Pronunciation-Aware Syllable Tokenizer for Nepali Automatic
Speech Recognition System

Rupak Raj Ghimire!, Bal Krishna Bal!, Balaram Prasain? and Prakash Poudyall

! Information and Language Processing Research Lab (ILPRL)
Department of Computer Science and Engineering
Kathmandu University, Nepal
2 Central Department of Linguistics
Tribhuvan University, Nepal
rughimire@gmail.com, bal@ku.edu.np, balaram.prasain@cdl.tu.edu.np, prakash@ku.edu.np

Abstract

The Automatic Speech Recognition (ASR)
has come up with significant advancements
over the course of several decades, tran-
sitioning from a rule-based method to a
statistical approach, and ultimately to the
use of end-to-end (E2E) frameworks. This
phenomenon continues with the progres-
sion of machine learning and deep learn-
ing methodologies. The E2E approach for
ASR has demonstrated predominant suc-
cess in the case of resourceful languages
with larger annotated corpus. However,
the accuracy is quite low for low-resourced
languages such as Nepali. In this regard,
language-specific tools such as tokenizers
seem to play a vital role in improving the
performance of the E2E model for low-
resourced languages like Nepali.

In this paper, we propose a pronunciation-
aware syllable tokenizer for the Nepali lan-
guage which improves the results of the
E2E model. Our experiment confirm that
the introduction of the proposed tokenizer
yields better performance with the Charac-
ter Error Rate (CER) 8.09% compared to
other language-independent tokenizers.

Keywords: Syllable Tokenizer, Nepali
ASR, GRU, RNN, E2E

1 Introduction

Automatic Speech Recognition (ASR) systems
have been developed using acoustic, language,
and lexical models, employing techniques such
as as Hidden Markov Mode (HMM), Gaussian
Mixture Mode (GMM), statistical, and prob-
abilistic models traditionally. In deep learn-
ing based models, Recurrent Neural Network
(RNN) is a popular choice for ASR to capture
temporal dependencies of speech data. One of
the major advantages of RNNs for ASR is that

they can be trained end-to-end (E2E), mean-
ing that the entire system is trained from raw
audio input to generate text as output with-
out the need of hand-engineered features. In
End-to-End (E2E) ASR, the neural network
directly learns to map the input audio signal to
the corresponding text sequence without the
need for intermediate representations. This
simplifies the ASR development process by
eliminating the need for hand-crafted features
and complex models including Acoustic Model,
Language Model, Lexicon etc. The Gated Re-
current Uni (GRU)(Cho et al., 2014) and Long
Short-Term Memory (LSTM)(Hochreiter and
Schmidhuber, 1997) are the variations of RNN.
As per Chung et al. (2014) GRU is more ef-
fective in terms of computation whereas the
LSTM is better suited for larger datasets.
The transcribed text is considered as a la-
bel for supervised learning and needs accurate
alignment with speech data. In the context of
RNN-based classification, the transcribed text
is required to convert into the tokens and them
into numerical labels. The tokens are smaller
constituent segments of the text. However, the
substantial disparity in abstraction levels be-
tween the audio signal provided as input and
the linguistic tokens generated as output poses
a significant challenge for a E2E model to ac-
quire the necessary representations. The com-
mon way to tokenize is via the use of language-
independent tokenizer such as character-based,
Byte Pair Encodin (BPE) tokenizers. The
use of the various tokenization techniques in
ASR are explored by researchers Higuchi et al.
(2022) and Singh et al. (2021). The charac-
ter tokenizer is the simplest tokenizer. The
BPE (Gage, 1994) segments the word into the
subwords based on the co-occurrence of the
characters and used as tokenization(Sennrich
et al., 2016) scheme. SentencePiece (Kudo

and Richardson, 2018) is another language-
independent subword tokenizer that can be
trained on the raw sentences.

Beside the language independent tokenizers,
a pronunciation - aware syllable tokenizer is
used to divide words into smaller units (pho-
netic units) called syllables. This type of to-
kenizer is capable of breaking the text into
the language-specific phonetic unit which en-
sures the appropriate phonetic alignment of
token with speech signal. This tokenizer can
improve the accuracy of ASR and Text-to-
Speech (TTS) systems by more accurately
aligning the segmentation with natural speech
patterns and making it easy to classify them
using E2E models.

