebNLG. To investigate
the quality of QTT-DATA, we also fine-tune the
same FiD checkpoint using either QTT-DATA or
DQE’s training data and use these for QA.7 Similar
to X-Appr Same-mod (GT) above, we compare âBX
against aAX , except that B in this case is a given
fine-tuned (or not) FiD QA model while A is DQE
or QTT. Though such a setting gives upper-bound
FiD scores,8 the differences in scores – when vary-
ing fine-tuning data and QG – independently vali-
dates QTT’s QG vs DQE’s and QTT-DATA too.

Downstream: Data-QuestEval metric Since
DQE was originally used in the Data-QuestEval
metric, we also compare the correlation of the re-
sulting Data-QuestEval metric with human judg-
ments when DQE is replaced with QTT. For this,
we compute the correlations with the judgments
collected on 2,007 outputs from 9 participating sys-
tems in the WebNLG Challenge (Gardent et al.,
2017b). Following (Rebuffel et al., 2021), we com-
pute Pearson’s r , but also report Spearman’s ρ.9

Evaluation settings The following describes and
explains the settings for our evaluations.

7Here, when the context is a graph, we use the linearisation
scheme from (Oguz et al., 2022) to utilise FiD for KGQA.

8i.e. the information to answer the question is in a single
document and this gold document is being provided to FiD.

9The latter may be appropriate since the system outputs
for the WebNLG 2017 challenge evaluation were selected to
cover a spread of automatic scores and are therefore unlikely
to be normally distributed.

‚ Answer selection for QG inference To have
a direct comparison with (Rebuffel et al., 2021)’s
models, we follow their use of the spacy pipeline
for answer selection on t (see Section 4), and report
results with this setting in Sections 6 and 7. How-
ever this approach is noisy and often segments NEs
with nouns or NPs in them (e.g. ‘English’ being
extracted from ‘English Without Tears’), leading
to ill-formed questions. We trained an answer se-
lection model for texts (see Appendix D.2) using
QTT-DATA, ensuring that the answers for QG are
meaningful spans in t. We conducted our ablation
experiments and human evaluation (Sections 8 and
9) using this answer selection method for text.

‚ Automatic metric Following (Rebuffel et al.,
2021), we use BERTScore (BSc) for evaluation, to
address the restrictiveness of token F1 for cross-
modality QA. We use the same settings, except
the following for a clearer analysis: (i) BScs were
rescaled against the official BSc baseline for a
wider spread, (ii) “unanswerable” strings were set
to an empty string to avoid non-zero BSc for these
and "over-counting" them, and (iii) lowercasing.

‚ Self-consistency filter Since both QTT and
DQE are trained on synthetic data, some generated
questions may be ill-formed and pose an impact
on QA. We therefore filter from both QTT and
DQE the questions: (i) which cannot be answered
from their source context; or (ii) whose generated
answer âX has a BSc < 0.7 when compared against
the reference aX . We focus our analysis for QA
Consistency and the Downstream Evaluations on
the results after filtering as this is the upper bound
of the approaches’ performance; the impact of re-
moving this filter is included in our ablations (Sec-
tion 8). For congruence with our QG Coverage
analysis, if the filtering will leave a given approach
A – and therefore B as well – with no QA pairs (i.e.
no coverage), we keep one QA pair for A.

We note also that the self-consistency filter above
is important in the downstream Data-QuestEval
evaluation (see above) – given how the Data-
QuestEval metric is computed (i.e. the generated
answer is compared against the GT answer), if
a generated question cannot be answered by the
source context and yet still posed to the other
modality, it will not capture the factuality com-
parison accurately (i.e. it will skew the metric and
affect its reliability).

https://dl.fbaipublicfiles.com/FiD/pretrained_models/tqa_reader_base.tar.gz
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7 Results

QG Coverage QTT generates three times as
many questions as DQE when the input is a text
(14,141 vs 42,959) and 10 times more when it is a
graph (7,272 vs 75,906). Figure 3 provides a fine-
grained view of the QG coverage by the (graph-
based) size of the context.

This higher coverage results from three mod-
eling choices differentiating QTT from DQE: (i)
QTT is trained to generate multiple questions from
a given X; (ii) the enlarged size and coverage of
QTT’s training data by applying Q-KELM-trained
QG models to WEBNLG; and (iii) the use of qtype
controls in SQ-GEN, permitting multiple SQs of
various types to be generated from a single X .

The BScs are also higher with QTT’s questions
as references (89.7 vs 85.3 for text; 90.4 vs 82.5 for
graph), suggesting that QTT is not just generating
more questions but also ones that "contains" DQE’s
as well as semantically different ones from DQE’s.

Figure 3: Comparative QG coverage DQE vs. QTT.
Total and average number of generated questions is
much higher for QTT across both modality and input
size. The delta increases with the size of the input.

QA Consistency Table 4 summarises the com-
parisons between QTT and DQE on QA accuracy.
A finer-grained analysis of QTT’s Internal perfor-
mance across question complexity can be found in
Table 10 in Appendix B.

‚ QTT outperforms DQE on self-consistency
Despite QTT and DQE both starting fine-tuning
from the same T5-small checkpoint, QTT gains
over DQE in Internal Same-mod (GT) (+8.0 BSc
for text, +3.8 for graph). This shows that us-
ing QTT-DATA – which provides aligned wide-
coverage QA-QG data – for training in a multi-
modal multi-task manner enables QG and QA with
greater internal roundtrip consistency.

