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Abstract

Recent studies have made some progress in
refining end-to-end (E2E) speech recognition
encoders by applying Connectionist Temporal
Classification (CTC) loss to enhance named en-
tity recognition within transcriptions. However,
these methods have been constrained by their
exclusive use of the ASCII character set, al-
lowing only a limited array of semantic labels.
We propose 1SPU, a 1-step Speech Processing
Unit which can recognize speech events (e.g:
speaker change) or an NL event (Intent, Emo-
tion) while also transcribing vocal content. It
extends the E2E automatic speech recognition
(ASR) system’s vocabulary by adding a set of
unused placeholder symbols, conceptually akin
to the <pad> tokens used in sequence model-
ing. These placeholders are then assigned to
represent semantic events (in form of tags) and
are integrated into the transcription process as
distinct tokens.

We demonstrate notable improvements on the
SLUE benchmark and yields results that are
on par with those for the SLURP dataset. Ad-
ditionally, we provide a visual analysis of the
system’s proficiency in accurately pinpointing
meaningful tokens over time, illustrating the
enhancement in transcription quality through
the utilization of supplementary semantic tags.

1 Introduction

This paper extends the capabilities of End-to-End
Automatic Speech Recognition (E2E ASR) sys-
tems from traditional transcription tasks to more
nuanced speech understanding processes (Chan
et al., 2015; Bahdanau et al., 2016). Presently,
Deep Neural Networks (DNN5s) are proficient in
applying greedy or beam search decoding to pre-
dict vocabulary labels from audio inputs over time
(Watanabe et al., 2017; He et al., 2019). These
networks typically produce a sub-word text token
for each segment of a continuous speech stream,
focusing on transcription fidelity.

However, the transcription process has evolved
with recent efforts to embed additional metadata,
such as named entity boundaries and utterance clas-
sification (Serdyuk et al., 2018; Haghani et al.,
2018). Multitask learning frameworks utilizing
separate loss functions for transcription and classi-
fication have emerged (Wang et al., 2023; Ghannay
et al., 2018), and there has been success in identify-
ing sequences of intents using non-autoregressive
models within a speech stream (Potdar et al., 2021).
Although recognizing a limited set of named enti-
ties using CTC loss by marking them with specific
begin and end tokens in transcriptions has been
demonstrated (Ghannay et al., 2018). Methods like
these are often use special ASCII characters for
events, constrained by the size ASCII character
set. Morever these special characters are originally
defined to be useful for meaningful language tran-
scription. This also happens a as ASR encoders
are generally considered as intermediaries between
speech and natural language (NL) models.

In response, our study proposes a single-step, in-
tegrated speech processing unit (1SPU) using E2E
speech encoders. 1SPU not only transcribes spoken
content but also annotates it with tags indicating
various NLP and speech events, including intent
and entity recognition as well as speaker changes.
By incorporating user_de fined_symbols into the
ASR vocabulary (Kudo and Richardson, 2018),
akin to text-based entity tagging tokens, we en-
hance the encoder’s lexicon. These symbols are
introduced during the fine-tuning stage and are
only used if present in the fine-tuning data, thereby
maintaining computational efficiency. We fine-tune
a pre-trained Conformer ASR model to perform
transcription while also producing intent labels
and entity tags, all under the CTC loss function.
The model outputs transcriptions using standard
greedy decoding and can function in both offline
and streaming modes.

Our experimentation focuses on mono-channel



speech and yields promising results on the SLUE
(Wang et al., 2021) and SLURP (Bastianelli et al.,
2020) benchmarks. We posit that incorporating
a Language Model (LM) could significantly ele-
vate these results. Furthermore, we present visual
evidence that utilizing context from previous utter-
ances can enhance transcription and understanding
in dual-channel human-human interactions, partic-
ularly in marking speaker changes. This ongoing
work has the potential to improve prompting strate-
gies and facilitate the development of multi-modal
and multitasking E2E ASR applications in stream-
ing contexts.

The contributions of this paper are summarized
as follows:

* We propose 1SPU, which incorporates the
central idea of user_de fined_symbols into
the ASR vocabulary to facilitate the tagging
of speech and NL events within continuous
speech transcriptions during fine-tuning.

* We demonstrate that our method not only
improves performance on the SLUE bench-
mark but also shows promise for the SLURP
dataset.

* We offer visual proof that the inclusion of
context from prior events can improve speech
transcription and understanding in scenarios
requiring low-latency responses.

2 Related Work

A common practice is to transform the normalized
token sequences produced by automatic speech
recognition (ASR) systems into a written form that
is more amenable for downstream dialog system
components to process (Pusateri et al., 2017). This
reformatted written output then serves as the ba-
sis for extracting structured information, such as
intents and slot values, which are crucial for the
continuation of a dialog (Radfar et al., 2020). Of
late, there has been an emerging trend towards uti-
lizing neural encoders that are optimized directly
on speech inputs, a methodology often referred
to as end-to-end spoken language understanding
(E2E SLU) (Serdyuk et al., 2018; Haghani et al.,
2018).