The rest of the paper is organized as follows
the related works and the dataset used are ex-
plained in section 2 and 3 respectively. Section
4 explains the working of the pronunciation-
aware syllable tokenizer and ASR model. Sec-
tion 5 presents the conducted experiments and
their results. Finally, the paper concludes
with section 6 where summary of findings, fu-
ture plans, and potential extensions to the
work are explained.

2 Related works

There are various ways of tokenizing the tran-
scribed text. The language independent tok-
enizers such as character tokenizer, word, and
subword tokenizers (BPE, Unigram) are com-
monly used to reduce the complexity of the
tokenization. The character based tokenizer
is simplest form of the tokenization scheme on
Natural Language Processing (NLP) task.
The use of different text tokenizers for
ASR has been studied for various languages.
Higuchi et al. (2022) has experimented with
subword unit-based acoustically aligned tok-
enization techniques. Recently, Shen et al.
(2023) has explored the use of pronunciation-
aware unique character encoding techniques
for RNN-based ASR models. The experiment
showed that the pronunciation-aware charac-
ter encoding perform better. For low-resource
languages, Diwan and Jyothi (2021) experi-
mented with the reduce and reconstruct ap-
proach to minimize the number of prediction
errors. The number of features was decreased
by replacing them with characters that sound

similar. Once prediction is made the replaced
characters were substituted to their original
form.

Kudo and Richardson (2018) also studied
a different tokenizer called SentencePiece to-
kenizer and discovered that this type of to-
kenizer can be helpful for E2E models. Pa-
padourakis et al. (2021) also conducted ex-
periments on Phonetically Induced Subwords
for the ASR system and observed that Con-
nectionist Temporal Classification (CTC) and
RNN-T architectures showed a performance in-
crease of 15.21% compared to other methods.

Kanda et al. (2016) has described the
syllable-based system for the Japanese lan-
guage and implemented it as a subword lan-
guage model (SLM) to coordinate the CTC
based Acoustic Model (AM) score. Using a
syllable-based system on the CTC decoding
phase improved the performance of the system.
Similarly Zou et al. (2018) also explored the
use of various tokenizers such as character, syl-
lable, and context-dependent phoneme(CDP)
in Mandarin speech recognition. This research
concluded with a better result when a syllable-
based unit is applied on the CTC based ASR
system. Lightweight Wordpiece Model is pro-
posed by Xu et al. (2021), which takes word
and all training vocabulary as an input and re-
turn the longest sub-word segmentation of the
input word. Patel et al. (2020) used phonetic
alignment technique for the machine transliter-
ation task. As per the authors’ experiment the
use of the phonetic alignment is superior over
phrase-based alignment approach and result
is improved around 50% on Indic languages.
Anoop and Ramakrishnan (2023) studied the
modeling of unit for E2E speech recognition
task and concluded that the syllable-based
units are best choice in context of the Indian
Languages.

The most research that has been done on
the Nepali ASR system development have used
character based tokenizer (Paudel et al., 2023,;
Joshi et al., 2023; Bhatta et al., 2020;Regmi
and Bal, 2021;Dhakal et al., 2022). Regmi
et al. (2019) has used one-gram text tokenizer
on proposed RNN and CTC-based ASR model.
The authors prepared own dataset by extract-
ing text containing 1320 words and record-
ing with three speakers. They achieved Char-
acter Error Rate (CER) of 34%. Similarly,

Bhatta et al. (2020) and Regmi and Bal (2021)
used the character based tokenizer on Convolu-
tion Neural Network (CNN), GRU, and CTC-
based ASR model and CTC-Attention-based
Encoder-Decoder model respectively. Their
reported CER is 11% and 10.3% respectively.
Dhakal et al. (2022) also used character based
tokenizer on CNN, Bi-LSTM and ResNet
based and found CER of 17.06%. The recent
experiment reported by Paudel et al. (2023)
has used CNN-Transformer based E2E model
and achieved 11.14% CER.

