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Abstract

In recent years, the burgeoning interest in diffu-
sion models has led to significant advances in
image and speech generation. Nevertheless, the
direct synthesis of music waveforms from unre-
stricted textual prompts remains a relatively un-
derexplored domain. In response to this lacuna,
this paper introduces a pioneering contribution
in the form of a text-to-waveform music gen-
eration model, underpinned by the utilization
of diffusion models. Our methodology hinges
on the innovative incorporation of free-form
textual prompts as conditional factors to guide
the waveform generation process within the dif-
fusion model framework. Addressing the chal-
lenge of limited text-music parallel data, we
undertake the creation of a dataset by harness-
ing web resources, a task facilitated by weak
supervision techniques. Furthermore, a rigor-
ous empirical inquiry is undertaken to contrast
the efficacy of two distinct prompt formats for
text conditioning, namely, music tags and un-
constrained textual descriptions. The outcomes
of this comparative analysis affirm the superior
performance of our proposed model in terms
of enhancing text-music relevance. Finally, our
work culminates in a demonstrative exhibition
of the excellent capabilities of our model in
text-to-music generation. We further demon-
strate that our generated music in the waveform
domain outperforms previous works by a large
margin in terms of diversity, quality, and text-
music relevance. '

1 Introduction

Music, as a sophisticated and profound human
art form, possesses a unique capacity to evoke
emotions, alter moods, and tell compelling stories
through its intricate interplay of harmony, melody,
and rhythm. In recent years, the realm of music
generation has garnered significant attention and

'Generated cases are available at https://reurl.cc/
94W4y0
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interest, coinciding with the rapid advancements in
deep learning techniques.

Within this context, some research endeavors,
exemplified by works such as (Wu and Sun, 2022),
have concentrated on the domain of symbolic mu-
sic generation. This approach entails the acquisi-
tion of knowledge to predict sequences of musi-
cal composition, encompassing elements such as
notes, pitch, and dynamic attributes. However, it
is noteworthy that the resultant symbolic music
lacks performance attributes, necessitating subse-
quent post-processing to synthesize the auditory
experience of the musical piece. Conversely, an
alternative line of inquiry, exemplified by works
such as (Pasini and Schliiter, 2022), has been dedi-
cated to the generation of audio or waveform-based
music. Notably, this approach obviates the need for
additional synthesis steps, as it directly produces
audio signals. Nevertheless, it is important to rec-
ognize that generating audio signals in this manner
often presents inherent challenges in controlling
and fine-tuning performance attributes to achieve
the desired level of quality and satisfaction.

Besides works on unconditional music genera-
tion, there have been explorations about conditional
music generation (Pasini and Schliiter, 2022; Zhuo
et al., 2022), which aims to meet the application
requirements in scenarios such as automatic video
soundtrack creation and music creation with spe-
cific genres or features. Notably, generative models
can leverage information from various modalities,
such as text and image, to create relevant outputs
for a conditional generation.

In addition to unconditional music generation,
there is a growing interest in conditional music
generation (Pasini and Schliiter, 2022; Zhuo et al.,
2022). This field caters to specific application
needs, like creating video soundtracks or gener-
ating music with specific genres or features. Gener-
ative models can use various data modalities, such
as text and images, to create relevant outputs in con-
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ditional music generation. Nonetheless, the chal-
lenge of directly generating musical waveforms
from unrestricted textual input remains a relatively
underexplored frontier. While research efforts have
delved into text-conditioned music generation, ex-
emplified by works such as (Wu and Sun, 2022),
BUTTER (Zhang et al., 2020), and Mubert?, it is
noteworthy that these approaches do not possess
the capability to directly produce musical audio
based on unstructured free-form text prompts.

To address prior limitations, we introduce
ERNIE-Music, a pioneering effort in free-form text-
to-music generation using diffusion models in the
waveform domain. To overcome the shortage of
parallel text-to-music data, we have undertaken the
collection of music waveforms along with their cor-
responding top-voted comments from the internet.
We employ conditional diffusion models to gener-
ate musical waveforms and investigate the impact
of text format on enhancing text-music relevance.