‚ Our synthetic in-domain data improves per-
formance QTT’s self-consistency gains over

Internal X-Appr

QG: DQE QTT DQE QTT
QA: DQE QTT QTT DQE

Same-mod (GT)
T Ñ T 87.4p˘0.01q 95.4p˘0.14q 81.4p ´6.0q

p˘0.02q
56.8p´38.6q

p˘0.31q

G Ñ G 95.0p˘0.01q 98.8p˘0.04q 76.2p´18.8q

p˘0.05q
79.4p´19.4q

p˘0.47q

X-mod (GT)
G Ñ T 51.4p˘0.04q 75.8p˘0.35q 60.3p `8.9q

p˘0.04q
48.2p´27.6q

p˘0.52q

T Ñ G 60.6p˘0.02q 69.7p˘0.35q 59.8p ´0.8q

p˘0.02q
51.6p´18.1q

p˘0.27q

X-mod (Gen Ans)
G Ñ T 51.8p˘0.04q 76.4p˘0.35q 58.2p `6.4q

p˘0.04q
48.4p´28.0q

p˘0.51q

T Ñ G 63.9p˘0.01q 72.1p˘0.38q 61.2p ´2.7q

p˘0.02q
53.1p´19.0q

p˘0.28q

Table 4: Consistency Results Avg. of BScs between
answers. In subscripts are std. dev. across 5 random runs;
superscripts are the difference between X-Appr and Inter-
nal. X/Y indicates the QG/QA model used. QTT betters
DQE on all consistency tests and for all modalities.

DQE for text also stems from our procedure
for creating in-domain data. DQE-TextQG and
DQE-TextQA were fine-tuned on SQuAD only,
leading to a drop in scores when DQE-TextQA
is applied on WEBNLG (vs DQE-KGQA’s 95.0).
This out-of-domain effect also shows when it an-
swers a question QTT generated with text (95.4
to 56.8, Table 4); whereas, in the reverse case, the
drop for QTT when it answers a DQE question
generated is much less (87.4 to 81.4).

‚ Q-DATA with multi-task training improves
cross-modality performance QTT outperforms
DQE by at least 9.1 BSc (e.g. 69.7 vs 60.6 for T
Ñ G) in Internal X-mod (GT) showing that it can
more accurately answer questions cross-modally
with respect to the reference answer, and/or gen-
erate questions that allow this. This is beneficial
when using the QG-QA model(s) for evaluation
such as the Data-QuestEval metric where this com-
parison (âX 1 and aX ) is relied on to assess the
semantic concordance between the data input and
generated text. Furthermore, a low discrepancy in
the Internal X-mod (Gen Ans) performances be-
tween the cross-modal directions (i.e. G Ñ T vs
T Ñ G) is ideal under our parallel data evalua-
tion setting, as it shows that the QG-QA model(s)
is able to reflect the agreement between the pg, tq
pairs. QTT’s 4.3 BSc gap here narrows by nearly
two-thirds the 12.1 BSc gap faced by DQE (i.e.
76.4-72.1 vs 51.8-63.9).
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‚ QTT’s performance is consistent across ques-
tion complexity and externally validated We find
that QTT also performs consistently for all nf , (the
number of facts q relates to) for text and for graph
(Table 10 in Appendix B). Our findings above on
QTT’s internal performance also hold when exam-
ined cross-approach (X-Appr, i.e. external); when-
ever QTT is used to answer questions generated
by DQE, the drop in QA accuracy is significantly
lower (or in some cases a gain) than vice-versa.

Downstream Evaluations QTT also outper-
forms in two downstream tasks. Our FiD experi-
ments (Table 5) show that the QTT’s questions can
be answered with higher accuracy than DQE’s for
both modalities – likely because QTT’s training
data permits it to generate more CQs than DQE,
which is closer to the forms in TriviaQA. The com-
bination of fine-tuning FiD with QTT-DATA and
QTT QG also betters every other combination with
DQE and/or its training data. These validate (i)
our procedure for creating QTT-DATA, and (ii) the
use of it with multimodal multi-task modeling for
improved QG. Besides that, using QTT for comput-
ing the Data-QuestEval metric also boosts by >10
points the score’s correlation (Spearman’s ρ) with
human judgments of semantic adequacy (Table 6).
This is likely due to the improved QG (quality and
coverage) for both modalities, allowing QA-based
evaluation to more accurately assess the informa-
tion content of the data and the generated text.

Fusion-in-Decoder

QG: DQE DQE DQE QTT QTT QTT
QA: FiD0 FiDD FiDQ FiD0 FiDD FiDQ

Same-mod (GT)
T Ñ T 68.94

(0.01)

86.24
(0.04)

86.60
(0.02)

77.06
(0.42)

88.89
(0.26)

91.48
(0.18)

G Ñ G 74.25
(0.03)

91.07
(0.02)

88.66
(0.05)

82.14
(0.33)

91.10
(0.27)

94.99
(0.17)

Table 5: Consistency Results with FiD (Similar to Ta-
ble 4.) FiD0 is the public FiD checkpoint trained on Triv-
iaQA. FiDD/FiDQ denotes that checkpoint fine-tuned
on training data from DQE/QTT for that modality.

Measure DQE QTT

Spearman’s ρ 47.9 (1.47e-104) 58.6 (4.81e-168)

Pearson’s r 51.8 (2.69e-125) 61.8 (1.24e-191)

Table 6: Correlations with human judgments. Com-
paring when DQE and QTT are used in the computation
of the Data-QuestEval metric. All (p-values) « 0.001.