Research on the other possible tokenizers
for Nepali script is not well explored. The
experiment conducted on various tokenization
techniques (Patel et al., 2020;Anoop and Ra-
makrishnan, 2023;Si et al., 2023;Shen et al.,
2023;Xu et al., 2019) clearly demonstrate that
the tokenizer plays vital role in the perfor-
mance of the ASR and that has to be explored
on the Nepali language as well. Beside that,
our another motivation for developing the tok-
enizer is based on the fact that phonetically
rich languages like Nepali, the conventional
tokenizer (word, subword, BPE, Unigram or
character based) generated tokens do not prop-
erly align with the acoustic feature. The pro-
posed syllabic tokenizer split the given text
into the syllable which are phonetically aware.
The tokenizer can be used for the the language
that uses the Devanagari script.

3 Dataset

The Open SLR dataset (Kjartansson et al.,
2018) is used! in this work for comparative
study of the proposed and other tokenizer on
E2E Nepali ASR System (explained in section
4.3). This dataset contains raw recordings in
flac encoding and transcribed text in the De-
vanagari script. The metadata of the speech
corpus are summarized in Table 1.

The Open SLR dataset for Nepali speech
has three major problems- 1) background noise
2) large gaps in between the word speech, and
3) not normalized transcribed text. For noise
reduction we generated a time-smoothed spec-
trogram using an adaptive Infinite Impulse
Response (Adaptive-IIR) digital filter (Kwan,
2001) and mask is computed on this spectro-
gram, then the mask is smoothed with a filter

"http://openslr.com /54

Table 1: Open SLR (Kjartansson et al., 2018)
speech corpus summary

Particular Detalils
Unique Utterance 86062

Total Utterance ~157K
Duration of Recording ~9200 minutes
Total Number of Speakers 527

over frequency and time. This mask is applied
to the spectrogram of the signal. Finally, the
signal is recovered. Using this approach the
white noise is reduced. We trimmed the start
and end of the signal to remove starting and
ending silent parts of the speech.

The clean dataset is available in our research
lab of the University (the link is anonymize to
meet the requirement of the blind review).

4 Methodology

4.1 Tokenization

Tokenization can be done in various ways. The
simple and widely used tokenization technique
for ASR is a character-based tokenizer. This
tokenizer is not suitable for those languages
which have complex and conjunct characters
and combination of the characters is consid-
ered as single syllable. The Nepali language
follows the Devanagari script which has vowels,
consonants, vowel markers, and special charac-
ters as shown in the Table 2. The vowel mark-
ers in Devanagari script play a crucial role
in accurately representing and adding vowel
sounds to the consonant characters, helping to
distinguish between words that have the same
consonant sounds but different vowel sounds.
Beside the regular characters (listed in Table
2) there are other complex characters such as
&, d, 9, d, &, 4, & which are combination of
the consonant, vowel and special markers (eg.
=D+ 2 +9).

Let us consider the word Wﬁ, if we use
character based segmentation we end up with
tokens {®, i, ¥, T, ... }. The tokens i}
and 3T do not have any phonetic value unless
they are combined with respective consonants.
When we use other tokenizer such as BPE on
the Devanagari script we end up with tokens
such as {F , <:1f=1}. As per the word morphol-
ogy the vowel marker T should not appear

Table 2: Nepali script characters

Type Symbols
Vowel 3,3, E, 89,3, T0, x,
Consonants $, 9,7, 4,3,

T, B, 9,4, 3,

c, 3,9, G, T,

d, 9, 49,

9, W, 9, 9,9,

g,%,d,d, 9,

¥, 9,8
Vowel markers T, 2, o, LI ,

R R |
Other markers <, |, , i ete.
Numbers 0,9,2,3,8, 4% 09,¢, %

before consonant. In this example, tokens {7
, 1, f?f} are more phonetic then other alterna-
tive. So, it is clear that if we need to tokenize
to the syllabic level the existing tokenizers will
not work.