To conclude, the contributions of this paper are:

* We introduce a music generation model that
leverages free-form text as a conditioning fac-
tor, utilizing the diffusion model to generate
waveform-based music.

¢ We curate a dataset of free-form text-music
parallel data from the internet.

* We investigate and compare the efficacy of
two text formats for conditioning the genera-
tive model, demonstrating that the use of free-
form text significantly enhances text-music
relevance.

Our results highlight the model’s ability to
produce diverse, high-quality music with
markedly improved text-music relevance, sur-
passing existing methods by a large margin.

2 Related Work

Controllable Music Generation Controlled mu-
sic generation faces the persistent challenge of ef-
fectively imposing constraints on musical output.
Previous approaches have employed various tech-
niques to address this issue. For instance, VQ-
CPC (Hadjeres and Crestel, 2020) focuses on learn-
ing local music features devoid of temporal infor-
mation. Meanwhile, (Pasini and Schliiter, 2022)
leverages tempo information as a condition for

Zhttps://github.com/MubertAI/Mubert-Text-to-Music
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generating music in the “techno” genre. BUT-
TER (Zhang et al., 2020) adopts a natural lan-
guage representation encompassing attributes like
music key, meter, and style to exercise control
over music generation. Furthermore, (Wu and Sun,
2022) extends this exploration by investigating the
impact of different pre-trained models in text-to-
music generation. Besides, retrieval-based meth-
ods can be adopted to generate music by combin-
ing human-created music pieces. Mubert firstly
employs Sentence-BERT (Reimers and Gurevych,
2019) to encode input natural language and mu-
sic tags, secondly retrieves relevant tags based on
the distance among the representation, finally com-
bines relevant sounds (all crafted by musicians and
sound designers) to obtain the generated music.

Diffusion Models Diffusion models (Sohl-
Dickstein et al., 2015; Ho et al., 2020) are latent
variable models rooted in non-equilibrium thermo-
dynamics. They operate by gradually disassem-
bling the structure of the original data distribution
through a progressive forward diffusion process
and subsequently acquire the means to reconstruct
the original data via a finite iterative denoising
process. In recent years, diffusion models have
gained significant traction across diverse domains,
including image generation (Nichol et al., 2022;
Dhariwal and Nichol, 2021; Ramesh et al., 2022)
and audio generation (Chen et al., 2021; Kreuk
et al., 2022). Our work is closely aligned with
the realm of diffusion-based approaches in text-to-
audio generation (Chen et al., 2021; Kreuk et al.,
2022). Some concurrent works (Huang et al., 2023;
Schneider et al., 2023; Agostinelli et al., 2023) use
diffusion models to tackle the text-to-music gener-
ation, which mainly focus on given specific music
genres or instruments. It is important to note that
while these prior works primarily focus on speech
generation or some restricted text descriptions, our
research extends the application of diffusion mod-
els to the synthesis of music waveforms based on
arbitrary textual prompts, representing a distinct
task within the audio generation domain.

3 Method

This section commences with an overview of dif-
fusion models, providing the overall context for
our subsequent discussion. Subsequently, we delve
into the specifics of our text-conditional diffusion
model, elucidating its architecture and the objec-
tives underpinning its training.
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Figure 1: The overall architecture of text-to-music generation training. The text is input to the text encoder to obtain
the sequence representation S, then .S and the sampled music waveform (noise added) z; are input to the UNet to
obtain the estimated volocity v, finally we calculate the L2 loss between ¢, and the real volocity v;. For the input

text, the original Chinese is “S0EHERAVTZE, iieH < IRZTHO MR O H B « O Z .

3.1 Unconditional Diffusion Model

Diffusion models (Sohl-Dickstein et al., 2015; Ho
et al., 2020) are composed of two essential com-
ponents: a forward process, where noise is pro-
gressively incorporated into a data sample, and a
reverse process, which subsequently removes this
noise through multiple iterations to produce a sam-
ple that aligns with the authentic data distribution.
Specifically, our approach is founded upon the dif-
fusion model formulated within a continuous-time
framework (Kingma et al., 2021; Tzen and Ragin-
sky, 2019; Chen et al., 2021; Song et al., 2021;
Salimans and Ho, 2022).