8 Ablation

We also studied the impact of four variations to the
data and modeling: (i) X-Filt removes the question
self-consistency filter (Section 6); (ii) Data uses
a similar data setting as (Rebuffel et al., 2021) i.e.
synthetic QG-QA data on WEBNLG plus SQuAD,
without Q-KELM and Steps 2 & 3 in Section 4;
(iii) SPO uses another graph linearisation, where
each (s, p, o) in g is shown as they appear; and (iv)
X-Aux, removes all auxiliary tasks. All these mod-
els were trained for 383,445 steps. These ablation
results can be found in Table 7.

QTT X-Filt Data SPO X-Aux

Same-mod (GT)
T Ñ T 97.6 76.6 95.7 97.4 97.4
G Ñ G 98.8 86.0 99.5 97.8 98.9

X-mod (GT)
G Ñ T 75.5 70.3 71.4 75.3 75.4
T Ñ G 77.7 63.8 64.4 74.9 75.8

X-mod (Gen Ans)
G Ñ T 76.0 76.3 71.7 76.0 76.0
T Ñ G 78.3 72.3 66.6 75.5 76.7

Table 7: Ablation results. All models here use the text
answer selector. Comp. denotes consistency compari-
son, Mod. denotes QG and QA modalities respectively.

The ablations show that, other than the question
self-consistency filter and using QTT-DATA, the
other variations have relatively limited impact on
QTT’s Same-mod (GT). It also shows that using our
data generation procedure leads to improvements
in QA; especially in cross-modal settings (X-mod
(GT) and X-mod (Gen Ans)).

9 Human evaluation

Modality Consistency Naturalness Complexity

Text 0.76 (0.53) 0.77 (0.45) 0.75 (0.72)
Graph 0.64 (0.56) 0.67 (0.55) 0.93 (0.86)

Table 8: Human evaluation for QG. Each score is the
average of all annotators’ ratings. Values in brackets are
the Fleiss’ kappa coefficient for that particular aspect.

We conducted a human evaluation on the quality
of QTT’s questions since there are no reference
questions. To have a broad study, we sampled 10
questions each from bins combining these charac-
teristics: (i) modality - whether QG from graph or
text; (ii) complexity - the question’s size (nf ); and
(iii) QA accuracy, where the questions were sep-
arated into three quantiles based on their Internal
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Same-mod (GT) score.10

Three doctoral candidates in NLP fluent in En-
glish, were shown the 240 questions and their con-
texts, and asked to rate each question on three as-
pects with binary choice: whether it is (i) consistent
with the context; (ii) natural-sounding; and (iii) a
CQ. For the last aspect, we report whether their
rating matches the control (nf=1 or nf>1) used
for generation. The results can be found in Table 8.

The overall agreement between the annotators
is substantial (Fleiss’ kappa: 0.65 for KGQG; 0.61
for TextQG). For TextQG, QTT scores ě 0.75 on
all aspects. In KGQG, we observe lower scores for
Consistency and Naturalness. This is likely due
to the increased challenge when generating from
graph (which is under-specified and requires a se-
mantic gap to be overcome), and is compounded by
unseen properties in the WEBNLG test set. There
is also a difference in the performance for Com-
plexity between the graph and text modalities; we
found that this can be attributed to the challenge of
accurately judging KG facts in text.11

10 Conclusion

We propose an approach (QTT), which we show
generates more questions that cover more informa-
tion compared to previous work (DQE). Unlike
existing approaches, our data and architecture al-
lows us to generate multiple questions for a given
input. Extensive internal, cross-modal and external
checks show that QTT outperforms DQE on QA
consistency. The quality of our generated questions
was verified by human evaluation for semantic con-
sistency, naturalness and adherence to our complex-
ity controls. Finally, the use of our approach also
leads to improvements against DQE in two down-
stream evaluations (QA with Fusion-in-Decoder
and the Data-QuestEval metric).

Our main contributions are (i) a large multimodal
general QG-QA dataset (Q-KELM) which will be
made available on publication, (ii) a data genera-
tion procedure including two general multimodal
QG models enabling controllable generation of in-
domain synthetic QG-QA datasets, and (iii) a mul-
timodal multi-task QG-QA model that can generate

10e.g. 1 bin is {G, nf=1, 1st quant.} i.e. SQs from graph,
with BSc for âg vs ag in top 33% of all SQs from graph.

11For e.g. the question “Who was born in Los Angeles in
California?” generated from the text “The birthplace of X is
Los Angeles in California.” corresponds to the single KG fact
x X; born in; Los Angeles, California y but may be judged as
being a CQ of more than 1 fact (e.g. x X; born in; Los Angeles
> and < Los Angeles; located in; California y).

and answer questions from text and from graph.
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12 Limitations