To address these types of problems we need
a more specialized tokenizer. We have pro-
posed the sliding window-based tokenization
algorithm which relies on the pre-calculated
Syllable Dataset. For syllables dataset prepa-
ration we used grammar rules of the Devana-
gari script (Acharya, 1974). The syllable
dataset is used as a lookup for the tokenizer.
The algorithm is presented in Algorithm 1 and
the working mechanism is shown in Figure 1.
From the Figure 1 we can observe that given
the input sentence T Eb_@?b"[, the expected
output of the tokenizer is &§F AT P Y BT, The
abstract view of the algorithm proposed in Al-
gorithm 1 looks similar to other (Xu et al.,
2021) syllabic tokenization approach. But the
fundamental different is we use separate syl-
lable dataset for the lookup purpose. The
choice of the sub-word or syllable is based on
those dataset rather than a longest sub-word
as suggested by Xu et al. (2021). The syllable
dataset itself covers the phonetic essences of
Nepali language.

Choosing the window size: The Window
size (win__size) is important parameter for Al-
gorithm 1. When win_ size is less than the
characters involved in composition of complex
syllable the tokenizer end up with inappropri-

Algorithm 1: Syllabic Tokenizer for
Nepali

Input: Sentence : S

Output: Tokens : FT

Data:

Syllable Dataset : SD

Window Size: win__size
1 FT =[]
2 T = Jordered list of all characters in S|
3 while current_win_pos > len(T') do
4 t_window = T[current__win__pos :
(current_win_pos + win__size)]
5 ct = { all possible syllables from

t_window each starting 0" position }
6 foreach ct_cur in ct do

7 if ¢t_cur in SD then
8 current__win_ pos +=
len(ct__cur)
9 FT.append(ct__cur)
10 break

11 return FT

ate syllable and sometimes the algorithm end
up with error. So, we took the help of a lin-
guist expert to appropriate the output of the
tokenizer.

4.2 Working of Syllabic Tokenizer

First of all, the given sentence S =
(C1C2C5...Cy) is tokenized using the character-
based tokenizer to form the tokens 1" which is
an ordered list of all characters C,, as shown
in equation (1). A maximum of 4 characters
are used to form the complex syllables so the
window size is considered as 4. The window
sliding starts from the first token. On the first
window, the first four tokens from T are cap-
tured within the window i.e. (C1,Cy,Cs,Cy).
For those tokens within the window W7 we can
generate the combined tokens C'Ty, preserving
the order of the tokens as shown in equation
(2).

Then we can check the existence of the each
item of C'Ty,1 on syllables dataset (SD) start-
ing from index 0. If we find 1% item on the
lookup then we add this to the list of a final
token F'T = {C1C2C3} and move to the sec-
ond window C7T,o which starts from N = 3
as we already considered three items of list T'
- this can be represented as in equation (3).

INPUT Character Token

e B AN REREEEEERER)
window = 1
MBHNEEEEEEEERER

E
CTy1={&,8,%,%F)

Check the token in Syllabal _
FT=(a)
window = 2
A a
UBOEEEEEEEENEE

CTyo={3,%,dq,d} —>FT={& 7}

window = 3

AEUREREEEEENCE

CTyp ={AThY, AT, A1, 7} —>FT={&, 7,41}

OUTPUT

FT={&,3,91,&,3,a }

Figure 1: Working of pronunciation-aware syllable
tokenize for the Nepali language

T = list(Cl,Cg...CN) (1)

CTy1 = {C1C2C3C,, C1C2C3,C1Cy, Cr} (2)

CTyo = {CsC5CsC7, C4C5Cq, CsCs, Cy} (3)

For next iteration, if the valid syllable is
C4C5CsC; then we update final token as F'T' =
{C1C2C3,C4C5CsC7} and mark the next posi-
tion to start the windows as we covered sev-
enth character within the valid token. This
way we can iterate over all the positions to find
the valid syllables out of the available tokens
T.

In some window segment (say w,) there is
a chance to get more than one valid token
that is present in the lookup. For example
-8 =g, o, = {0, ", ', 7).
Here 0", ‘W', '’ are valid syllable in Nepali
but ‘T will be chosen which is present in the
SD. Asthe order of the characters is preserved
while generating the tokens (Equation 2) and
lookup is done from 1% position, our tokenizer
choose 0" on the first iteration and move to
the next window. Some of the outputs of the
tokenizer are listed in Table 3.