In the context of diffusion models, we begin
with a data sample denoted as = drawn from the
distribution p(x). These models make use of la-
tent variables z;, where the parameter ¢ spans the
continuous interval from 0 to 1. The log signal-to-
noise ratio, represented as )\, is precisely defined
as \; = log (j—g) , where «; and oy correspond to
the component; of the noise schedule.

During the forward process, often referred to
as the diffusion process, we progressively incorpo-
rate Gaussian noise into the sample, conforming
to a Markov chain, characterized by the following
progression:

(D
2

q(z|z) = N (245w, o71)
q(zv|zt) = N (zp; (o) 2, Ut2’|t1)

where t,#' € [0,1] and t < ¢, and o>
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In the reverse process, a function approximation
with parameters 6 (denoted as Zg(z¢, A\, t) ~ x)
estimates the denoising procedure:

po(zilze) = N (215 figge (20, %)), 67,1) (3)

where fiyjy (zv, 2, ') = eN A (ag o) 2y + (1~
M M)y,

Initiating from z; ~ N (0, I), the reverse process
involves the sequential application of the denois-
ing procedure to the latent variables z;, ultimately
yielding zg 2. To train the denoising model
Zg(zt, A, t), we adopt the weighted mean squared
error loss as our optimization objective:

L = Ey o 1],e~n (0.0 WA 120 (22, At, t) — 2|[3]

“)
where w(\;) denotes the weighting function and
e ~ N(0,1) denotes the noise.

3.2 Conditional Diffusion Model

Numerous studies have effectively employed gen-
erative models within conditional settings (Mirza
and Osindero, 2014; Sohn et al., 2015; Rombach
et al., 2022). In the case of conditional diffusion
models, the focus shifts from approximating the
distribution p(z) to p(z|y), achieved by modeling
the denoising process as &g (2, \¢, t,y), where y
represents the conditioning variable. This condi-
tioning variable y can assume various modalities,
encompassing image, text, and audio.

In the text-to-music generation scenario, y takes
the form of a textual prompt. This textual input



serves as a guiding element for the model, steering
it toward the generation of music that corresponds
to the provided text. In subsequent sections, we
delve into the intricacies of modeling the condi-
tional diffusion model in detail.

3.2.1 Model Architecture

For text-to-music generation, our diffusion process
conditions on textual input denoted as y. As illus-
trated in Figure 1, our comprehensive model ar-
chitecture comprises a conditional music diffusion
model responsible for modeling the anticipated ve-
locity, represented as g (2, t, y) (Salimans and Ho,
2022). Additionally, we incorporate a text encoder
denoted as E(-), which transforms text tokens with
a length of n into a sequence of vector representa-
tions [so; S], each possessing a dimensionality of
dg. Here, S = [s1, ..., s,], with 5; € R9E, and s
serving as the classification representation of the
input text.

The inputs to the music diffusion model encom-
pass the latent variable z; € R%*%  the timestep
t (which is subsequently transformed into the em-
bedding e; € R%*9s), and the representation of
the text sequence [so; S] € R("D*4e_ Here, d,
corresponds to the number of channels, d signifies
the sample size, and d; denotes the feature size
of the timestep embedding. The output of this ar-
chitecture is represented by the estimated velocity,
denoted as 0, € R%*ds

Inspired by previous works on latent diffusion
models (Nichol et al., 2022; Rombach et al., 2022;
Dhariwal and Nichol, 2021), we have adopted the
architecture of UNet (Ronneberger et al., 2015)
whose key components are stacked convolutional
blocks and self-attention blocks (Vaswani et al.,
2017). Generation models can estimate the condi-
tional distribution, notably p(x|y), and there exist
various techniques to integrate conditional informa-
tion y into generative models (Sohn et al., 2015).