Our data generation process relies on the KELM

dataset (Agarwal et al., 2021), which was gener-
ated using a single pretrained language model (T5-
large). As such, KELM — and hence the texts in
our generated data (Q-KELM) too — reflects only
the set of factual or linguistics characteristics in this
model. For instance, there is certainly more than
one way a KG graph (or set of facts) can be lexi-
calised in text, however KELM only contains one
lexicalisation for each of the KG subgraph within
it. In addition, we only use a single QG model for
generating our initial sets of synthetic QA pairs
(Q-KELM, Q-WEBNLG0). Although by using
Q-KELM to train our two general QG models,
we may have introduced new varieties of questions
into QTT-DATA, it is unlikely we have obtained the
full range of questions possible for a given context-
answer pair. This limitation of KELM may how-
ever be alleviated by for example, ensembling the
KELM dataset with generations from different LMs
(following fine-tuning or with in-context learning)
on the same subgraphs used to generate the KELM

sentences/passages.
Secondly, so as to ensure QG and QA fidelity,

we made sure to exclude questions generated from
text in Step 3 of the data creation process (Sec-
tion 4) when constructing the KGQG and KGQA
instances for QTT-DATA (Section 5). This is be-
cause the answers for questions generated from
text may not be constrained to a single KG entity.
As a result of this, the sets of complex questions
for these two tasks are smaller than for their text
counterparts12. This impacts QTT’s capabilities
for generating multiple complex questions for a
single input instance in the KGQG task13. This
limitation could potentially be alleviated by using
beam search (or variants of it such as diverse beam
search (Vijayakumar et al., 2016) and constrained
beam search (Post and Vilar, 2018)) to increase the
generation of complex questions from graph using
CQ-GEN.

Finally, although we used the agreement of two
state-of-the-art QA models when checking for QG
acceptability, we cannot be certain that questions
rejected by the QA models are not actually valid

12On the other hand, given the parallel nature of WEBNLG,
the answer for a question generated from graph can be found
in the text, allowing us to include such questions when con-
structing the TextQG and TextQA instances for QTT-DATA.

13The input context here is g1
P g, where 2 ď| g |ď 4

questions — in such cases, it means that the cover-
age of QA pairs in our datasets is constrained.

13 Ethics Statement

As advancements in generative technologies ac-
celerate in terms of capabilities, scale and public
access, so too must the need for the the ability to
understand if such machine-generated information
are reliable.

We believe that our KG/NL-aligned QG-QA data
creation method and cross-modal QG-QA model
has the potential to contribute positively in the fol-
lowing areas: (i) a QG-QA model with cross-modal
consistency can aid in tasks that includes but are
not limited to automated fact verification, KG-to-
text/text-to-KG quality estimation and knowledge
graph completion; and (ii) the ability to generate in-
domain QA data can help improve downstream QA
performance and dialogue systems to aid human-
machine interactions with KGs. On the other hand,
a direct application of our method and model for a
task such as fact verification could lead to a failure
to capture misinformation, which have the poten-
tial for substantive societal harm. This risk arises
because KELM is based on a snapshot of the Wiki-
data KG from circa 2019. Additionally, the T5 pre-
trained language models used in producing KELM,
and also in all our models, were trained with data
up to 2020. These constrain the extent and validity
of facts in our model up to these points in time.
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A Q-KELM examples

Table 9 shows examples of instances from Q-
KELM.

B Detailed results

Finer-grained analysis of QTT QA performance
Table 10 provides a finer-grained view of QTT’s
same-mod and cross-mod QA consistency perfor-
mance; it is evaluated for QA performance on the
set of questions relating to varying number of facts
(1 ď nf ď 4).

C Implementation details: CQ-Gen and
SQ-Gen

C.1 Training data

Q-KELM is used as the training data for the CQ-
GEN and SQ-GEN models (respectively using CQ-
KELM and SQ-KELM from Q-KELM). Each
training instance in CQ-GEN and SQ-GEN is as-
sembled in the manner described in the following
paragraphs; examples for them can be found in
Table 11 and 12.

Context X When generating from text t, the en-
tire t is used as input for both CQ-GEN and SQ-
GEN. For generation from KG subgraph, the input
to both models is g1, a subgraph of g of size nf
where 1 ď nf ď 4. For SQ-GEN, the size of g1 is
always 1; for CQ-GEN, it is 2 ď nf ď 4 .

Answer aX For generation from text, at the text
answer that was extracted by the RoBERTa QA
model (see Section 4) is used. When generating
from KG subgraph, the graph answer ag (the en-
tity/value in g that is aligned with at (see below) is
used.

‚ Aligning ag The graph answer ag is the en-
tity in g which either exactly matches, contains
or else has the smallest edit distance to at. If at
cannot be matched to a graph entity, the (q, at) is
rejected, together with those unanswerable by the
QA model.

Answer semantic type atype The answer entity
semantic type atype is used for QG when generating
from text as well as from graph. It is obtained by
using the graph entity (ag) aligned with the answer
by querying Wikidata for the set of entities/values
that ag has the ‘instance of’ and/or ‘subclass of’
property with.
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KELM
Instance Description Example

Graph g ‚ g: a Wikidata graph xJNR Class DE15, subclass of, diesel-hydraulic
locomotivey,
xJNR Class DE15, instance of, locomotive classy,
xJNR Class DE15, manufacturer, Kawasaki Heavy
Industriesy,
xJNR Class DE15, service entry, 00 1967y

Text t ‚ t: an English text generated
from g

The JNR Class DE15 is a diesel-hydraulic loco-
motive class made by Kawasaki Heavy Industries,
which entered service in 1967.

Q-KELM
Instance Description Example

Text (CQ)
pt, q, atq

‚ q: generated from t using Text
QG (Step 1)

What is the name of the diesel-hydraulic locomo-
tive class made by Kawasaki Heavy Industries?

‚ at: answer derived from pt, qq
using Text QA (Step 1)

JNR Class DE15

Text (SQ)
pt, q, atq

‚ q: generated from t using Text
QG (Step 1)

When did the JNR Class DE15 enter service?