Unit
=05
=05

m

+ Tokens

Convolution
BN + ReLU
Convolution
BN + ReLU
5 x Gated Recurrent
Dropout
Dense Layer
Dropout
Classifiction Layer
softmax

i

CTC Decoder
<«—— Generate text from |«
decoded output

CTC Loss
slices of sound to
character mapping

Output
Text

Figure 2: E2E ASR Model used for the experiment

Table 3: tokenizer outputs

Input Generated tokens

Ffpea wEa T ['q,'9, ', [T,
A | RV * R | A
B O

e dre! & ', '], e,
B, e, T, A

4.3 Baseline ASR Model

In order to measure the effectiveness of pro-
posed tokenizer we developed the E2E ASR
model for Nepali using Tensorflow (Abadi
et al., 2015). We adopted CNN based E2E
ASR model proposed by Amodei et al. (2015)
which is also similar with the model used in
(Regmi et al., 2019), (Bhatta et al., 2020), and
(Regmi and Bal, 2021) so that we compare the
end results. The Figure 2 shows the architec-
ture of the E2E model. The model accepts the
spectrogram and tokens of transcribed text as
input pair and passes them to the two convo-
lution layer with following parameters:

filters = 32 filters = 32
kernelsize = [11,41] kernelsize = [11, 21]
strides = [2, 2] strides = [1, 2]

Batch normalization (BN) is done after each
convolution layer to speed up the training
by normalizing the raw data. Rectified Lin-
ear Unit (ReLU) is used after normalization.
Then the RNN is designed using a five (5)
GRU layer with tanh as an activation func-
tion and sigmoid as recurrent activation. The
dropout factor of 0.5 is used. The softmax
is applied to the classification layer. CTC de-
coder is used for generating the text from the
classifier output.

5 Experiment and Results

The E2E ASR model as explained in section
4.3 and depicted in Figure 2 is trained with

publicly available speech corpus from Open Table 5: Experiment Result

SLR (Kjartansson et al., 2018). The tokens

are produced by tokenizers such as BPE, Char- Tokenization Method WER CER
acter, Unigram-based tokenizers and our pro- a) Unigram tokenizer 91.1% 83.5%
posed tokenizer. This gave us a solid base for b) BPE tokenizer 53.3% 18.1%
evaluating the proposed tokenizer. For BPE ¢) Character tokenizer 40.1% 9.3%
and Unigram tokenization we used Sentence- d) Pronunciation-aware 36.33% 8.09%

Piece (Kudo and Richardson, 2018) library.
The token size is summarize in Table 4.

Table 4: Token Size

Tokenization Method #Tokens
a) Unigram tokenizer 997

b) BPE tokenizer 1000

c¢) Character tokenizer 60

d) Pronunciation-aware syllable 650
tokenizer

The E2E ASR model as depicted in Fig-
ure 2 has been developed using the Tensor-
flow (Abadi et al., 2015). The model training
and running of the experiment has been done
on the machine with RTX 3090 GPU (24GB
GPU Memory), Ryzen 9 5600x CPU and 32
GB memory. The Open SLR dataset (Kjar-
tansson et al., 2018) for Nepali language does
not have standard separated training and vali-
dation data set. So the training and validation
dataset is made using a 9:1 split ratio (train :
validation).The training and validation loss of
all the training has been plotted in Figure 3.

(a) (b)

— val_loss
train_loss

— val_loss
train_loss

150 1 M_\
100 A A
\ AN
m——— 50 ~———
T T T T T T T T
0 20 40 60 0 20 40 60
epoch epoch

(c) (d)
200

loss
loss

— val_loss

\ — val_loss
train_loss

1504 | train_loss 150 4 >\
w w
E 100 1 E 100 4 \
50 4 501 \
e :

T T T v T T T T
0 20 40 60 0 20 40 60
epoch epoch

Figure 3: Training vs. Validation loss during train-
ing using: a) Unigram tokenizer, b) BPE tokenizer
c) Character tokenizer, and d) Pronunciation-
aware syllable tokenizer

For the evaluation, the character error rate
(CER) and word error rate (WER) are used

syllable tokenizer

(Morris et al., 2004). CER is used to evalu-
ate the performance of automatic speech recog-
nition (ASR) systems by assessing how well
they convert speech input into accurate tex-
tual output. A lower CER indicates higher ac-
curacy and better performance. On the other
hand, WER considers individual words instead
of characters.