Our diffusion network is designed to predict the
latent velocity, denoted as 7y, at randomly sampled
timestep ¢, leveraging the noised latent z; and a
textual input [so; S] as conditioning elements. To
integrate the conditioning information into the dif-
fusion process, we employ a fusion operation, de-
noted as Fuse(, -), on the timestep embedding e;
and the text classification representation sg. This
operation yields a text-aware timestep embedding,
't = Fuse(es, s9) € R% > Subsequently, we
concatenate this modified embedding with z; to
derive 2, = (2 ® €'t) € R +de)xds Tt s worth

&9

noting that, for simplicity, the operations involving
the timestep embedding have been omitted from
Figure 1. In Section 4.6, we delve into a com-
parative analysis of different implementations of
the fusion operation, Fuse(-, ), to evaluate their
performance.

Furthermore, we incorporate the conditional rep-
resentation into the self-attention blocks (Vaswani
et al., 2017), which are responsible for captur-
ing global information within the music signals.
Within the self-attention blocks, taking into ac-
count the intermediate representation, where z; €
R(d+de)xds js denoted as ¢(z)) € R%*9s and
S € R™* 45 the output is calculated in the follow-
ing manner:

Attention(Q, K, V) = softmax(%)‘/ 5)
head; = Attention(Q;, K;, V;) (6)

Qi = (=) - W° @

K; = Concat(¢(z)) - Wi, §- W E) (8)

Vi = Concat(é(z]) - WY, S-W2V)  (9)

CSA(é(z}), S) = Concat(heady, ..., head, )W

(10)
where VVZQ € Rdpxdq VVZ-K € Roxdi_ Wiv €
Rdszdv, WiSK c RdEXdk’ WiSV c RdEde’
WO € R"v*dy are parameter matrices, and h de-
notes the number of heads, and CSA(-, -) denotes
the conditional self-attention operation.

3.2.2 Training

Following (Salimans and Ho, 2022), we set the
weighting function in equation 4 as the “SNR+1"
weighting for a more stable denoising process.

Specifically, for the noise schedule o, and oy,
we adopt the cosine schedule (Nichol and Dhari-
wal, 2021) oy = cos(7t/2), oy = sin(wt/2), and
the variance-preserving diffusion process satisfies
a? + o7 = 1. We denote the function approxima-
tion as vp(2¢, t,y), where y denotes the condition.
The prediction target of 0g(z¢, ¢, y) is velocity vy =
ae — opx, which gives & = oy 2y — 0v0p (2, t,Y).
Finally, our training objective is:

Lo = (1+ai/of)|x — 13

= [lve — 013

(11)
(12)
Algorithm 1 (in Appendix) displays the com-

plete training process with the diffusion objective
proposed by (Salimans and Ho, 2022).



Train Test
Num. of Data Samples 3890 204
Avg. Text (Tokens) Length 63.23 64.45
Music Sample Rate 16000
Music Sample Size 327680
Music Duration 20 seconds

Table 1: The statistics of our collected dataset.

4 Experiments

4.1 Implementation Details

Following previous works (Rombach et al., 2022;
Nichol et al., 2022; Ho et al., 2020), we use
UNet (Ronneberger et al., 2015) architecture for
the diffusion model. The UNet model uses 14 lay-
ers of stacked convolutional blocks and attention
blocks for the downsample and upsample module,
with skipped connections between layers with the
same hidden size. It uses the input/output chan-
nels of 512 for the first ten layers and two 256s
and 128s afterward. We employ the attention at
16x16, 8x8, and 4x4 resolutions. The sample size
and sample rate of the waveform are 327,680 and
16,000, and the channel size is 2. The timestep
embedding layer contains trainable parameters of
8x1 shape. It concatenates the noise schedule to
obtain the embedding, which is then expanded to
the sample size to obtain ¢; € R16%327:680 For the
text encoder E(-), we use ERNIE-M (Ouyang et al.,
2021) to encode multi-lingual text inputs such as
Chinese, English, Korean and Japanese, etc.