‚ at: answer derived from pt, qq
using Text QA (Step 1)

1967

Graph (CQ)
pg1, q, agq

‚ g1 Ď g: a subgraph of g heuris-
tically aligned with q

xJNR Class DE15, subclass of, diesel-hydraulic
locomotivey,
xJNR Class DE15, instance of, locomotive classy,
xJNR Class DE15, manufacturer, Kawasaki Heavy
Industriesy

‚ q: generated from t using Text
QG (Step 1)

What is the name of the diesel-hydraulic locomo-
tive class made by Kawasaki Heavy Industries?

‚ ag: graph answer i.e. entity in
g1 heuristically aligned with at ‚

JNR Class DE15

Graph (SQ)
pg1|1|, q, agq

‚ g1|1| P g: a subgraph of g, of
size one

xJNR Class DE15, service entry, 00 1967y

‚ q: generated from t using Text
QG (Step 1)

When did the JNR Class DE15 enter service?

‚ ag: graph answer i.e. entity in
g1|1| heuristically aligned with at

00 1967

Table 9: Q-KELM Dataset. For each pg, tq pairs in the filtered version of KELM (see Section 4), QA pairs are
created for both t and g1 Ď g. The question q is generated from t, heuristically aligned with the corresponding
subgraph g1 and both the text and the graph answer are extracted from t and g1 respectively.

Question complexity control nf In CQ-KELM
and SQ-KELM each (qX , aX ) pair is associated
with a subgraph g1 obtained with heuristic matching
(see below). Since g and t are parallel, nf (the size
of g1) is used as the control for the complexity
of the question for generation from both text and
graph.

‚ Determining nf The size (nf ) of the question
is determined by matching a question and its an-
swer to the corresponding subgraph g1 Ď g where
g1 is the set of triples xs, p, oy in g such that: either
s and o have an overlap of ě 1 token with q ` at,
and/or they can be detected in q ` at.

Controls A textual prompt is added to both the
input and the target to control the question genera-
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Num Facts
1 2 3 4

Same-mod (GT)
T Ñ T 96.3 98.5 98.3 98.1
G Ñ G 97.8 99.1 99.2 99.3

X-mod (GT)
T Ñ G 77.7 77.9 77.7 77.2
G Ñ T 73.2 77.9 75.1 74.6

X-mod (Gen Ans)
T Ñ G 79.2 77.9 78.1 77.1
G Ñ T 74.3 78.2 75.5 75.0

Table 10: Fine-grained analysis of QTT’s QA perfor-
mance (BSc). Num Facts denote the number of facts
(nf ) the set of QA-pairs relate to (i.e. 1 denotes an SQ
of 1 fact, 2 denotes a CQ of 2 facts etc...). The nf sets
are mutually exclusive.

tion; the prompt differs for CQ-GEN and SQ-GEN.
SQs are those where q + at contain only 2 entities,
whereas we define CQs as those with at least 7 to-
kens and such that q + at contain > 2 entities and
the size of the matching subgraph is at least 2 (i.e.
nf ě 2). A set of special tokens (added to the
T5 tokeniser vocabulary) are used to demarcate the
components in the input and target. These prompts
and tokens can be seen in the examples found in
Tables 11 and 12.

Question type qtype The question type, which is
only used in SQ-GEN, is detected using the ques-
tion type filter in the NL-Augmenter framework
(Dhole et al., 2021) 14.

Target The target is a single question for a given
input for both CQ-GEN and SQ-GEN.

C.2 Technical details

CQ-GEN and SQ-GEN are each T5-base pre-
trained models that were fine-tuned from their pub-
lic checkpoints. Each of them was tuned for up to
10 epochs with early stopping (on the loss for the
validation set for when it stops decreasing, with
a patience of 3 epochs). A learning rate of 2e-4
was used, together with a linear warmup ratio on
10% of the total training steps, and an effective
batch size of 144. For both models, we used the
HuggingFace transformers library. We used
the Lightning integration of the DeepSpeed frame-
work for efficient training and used bf16 precision
together with the DeepSpeedCPUAdam optimizer.

14https://github.com/GEM-benchmark/
NL-Augmenter

Modality

Text Input generate 1 complex question of 2
facts from text [ANS] 1988 [Sp2]
value duration | value distance
[INP] Peter Vermes represented
the United States, where he began
his career in 1988 and ended it in
1997.

Target cq 1 2 text[ANS] 1988 [QST]
When did Peter Vermes begin rep-
resenting the United States?

Graph Input generate 1 complex question of 3
facts from rdf [ANS] SoundApp
[Sp2] software [INP] [SUB]
SoundApp [PRP] instance of
[OBJ] Software [SUB] SoundApp
[PRP] operating system [OBJ]
System 7 [SUB] SoundApp [PRP]
license [OBJ] Freeware

Target cq 1 3 rdf[ANS] SoundApp [QST]
What is the name of the freeware
software program for the operating
system of System 7?

Table 11: CQ-GEN Examples of inputs and targets for
complex questions training instances, for text and for
graph. [ANS], [INP], [QST], [Sp1], and [Sp2] are spe-
cial tokens we use to demarcate parts of the input/target.
[SUB], [PRP] and [OBJ] are used in graph inputs to
demarcate subject, property and object elements of a
triple.

Modality

Text Input generate 1 simple question of 1
fact from text [ANS] 1977 [QST]
when [Sp2] time [INP] The Lasse
Viren Finnish Invitational, which
was created in 1977, is part of the
sport of athletics.