Table 5 shows the comparison of CER and
WER on the model trained with the pro-
posed tokenizer and other tokenizers. Our
experiment resulted in increased accuracy of
8.09% CER and 36.33% WER on the pro-
posed pronunciation-aware syllable tokenizer.
The closest CER and WER are that of the
character-based tokenizer, respectively, (9.3%,
40.1%) which is 1.21% and 3.77% higer than
the CER and WER scores of our tokenizer.
The WER is higher because we have not ap-
plied any language model at this stage for cor-
recting the output.

If we compare CER, with other independent
research such as the one conducted by Regmi
and Bal (2021), the performance has improved
by 2.21%.

6 Conclusion and Future Work

We conducted an experiment using a sylla-
ble tokenizer that incorporates pronunciation
awareness to segment Nepali text into sub-
word units or syllables. We applied this to-
kenizer to an E2E ASR framework for align-
ing transcribed text with speech signals. After
introducing the tokenizer in the pipeline, we
found that the performance of the model out-
performed the state-of-the-art character-based
tokenizer by 1.21% and 3.77% in terms of
CER and WER respectively. This improve-
ment proves that the syllable-based tokenizer
which is pronunciation aware is very crucial for
phonetically rich and morphologically complex

languages like Nepali.

There are several areas for improvement
in this research. We have plans to use this
tokenizer to further investigate its role in
various E2E-based models and frameworks
like AED, T-AED, and RNN-T. Similarly,
hyperparameter-based estimation can be per-
formed on the existing model to determine the
best values for parameters such as kernel size
and number of epochs needed. The Open SLR
dataset (Kjartansson et al., 2018) for Nepali
language does not have standard separated
training and validation data set. In the next
phase, we are planning to augment more data
and investigate this dataset and propose the
appropriate training and test split.

References

Martin Abadi, Ashish Agarwal, Paul Barham, Eu-
gene Brevdo, Zhifeng Chen, and et al. 2015. Ten-
sorFlow: Large-Scale Machine Learning on Het-
erogeneous Systems. Software available from
tensorflow.org.

Shivaraja Acharya. 1974. Nepali Barnecharan Shik-
shya, 2031(BS). Sajha Prakasana, Nepal.

Dario Amodei, Rishita Anubhai, Eric Battenberg,
Carl Case, Jared Casper, and et al. 2015. Deep
Speech 2: End-to-End Speech Recognition in
English and Mandarin. CoRR, abs/1512.02595.

Chandran Savithri Anoop and Angarai Ganesan
Ramakrishnan. 2023. Suitability of syllable-
based modeling units for end-to-end speech
recognition in Sanskrit and other Indian lan-
guages. Fxpert Systems with Applications,
220:119722.

Bharat Bhatta, Basanta Joshi, and Ram Krishna
Maharjhan. 2020. Nepali speech recognition us-
ing cnn, gru and ctc. In Taiwan Conference on
Computational Linguistics and Speech Process-
ing.

KyungHyun Cho, Bart van Merrienboer, Dzmitry
Bahdanau, and Yoshua Bengio. 2014. On
the properties of neural machine transla-
tion: Encoder-decoder approaches. CoRR,
abs/1409.1259.

Junyoung Chung, Caglar Gulcehre, Kyunghyun
Cho, and Yoshua Bengio. 2014. Empirical Eval-
uation of Gated Recurrent Neural Networks on
Sequence Modeling. In NIPS 2014 Workshop on
Deep Learning.

Manish Dhakal, Arman Chhetri, Aman Kumar
Gupta, Prabin Lamichhane, Suraj Pandey, and

Subarna Shakya. 2022. Automatic speech recog-
nition for the Nepali language using CNN, bidi-
rectional LSTM and ResNet. In 2022 Inter-
national Conference on Inventive Computation

Technologies (ICICT), pages 515-521.

Anuj Diwan and Preethi Jyothi. 2021. Reduce and
Reconstruct: ASR for Low-Resource Phonetic
Languages. In INTERSPEECH 2021.

Philip Gage. 1994. A New Algorithm for Data
Compression. The C Users Journal, 12:23-38.