4.2 Dataset

Users on music platforms comments on music they
like and they upvotes the comments they favor. We
observe that popular comments with high upvotes
is of high quality and contain useful music-related
information such as musical instruments, genres,
and human moods. Thus we collect a large set of
text-music pairs data as training set.

The statistics of our collected Web Music with
Text dataset and examples are listed in Table 1
and 7. Note that the time duration of our collected
music samples are usually 2 to 3 minutes, thus the
actual number of training samples may be consid-
ered as 6 to 9 times larger than the music samples
because of randomly sampling 20 seconds during
the training process.
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4.3 Evaluation Metric

For the text-to-music generation task, we evaluate
performance in two aspects: text-music relevance
and music quality. Because there is currently a lack
of well-recognized and authoritative objective eval-
uation methods for text-music relevance, and the
objective metrics for evaluation music quality such
as Frechet Audio Distance (FAD) only calculate
the closeness between the generated music and the
real music instead of the actual quality (Zhuo et al.,
2022), we employ human evaluation methods. We
use the compared methods or models to generate
music based on texts from the test set, and man-
ually score the generated music and calculate the
mean score by averaging over results from different
evaluators. We hire 10 people (who are of average
listener annotator level among human) to perform
human evaluation, scoring the music generated by
each compared model, and then average the scores
over the 10 people for each generated music. The
identification of models corresponding to the gen-
erated music is invisible to the evaluators. Finally,
we average the scores of the same model on the
entire test samples to obtain the final evaluation
results of the models.

4.4 Compared Methods

The methods for comparison are Text-to-Symbolic
Music (denoted as TSM) (Wu and Sun, 2022), Mu-
bert and Musika (Pasini and Schliiter, 2022). The
generated music from Mubert is actually created by
human musicians, and TSM only generates music
score, which needs to be synthesized into music au-
dio by additional tools, so the music quality among
Mubert, TSM, and our model is not comparable.
Thus, we only compare the text-music relevance
between them and our model. To synthesize the
music audio based on the symbolic music score
generated by TSM, we first adopt abcMIDI? to con-
vert the abc file output by TSM to MIDI file and
then use FluidSynth* to synthesize the final music
audio. For music quality, we compare our model’s
performance with Musika, a recent famous work
that also directly generates waveform music.

4.5 Results

Table 2 and 3 show the evaluation results of text-
music relevance and music quality. For text-music
relevance evaluation, we use a ranking score of 3

*https://github.com/sshlien/abcmidi
*https://github.com/FluidSynth/fluidsynth



Method Score? | Top Bottom
Rate 1 Rate|

TSM (Wu and Sun, | 2.05 12% 27%

2022)

Mubert 1.85 37% 32%

our model 243 55% 12%

Table 2: Comparison of text-music relevance.

Method Scoret | Top Bottom
Ratet Rate]

Musika (Pasini and | 3.03 5% 13%

Schliiter, 2022)

our model 3.63 15% 2%

Table 3: Comparison of music quality.

(best), 2, 1 to denote which of the three models
has the best relevance given a piece of text. For
music quality, we use a five-level score of 5 (best),
4,3, 2, 1, which indicates to what extent the evalua-
tor prefers the melody and coherence of the music.
The top rate means the probability that the mu-
sic obtains the highest score, and the bottom rate
means the probability that the music obtains the
lowest score. The results indicate that our model
can generate music with better quality and text-
music relevance which outperforms related works
by a large margin.

4.6 Analysis

Diversity The music generated by our model has
a high level of diversity. For melody, our model
can generate music with a softer and more soothing
rhythm or more passionate and fast-paced music.
For emotional expression, some music sound sad,
while some are very festive and cheerful. For musi-
cal instruments, it can generate music composed by
various instruments, including piano, violin, erhu,
and guitar. We select two examples with apparent
differences and analyze them based on the visual-
ization results. As shown in the waveform from
Figure 2, the fast-paced guitar piece has denser
sound waves, while the piano pieces have a slower,
more soothing rhythm. Moreover, the spectrogram
shows that the guitar piece holds dense high and
low-frequency sounds, while the piano piece is
mainly in the bass part.