Target sq 1 text 1 [ANS] 1977 [QST]
When was the Lasse Viren Finnish
Invitational created?

Graph Input generate 1 simple question of 1
fact from rdf [ANS] Pennsylvania
Avenue [QST] where [Sp2] street
[INP] [SUB] National Archives
Building [PRP] located on street
[OBJ] Pennsylvania Avenue

Target sq 1 rdf 1 [ANS] Pennsylvania Av-
enue [QST] Where is the National
Archives Building located?

Table 12: SQ-GEN Examples of inputs and targets
for simple questions training instances for text and for
graph. [ANS], [INP], [QST], [Sp1], and [Sp2] are spe-
cial tokens we use to demarcate parts of the input/target.
[SUB], [PRP] and [OBJ] are used in graph inputs to
demarcate subject, property and object elements of a
triple.

https://github.com/GEM-benchmark/NL-Augmenter
https://github.com/GEM-benchmark/NL-Augmenter
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D Implementation details: QTT

D.1 Training data

QTT-DATA was used as the training data for
QTT. Examples of the training instances for each
task/subtask can be found in the following tables:
TextQG and KGQG can be found in Tables 13 and
14, complex and simple TextQA as well as KGQA
can be found in Table 15, the KG-to-Text as well
as Text-to-KG tasks can be found in Table 16; and
the EntType tasks can be found in Table 17.

D.1.1 Obtaining sequence of questions for
QTT QG

For questions grounded in text, since each
WEBNLG text t is associated with a graph g, we
use it to gather the set of questions in QTT-DATA

generated from g itself and its sub-graphs (and
the corresponding sub-texts of t that is present in
WEBNLG). From this set, we gather all nf -sized
questions which share an at to form the set of ques-
tions associated with pt, at, nfq.

For questions grounded in graphs, two treat-
ments are used to gather questions since the in-
puts to QTT differs for generation of CQs and SQs
(see Appendix D.2). For CQs, given g1, which is
a subgraph of g (a graph occurring in WEBNLG),
we gather all questions with size nf and answer
ag that are associated with g1. For SQs, given a
WEBNLG graph g, we gather all questions of size
one and answer ag which can be computed from a
triple contained in g.

Finally, the target in the TextQG and KGQG
tasks is typically a set of 3 questions drawn from
ÝÑq without replacement. If | ÝÑq | > 3, ÝÑq is padded
to ensure | ÝÑq | % 3 “ 0. If however | ÝÑq |ď 3
— as it happens in the complex KGQG setting —
the sequence of questions in the target is simply ÝÑq .
Each set of ď 3 questions is then instantiated as
a new training instance. This is done in order to
train the QG models to generate multiple questions
for a given context while still staying within the T5
model’s maximum input length.

D.1.2 Deriving and maximising QA data
We derive QA data by creating for each
pX, aX ,ÝÑq q tuple in QTT-DATA as many QA train-
ing instances of the form pX, aX , qq as there are
questions in ÝÑq .

In addition, if a question q with answer at is
answered by a text t (resp. graph g by ag) which
is strictly contained within another larger text t`

(resp. g`) in WEBNLG, we also associate (q, at)
with t` (resp. (q, ag) with g`). Table 3 shows the
number of questions associated with the various
input and nf size.

D.1.3 Creating EntType instances
The target for the EntType auxiliary task is the set
of entities and values (eset) detected in the input
context, and each of the e P eset are paired with
their semantic types.

For text, esett is detected by applying the
BLINK entity linker for text (Wu et al., 2020), and
Duckling on the text t. For entities, the semantic
type information is retrieved from Wikidata (from
the RDF dump dated 29 December 2021). Any type
that contains the strings “MediaWiki”, “Wikimedia”
or “disambiguation” are excluded. For values, we
use the type information predicted by Duckling.

For graph, the set of entities/values (esetg) that
are present in g is used. For values in g, such as
dates, times, monetary sums etc we leverage the
predictions from Duckling (that was applied on
the t that is associated with g). We identify from the
Duckling prediction set the one: with the lowest
edit distance to the value, which is an alphanumeric
string, and has a normalised edit distance < 0.5 (if
there is one such).

Finally, we exclude the following from the train-
ing instances: (i) when an answer semantic type
for an entity cannot be found; and (ii) when the
difference in the number of entity/values sets be-
tween the g and its t is more than 2. The latter is so
as to avoid semantically similar g and t instances
having significantly different targets, which is par-
ticularly important since we train in a multi-task
setting where all tasks are seen simultaneously.

D.1.4 Negative sampling for QA
For the TextQA and KGQA tasks, negative exam-
ples were created so as to allow the model to recog-
nise questions that are unanswerable given the con-
text. These samples are created using a random (i.e.
50-50) assignment to one of these two strategies:

Strategy 1: simple negatives for a given
(X, q, aX ) instance are created by picking another
(Xother, q

1, a1
X ) instance in the QA training set

where X and Xother do not share any common
entities/values between them. If X is a text, we
use the graph that it is paired with in WEBNLG to
check for common entities. A new instance (X, q1,
“unanswerable”) is then created in the training data.
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Strategy 2: hard negatives are created in the
following manner: a mapping M is first created
ahead of time where every entity e that can be
found in the training data is associated with the set
of all the (X, q, aX ) instances where e is mentioned
in X (e P X). If X is a text, we use the graph it is
paired with in WEBNLG when creating M .