Yosuke Higuchi, Keita Karube, Tetsuji Ogawa, and
Tetsunori Kobayashi. 2022. Hierarchical Condi-
tional End-to-End ASR with CTC and Multi-
Granular Subword Units. In ICASSP 2022 -
2022 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP),
pages 7797-7801.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997.
Long Short-term Memory. Neural Computation,
9:1735-80.

Basanta Joshi, Bharat Bhatta, and Ram Krishna
Maharjan. 2023. End to End based Nepali
Speech Recognition System. International Jour-

nal of Signal Processing, Image Processing and
Pattern Recognition, 17(102).

Naoyuki Kanda, Xugang lu, and Hisashi Kawai.
2016. Maximum a posteriori Based Decoding
for CTC Acoustic Models. In INTERSPEECH
2016, pages 1868-1872.

Oddur Kjartansson, Supheakmungkol Sarin, Knot
Pipatsrisawat, Martin Jansche, and Linne Ha.

2018. Crowd-Sourced Speech Corpora for
Javanese, Sundanese, Sinhala, Nepali, and
Bangladeshi Bengali. In Proc. The 6th Intl.

Workshop on Spoken Language Technologies for
Under-Resourced Languages (SLTU), pages 52—
55, Gurugram, India.

Taku Kudo and John Richardson. 2018. Sentence-
Piece: A simple and language independent sub-
word tokenizer and detokenizer for neural text
processing. In Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language
Processing: System Demonstrations, pages 66—
71, Brussels, Belgium. Association for Computa-
tional Linguistics.

H.K. Kwan. 2001. Adaptive iir digital filters for
noise and echo reduction in speech. In 2001
IEEE Pacific Rim Conference on Communica-
tions, Computers and Signal Processing (IEEE
Cat. No.01CH37253), volume 1, pages 47-50
vol.1.

Andrew Cameron Morris, Viktoria Maier, and
Phil D. Green. 2004. From WER and RIL to
MER and WIL: improved evaluation measures
for connected speech recognition. In INTER-
SPEECH 2004. ISCA.

http://arxiv.org/abs/1512.02595
http://arxiv.org/abs/1512.02595
http://arxiv.org/abs/1512.02595
https://doi.org/10.1016/j.eswa.2023.119722
https://doi.org/10.1016/j.eswa.2023.119722
https://doi.org/10.1016/j.eswa.2023.119722
https://doi.org/10.1016/j.eswa.2023.119722
http://arxiv.org/abs/1409.1259
http://arxiv.org/abs/1409.1259
http://arxiv.org/abs/1409.1259
https://doi.org/10.1109/ICICT54344.2022.9850832
https://doi.org/10.1109/ICICT54344.2022.9850832
https://doi.org/10.1109/ICICT54344.2022.9850832
https://doi.org/10.1109/ICASSP43922.2022.9746580
https://doi.org/10.1109/ICASSP43922.2022.9746580
https://doi.org/10.1109/ICASSP43922.2022.9746580
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.21437/Interspeech.2016-71
https://doi.org/10.21437/Interspeech.2016-71
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.1109/PACRIM.2001.953519
https://doi.org/10.1109/PACRIM.2001.953519

Vasileios Papadourakis, Markus Miiller, Jing Liu,
Athanasios Mouchtaris, and Maurizio Omologo.
2021. Phonetically Induced Subwords for End-
to-End Speech Recognition. In INTERSPEECH
2021, pages 1992-1996.

Parth Patel, Manthan Mehta, Pushpak Bhat-
tacharya, and Arjun Atreya. 2020. Leveraging
Alignment and Phonology for low-resource In-
dic to English Neural Machine Transliteration.
In Proceedings of the 17th International Confer-
ence on Natural Language Processing (ICON),
pages 373-378, Indian Institute of Technology
Patna, Patna, India. NLP Association of India
(NLPAI).

Shishir Paudel, Bal Krishna Bal, and Dhiraj
Shrestha. 2023. Large Vocabulary Continous
Speech Recognition for Nepali Language using
CNN and Transformer. In Proceedings of the 4th
Conference on Language, Data and Knowledge,
pages 328—-333, Vienna, Austria. NOVA CLUNL,
Portugal.

Paribesh Regmi, Arjun Dahal, and Basanta Joshi.
2019. Nepali Speech Recognition using RNN-
CTC Model. International Journal of Computer
Applications, 178(31):1-6.