Comparison of Different Text Condition Fusing
Operations As introduced in Section 3.2.1, we
compare two implementations of the fusing opera-
tion Fuse(+, -), namely concatenation and element-
wise summation. To evaluate the effect, we com-
pare the performance on the test set as the training
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progresses. For every 5 training steps, we adopt
the model checkpoint to generate pieces of music
based on the texts in the test set and calculate the
Mean Squared Error (MSE) of generated music
and gold music from the test set. The visualization
results shown in Figure 3 indicate no apparent dif-
ference between the two fusing operations, thus we
adopt the element-wise summation for simplicity.

Comparison of Different Formats of Input Text
Our proposed method leverages free-form text to
generate music. However, considering that the
more widely used methods in other works gener-
ate music based on a set of pre-defined music tags
representing the specific music’s feature (Zhang
et al., 2020), we compare these two methods to
obtain better text-music relevance of generated mu-
sic: (1) End-to-End Text Conditioning. Suppose
the training data consists of multiple text and mu-
sic pairs < Y, X >. The texts in Y are free-form,
describing some scenario, emotion, or just a few
words about music features. We adopt the straight-
forward way to process the texts: to input them into
the text encoder E(-) to obtain the text represen-
tations. It relies on the natural high correlation of
the < Y, X >, and the conditional diffusion model
dynamically learns to capture the critical informa-
tion from the text in the training process. (2) Music
Tag Conditioning. Using short and precise music
tags as the text condition may make it easier for the
model to learn the mapping between text and cor-
responding music. We analyze the text data from
the training set and distill critical information from
the texts to obtain music tags. Examples as shown
in Table 5. The key features of the music in a piece
of long text are limited and can be extracted as mu-
sic tags. We randomly select 50 samples from the
test set for manual evaluation. Table 4 shows the
evaluation results of the two conditioning methods,
which indicates that our proposed free-form text-
based music generation method obtains better text-
music relevance than using pre-defined music tags.
The main reason might be that the human-made
music tag selection rules introduce much noise and
result in the loss of some useful information from
the original text. Thus it is better to use the End-
to-End Text Conditioning method for the model to
learn to capture useful information dynamically.

5 Conclusion

In this paper, we present ERNIE-Music, a novel
music generation model that directly creates music
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Figure 3: The MSE results on the test set for two imple-
mentations of the fusing operation.

Method Scoret | Top Bottom
Ratef | Ratel

Music Tag Conditioning 1.7 22% 52%

End-to-End Text Conditioning | 2.3 40 % 10%

Table 4: Comparison of text-music relevance between
two conditioning text formats.

from free-form text. To overcome the scarcity of
text-music parallel data, we collect music paired
with descriptive comment texts from the internet.
We investigate the impact of text format on text-
music relevance by comparing two text condition-
ing methods. Our results showcase ERNIE-Music’s
ability to generate diverse, coherent music, outper-
forming existing approaches in music quality and
text-music relevance.
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Limitations

While our model successfully generates coherent
and pleasant music, it is important to acknowledge
several limitations that can be addressed in future
research. The primary limitation is the fixed and
relatively short length of the generated music. Due
to computational resource constraints, we were un-
able to train the model on longer sequences. Al-
tering the length during the inference phase can
negatively impact performance, which is an area
for further investigation.

Another limitation is the relatively slow speed
of the generation process. The iterative nature of
the generation procedure contributes to this slower
speed. Exploring techniques to optimize the gener-
ation process and reduce computational overhead
could enhance the efficiency of music generation
in the future.

Additionally, our current model is designed to
generate instrumental music and does not incor-
porate human voice. This limitation stems from
the training data used, which primarily consists of
instrumental music. Expanding the training dataset
to include vocal music could enable the genera-
tion of music with human voice, offering a more
comprehensive music generation system.
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A Dataset

Examples of our collected dataset can be seen in
Table 6.

B Implemention Details

We train the model for 580,000 steps using Adam
optimizers with a learning rate of 4e-5 and a train-
ing batch size of 96. We save exponential moving
averaged model weights with a decay rate of 0.995,
except for the first 25 epochs.