For a given (X, q, aX ) instance, another instance,
i.e. (Xother, q

1, aXother
) is randomly chosen using

M and a random e P X . If a single token from the
answer aXother

overlaps with (i) any of the tokens
for any e (an entity or value) found in X or (ii) any
of the tokens of X , then this (Xother, q

1, aXother
)

candidate is rejected. Otherwise, a new instance
(X, q1, “unanswerable”) is created in the train-
ing data using the instance and the process for
(X, q, aX ) terminates. When a candidate instance
is rejected, a new (Xother1 , q1, aXother1 ) is drawn
from M using another e P X . After 10 tries or
when all e P X has been exhausted, a simple nega-
tive is created instead.

D.1.5 Upsampling
We carry out upsampling on two levels when
preparing QTT-DATA (the training data for QTT).

Between modalities for QG subtasks and be-
tween modalities for the same task For QG
this is done between complex TextQG and com-
plex KGQG, simple TextQG and simple KGQG
to ensure that the QG subtasks are balanced. It is
also done between modalities for the QA tasks (e.g.
TextQA and KGQA) to ensure that the tasks are
balanced between modalities. The negative sam-
ples for the QA tasks are also upsampled in the
same way.

For instance, m1 and m2 are the sets of samples
for modality 1 and modality 2 respectively, and
suppose | m1 | > | m2 |.

If | m2 | { | m1 |ě 0.5, we randomly sample
| m1 | - | m2 | from m2 to balance them.

If however | m2 | { | m1 | < 0.5, we upsample
m2 up to at most 1{3¨ | m1 |. This is to ensure that
we do not overrepresent m2 in the data and overfit
on it during training.

Globally for certain tasks This was done for
simple QG as a whole (i.e. after simple TextQG
and simple KGQG have been consolidated as one),
KG-to-Text, Text-to-KG, and EntType tasks. This
is because they are significantly less instantiated
samples of these tasks in the data than the rest. The

number of samples for each of these tasks were
tripled.

D.2 Technical details
QA with FiD We fine-tune with the base version
of the publicly released FiD checkpoint15 that is
trained on the TriviaQA dataset (Joshi et al., 2017).
Using the training data for either QTT (i.e. QTT-
DATA) or DQE (Section 6), we further fine-tune
this checkpoint for 15,000 steps to give four differ-
ent models (FiDD

t trained on DQE’s training data
for text; FiDD

g trained on DQE’s synthetic training
data for graph; FiDQ

t and FiDQ
g trained with QTT-

DATA with the appropriate context X used, i.e. text
and graph respectively). For evaluation, we use the
same set of generated questions (qX ) and reference
answers, i.e. the answer used to condition QG (aX )
produced by each of DQE and QTT; this is the
same set of questions and reference answers used
to compute the results in Table 4

Correlations Following (Rebuffel et al., 2021),
both the Spearman’s ρ and Pearson’s r correlations
in this paper were computed with the SciPy python
library (Virtanen et al., 2020)

Text answer selector model This is a T5-base
model that is fine-tuned on the task of answer selec-
tion on text. The input to the model is a text t, and
the target is a set of answer spans in QTT-DATA

that are in t. The answer spans comprise: (i) the
set of all at in QTT-DATA for a given t, together
with the set of all mention spans obtained from
BLINK/Duckling (which were also used in the
EntType auxiliary tasks). The answer spans are
sorted by the sequence of appearance in t. The
model was trained for 10 epochs with early stop-
ping (patience of 3 epochs) on the development set
loss. A batch size of 32 and a learning rate of 2e-4
(with a linear warmup of 10% of the training steps)
was used.

15https://dl.fbaipublicfiles.com/FiD/
pretrained_models/tqa_reader_base.tar.gz

https://dl.fbaipublicfiles.com/FiD/pretrained_models/tqa_reader_base.tar.gz
https://dl.fbaipublicfiles.com/FiD/pretrained_models/tqa_reader_base.tar.gz
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Modality

Complex
TextQG

Input cqg task [Sp1] text 2 [ANS]
Aarhus University [INP] The
School of Business and Social Sci-
ences at Aarhus University (in Den-
mark) is affiliated to the Euro-
pean University Association (HQ
in Brussels). Denmark’s leader is
Lars Lokke Rasmussen.

Target cqg task [Sp1] text 2 [ANS]
Aarhus University [QST] Lars
Lokke Rasmussen is the leader of
Denmark, which is the home of the
School of Business Studies and So-
cial Sciences at what university?
[QST] The School of Business and
Social Sciences at what university
is affiliated to the European Univer-
sity Association? [QST] What is
the name of the university in Den-
mark that is home to the School of
Business and Social Sciences?

Complex
KGQG

Input cqg task [Sp1] rdf 3 [ANS] 28.0
( metres ) [INP] entity [ 3Arena ],
height [ 28.0 ( metres ) ], located
in the administrative territorial en-
tity [ North Wall Quay ], building
type [ Concert and events venue ]
[TEND]

Target cqg task [Sp1] rdf 3 [ANS] 28.0 (
metres ) [QST] What is the height
of the concert and events venue in
North Wall Quay?

Table 13: QTT Examples of inputs and targets for com-
plex TextQG and KGQG training instances. [ANS],
[INP], [QST], [Sp1], and [TEND] are special tokens we
use to demarcate parts of the input/target.

Modality

Simple
TextQG

Input sqg task [Sp1] text 1 [ANS] 1985
[INP] 200 Public Square, Cleve-
land, with 45 floors covering
111484 square metres, was com-
pleted in 1985

Target sqg task [Sp1] text 1 [ANS] 1985
[QST] In what year was 200 Pub-
lic Square completed? [QST] How
many years was 200 Public Square
completed? [QST] Which year
was 200 Public Square completed?