Sunil Regmi and Bal Krishna Bal. 2021. An
End-to-End Speech Recognition for the Nepali
Language. In Proceedings of the 18th Interna-
tional Conference on Natural Language Process-
ing (ICON), pages 180-185, National Institute
of Technology Silchar, Silchar, India. NLP Asso-
ciation of India (NLPAI).

Rico Sennrich, Barry Haddow, and Alexandra
Birch. 2016. Neural Machine Translation of
Rare Words with Subword Units. In Proceedings
of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long
Papers), pages 1715-1725, Berlin, Germany. As-
sociation for Computational Linguistics.

Peng Shen, Xugang Lu, and Hisashi Kawai.
2023. Pronunciation-Aware Unique Character
Encoding for RNN Transducer-Based Mandarin
Speech Recognition. In 2022 IEEFE Spoken Lan-
guage Technology Workshop (SLT), pages 123—
129.

Chenglei Si, Zhengyan Zhang, Yingfa Chen, Fan-
chao Qi, Xiaozhi Wang, Zhiyuan Liu, Yasheng
Wang, Qun Liu, and Maosong Sun. 2023. Sub-
Character Tokenization for Chinese Pretrained
Language Models. Transactions of the Associa-
tion for Computational Linguistics, 11:469-487.

Sachin Singh, Ashutosh Gupta, Aman Maghan,
Dhananjaya Gowda, Shatrughan Singh, and
Chanwoo Kim. 2021. Comparative study of
different tokenization strategies for streaming
end-to-end asr. In 2021 IEEE Automatic
Speech Recognition and Understanding Work-
shop (ASRU), pages 388-394.

Hainan Xu, Kartik Audhkhasi, Yinghui Huang,
Jesse Emond, and Bhuvana Ramabhadran. 2021.
Regularizing word segmentation by creating mis-
spellings. In Interspeech 2021, pages 2561-2565.
ISCA.

Hainan Xu, Shuoyang Ding, and Shinji Watanabe.
2019. Improving End-to-end Speech Recogni-
tion with Pronunciation-assisted Sub-word Mod-
eling. In ICASSP 2019 - 2019 IEEFE Interna-
tional Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), pages 7110-7114.

Wei Zou, Dongwei Jiang, Shuaijiang Zhao, and Xi-
angang Li. 2018. A comparable study of model-
ing units for end-to-end Mandarin speech recog-
nition. In 11th International Symposium on Chi-
nese Spoken Language Processing (ISCSLP).

https://doi.org/10.21437/Interspeech.2021-1787
https://doi.org/10.21437/Interspeech.2021-1787
https://aclanthology.org/2020.icon-main.51
https://aclanthology.org/2020.icon-main.51
https://aclanthology.org/2020.icon-main.51
https://aclanthology.org/2023.ldk-1.33
https://aclanthology.org/2023.ldk-1.33
https://aclanthology.org/2023.ldk-1.33
https://doi.org/10.5120/ijca2019918401
https://doi.org/10.5120/ijca2019918401
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.1109/SLT54892.2023.10022528
https://doi.org/10.1109/SLT54892.2023.10022528
https://doi.org/10.1109/SLT54892.2023.10022528
https://doi.org/10.1162/tacl_a_00560
https://doi.org/10.1162/tacl_a_00560
https://doi.org/10.1162/tacl_a_00560
https://doi.org/10.1109/ASRU51503.2021.9687921
https://doi.org/10.1109/ASRU51503.2021.9687921
https://doi.org/10.1109/ASRU51503.2021.9687921
https://doi.org/10.21437/Interspeech.2021-648
https://doi.org/10.21437/Interspeech.2021-648
https://doi.org/10.1109/ICASSP.2019.8682494
https://doi.org/10.1109/ICASSP.2019.8682494
https://doi.org/10.1109/ICASSP.2019.8682494
http://arxiv.org/abs/1805.03832 [cs, eess]
http://arxiv.org/abs/1805.03832 [cs, eess]
http://arxiv.org/abs/1805.03832 [cs, eess]

	Introduction
	Related works
	Dataset
	Methodology
	Tokenization
	Working of Syllabic Tokenizer
	Baseline ASR Model

	Experiment and Results
	Conclusion and Future Work