C Music Tags Extraction

To obtain the music tags, we use the TF-IDF model
to mine terms with higher frequency and impor-
tance from the dataset. Given a set of text Y, the
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Table 5: Examples of free-form texts and corresponding
music tags.

Text Tags
LTt S LR |
BLEE, RAHEWR siano

Listening to the world famous piano mu-
sic is simply a kind of physical and men-
tal enjoyment, I like it very much

PISERRZ S, R R | W, B,

LA EEAE - O R mx,
The strings of the piano melody, gently | piano, gentle,

and tenderly express the reverie and love | tender, love

in the heart

RESWESWGA LA, ERKF | W, MRS

bl

I 85 H IR R SR SR, R, MK

The ensemble of violin and piano reveals | piano, violin,

a touch of gentleness in melancholy gentle, melan-
cholic

Table 6: Examples of the adopted and abandoned tags

Tags

Adopted HE, £, WE, MR
=, M, R, #=E, B
5, e, %
hope, life, piano, violin, lonely,
gentle, happiness, sad, game,
movie

Abandoned BR, BEW, Ea, A,
U, hEfE, Jkox, EFFF,
W%, MiE
music, like, feeling, world,
good-listening, melody, forever,
note, play, believe

basic assumption is that the texts contain various
words or phrases related to music features such as
instruments and genres. We aim to mine a tag set
T from Y. We assume two rules to define a good
music tag representing typical music features: 1) A
certain amount of different music can be described
with the tag for the model to learn the “text(tag)-
to-music” mapping without loss of diversity; 2) A
tag is worthless if it appears in the descriptions of
too many pieces of music. For example, almost
every piece of music can be described as “good
listening"; thus, it should not be adopted as a music
tag. Based on such rules, we leverage the TF-IDF
model to mine the music tags. Because the lan-
guage of our dataset is Chinese, we use jieba® to
cut the sentences into terms. For a term w, we make
statistics on the total dataset to obtain the TF tf(w)
and the IDF idf(w), then the term score is obtained
as score(w) = tf(w)-idf(w). We reversely sort all

Shttps://github.com/fxsjy/jieba
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Title Musician Text

ALY PR AL | RRRETTIZE, A LR R RS B AR - ORI, 2RO AR AR Y

Gift of the | I s TAEREATIEZSK, JHREAE, HOAD -

Wind Yukie The brisk rhythm is like the clothes of urban beauties drifting in the wind. A relaxed
Nishimura mood, a moment of pleasure, dispels the pressure and tension of work. Immerse yourself,

your own heart, in it.

NIAKZBL | ZEERE RUT Dulkz i) BT FAE RS, BITRERE. BHTRARERMLG, &

Joy of the | Zhihui Li DR—poiE, ENE— RS .

Kowloon Listen to “The Joy of the Kowloon Water" to remove all the troubles, all the heaviness,

Water and all the sorrows and restore the purity of the soul and the simplicity of life.

H= & Z % | WERETE, WARFIEZERESRDT, WRR AR AT R

Nuvole BhFE ANEHE R ESEIE -

Bianche Ludovico The piano is more serene, but the cello is more melodious and deep. Perhaps different
Einaudi playing methods bring different musical feelings.

Table 7: Examples of our Web Music with Text dataset.
Algorithm 1 Training
repeat
z ~ p(zly)

t ~ Uniform([0, 1])

e ~N(0,1)

Vt < Q€ — O
Take gradient step on

Vollve — tg(cuzx + or€, t, y)

until converged

I?

the terms based on score(w) and manually select
100 best music tags to obtain the ultimate music tag
set T', which can represent the features of music
such as instruments, music genres, and expressed
emotions. Table 6 displays examples of the adopted
and abandoned terms.
We use the mined music tags to condition the diffu-
sion process. For a piece of music from the training
data, we concatenate its corresponding music tags
with a separator symbol ““, ” to obtain a music
tag sequence as the conditioning text to train the

model.
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