Simple
KGQG

Input sqg task [Sp1] rdf 1 [ANS] Abra-
ham A. Ribicoff [INP] entity [
Abraham A. Ribicoff ], spouse [
Ruth Ribicoff ][TEND]

Target sqg task [Sp1] rdf 1[ANS] Abra-
ham A. Ribicoff [QST] What was
Ruth Ribicoff’s husband’s name?
[QST] Who was Ruth Ribicoff’s
husband? [QST] What is the name
of the man Ruth Ribicoff married
to?

Table 14: QTT Examples of inputs and targets for sim-
ple TextQG and KGQG training instances. [ANS],
[INP], [QST], [Sp1], and [TEND] are special tokens
we use to demarcate parts of the input/target.
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Modality

Text

Input textqa task [Sp1] Alaa Ab-
dul Zahra has played for AL
Kharaitiyat SC and for what
sports club of the Qatar Stars
League? [INP] Alaa Abdul Zahra
has played for AL Kharaitiyat
SC and for Al-Khor Sports Club
of the Qatar Stars League. Al
Kharaitiyat SC play at Al Khor
and are managed by Amar Osim.

Target textqa task [Sp1] Al-Khor Sports
Club

Input textqa task [Sp1] What is the name
of the monument that was con-
structed in 2000 in Adams County,
Pennsylvania? [INP] In Solde-
vanahalli, Acharya Dr. Sarvapalli
Radhakrishnan Road, Hessarghatta
Main Road, Bangalore – 560090 is
the location of the Acharya Insti-
tute of Technology in India which
is affiliated with the Visvesvaraya
Technological University. The
motto of the Institute which was es-
tablished in the year 2000 is "Nur-
turing Excellence" and there are
700 postgraduate students.

Target textqa task [Sp1] unanswerable

Graph Input kbqa task [Sp1] In what city in
Switzerland is the accademie di
architetura di mendresio located?
[INP] entity [ Accademia di Ar-
chitettura di Mendrisio ], country [
Switzerland ], number of students
[ 600 ], established [ 1996 ], city
[ Mendrisio ], location [ Ticino ]
[TEND] , entity [ Switzerland ],
leader [ Johann Schneider - Am-
mann ] [TEND]

Target kbqa task [Sp1] Mendrisio
Input kbqa task [Sp1] In what year was

the Ataturk Monument opened?
[INP] entity [ Turkey ], leader ti-
tle [ President of Turkey ], leader
[ Ahmet Davutoglu ], largest city [
Istanbul ], currency [ Turkish lira
] [TEND] , entity [ Ataturk Monu-
ment ( Izmir ) ], designer [ Pietro
Canonica ], material [ Bronze ], lo-
cation [ Turkey ] [TEND]

Target kbqa task [Sp1] unanswerable

Table 15: QTT Examples of inputs and targets for Tex-
tQA and KGQA training instances. [INP], [Sp1], and
[TEND] are special tokens we use to demarcate parts of
the input/target.

Modality

KG-
to-
Text

Input data2text task [Sp1] entity [ Al-
lama Iqbal International Airport ],
operating organisation [ Pakistan
Civil Aviation Authority ], location
[ Punjab, Pakistan ], city served [
Lahore ][TEND] , entity [ Pakistan
], leader [ Mamnoon Hussain ]
[TEND] , entity [ Punjab, Pakistan
], country [ Pakistan ] [TEND]

Target data2text task [Sp1] Allama Iqbal
International airport is located in
Punjab, Pakistan and is operated
by The Pakistan Civil Aviation Au-
thority. Lahore city is served by
the airport. Mamnoon Hussain is
the leader of Pakistan.

Text-
to-
KG

Input text2data task [Sp1] A Long Long
Way was written in Ireland and
published by Penguin Random
House (parent company Viking
Press).

Target text2data task [Sp1] entity [ A
Long Long Way ], country [ Ire-
land ], publisher [ Viking Press ]
[TEND] , entity [ Viking Press ],
parent company [ Penguin Random
House ] [TEND]

Table 16: QTT Examples of inputs and targets for KG-
to-Text and Text-to-KG training instances. [INP], [Sp1],
and [TEND] are special tokens we use to demarcate
parts of the input/target.

Modality

EntTypet
Input entlink task [Sp1] Abner currently

plays football for Real Madrid
Castilla.

Target entlink task [Sp1] [INP] Abner
[Sp3] Homo sapiens; person; natu-
ral person; omnivore [INP] Real
Madrid Castilla [Sp3] football
team; sports team

EntTypeg
Input entlink task [Sp1] entity [ Buzz

Aldrin ], place of birth [ Glen
Ridge ], country of citizenship [
United States of America ], status
[ Retired ] [TEND]

Target entlink task [Sp1] [INP] Buzz
Aldrin [Sp3] Homo sapiens; per-
son; natural person; omnivore
[INP] Glen Ridge [Sp3] borough
in the United States; municipality
of New Jersey [INP] United States
of America [Sp3] state; country;
political territorial entity; republic;
federation; historical country; state
with limited recognition; democ-
racy; nation

Table 17: QTT Examples of inputs and targets for Ent-
Type (on text and on graph) training instances. [INP],
[Sp1], [Sp3], and [TEND] are special tokens we use to
demarcate parts of the input/target.