Text-based Sequence Tagging: The domain
of natural language processing has seen extensive
research in employing sequence-to-sequence (seq-
2-seq) models to parse and extract structured in-
formation from textual data. This encompasses

advancements in identifying the positions and clas-
sifications of entities within a text (Ratinov and
Roth, 2009), generating structured summaries of
content (Gorinski et al., 2019), and constructing
synctactic parse trees through timely tag predic-
tions during the generation of language (Cabot and
Navigli, 2021). Despite their efficacy, these ap-
proaches, which are primarily designed for mono-
logic text, do not adequately address the dynamic
nature of spoken dialogue.

E2E ASR: Modern Automatic Speech Recog-
nition (ASR) systems excel at converting spoken
language into a sequence of lexical tokens, effec-
tively transcribing spoken words. This transcrip-
tion process typically involves refining pre-trained
self-supervised neural networks or initiating train-
ing from the ground up with non-autoregressive
Connectionist Temporal Classification (CTC) loss
or a sequential loss (Graves, 2012) to recognize
speech tokens (Chan et al., 2015; Chorowski et al.,
2015). Transcriptions are obtained either by greedy
decoding or beam-search decoding using a lan-
guage model.

E2E SLU: With the emergence of end-to-end
ASR (Chorowski et al., 2015; Chan et al., 2016)
and the successful pretraining of speech encoders,
methods for SLU directly from the speech signal
have recently shown comparable performance to
the conventional approach of cascading ASR and
text-based components in tasks such as named en-
tity recognition (NER), translation, dialogue act
prediction (DAP) (Vila et al., 2018; Dang et al.,
2020), as well as inference tasks like emotion, in-
tent or behavior understanding (Fayek et al., 2015;
Price et al., 2020; Singla et al., 2020). Recent stud-
ies have attempted to identify the beginning and
end of named entities in transcriptions by adding
unique markers to the text (Ghannay et al., 2018;
Tomashenko et al., 2019). However, the perfor-
mance of these methods is often limited by the
small selection of special characters available in
the ASCII character set and fear of using special
symbols which may conflict with making multi-
lingual ASR systems or other desired symbols.

3 1SPU: 1-step Speech Processing Unit

For 1-step Speech Processing Unit (1SPU) we
leverage a commercially available End-to-End Au-
tomatic Speech Recognition (E2E ASR) system,
initializing it with a tokenizer that includes D user-
defined dummy tokens. These labels are akin to
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Figure 1: Overview of 1SPU. L refers to transcription
tokens, D refers to un-used tokens learnt during fine-
tuning to mark events. 1 is the blank token.

unique tokens, much like a ‘<pad>‘ token, and are
not utilized during the ASR’s initial training phase.
Thus, the incorporation of these inactive tokens
does not impact the duration of training or infer-
ence as they can be masked during the E2E ASR
optimization process.

Subsequently, we re-purpose the pre-trained
speech encoder to generate transcriptions that em-
bed semantic tokens indicative of event tags, opti-
mizing with the CTC loss function. This strategy di-
verges from previous methods that relied on special
characters for tagging within transcriptions using
CTC loss. Our approach, which introduces dummy
tags during the ASR’s pre-training, obviates the
need for alterations to the tokenizer or output layer
before fine-tuning.

We detail a fine-tuning process for a pre-trained
speech encoder that empowers it to recognize ut-
terance intent, demarcate the beginning and end of
entities, and carry out transcription, using pairs of
speech files and tagged transcriptions. An example
of a transcribed speech input is:

put
meeting with paul
for tomorrow
ten am

Here, CALENDAR_SET signifies the intent of
the utterance, while the entity tokens PERSON,
DATE, and TIME terminate with a shared END
token. These semantic tokens are mapped to the
dummy vocabulary tokens, which are subsequently
learned during the fine-tuning stage for the desig-

nated task. Although the tokens for utterance level
semantics can be placed at the beginning or the
end, our empirical evidence suggests a slight per-
formance improvement when it is generated at the
beginning.

In our study, we apply the Conformer end-to-
end ASR framework(Gulati et al., 2020). We use
tokenizer output vocabulary V of size 1024, com-
prised of 400 un-used tokens D for event labels,
624 transcription tokens L and 1 token representat-
ing a Blank label. These D tokens are provided to
tokenizer as a list of user_defined_symbols

3.1 From network output to transcriptions
with event labels

Adopting the computational approach of Connec-
tionist Temporal Classification (CTC), our model
is designed to classify sequences of unheard speech
with the objective of minimizing the task-specific
error metric. This involves correctly predicting out-
put tokens that either correspond to transcription
elements or signify an event. Consistent with estab-
lished CTC methodologies, our network includes a
softmax layer that features one additional unit be-
yond the number of tokens in V. This extra unit’s
activation represents the likelihood of a blank or
no label. The activations of the first L units are in-
terpreted as the probabilities of each transcription
token occurring at specific time steps. The remain-
ing D units are purposed to signal events such as
intents, entities or speaker change when activated.

More Formally, for an input sequence x of length
T'(steps in a sample) define a speech DNN encoder
with m inputs, n outputs and weight vector w as
a continous map Ny, : (R™)T — (R™)T. Let
y = Ny () be the sequence of network output, and
denote by yz the activation of output unit k at time
t. y! is interpreted as the probability of observing
label k at time t, thus, defining a distribution over
the set V' of length T sequences over the alphabet
L' = LU {blank}:

T
p(rlz) = [ vk, (1)
t=1

We refer to the elements of the V' as paths, and
denote them as 7.

Graves et al. (Graves and Graves, 2012) presup-
pose in their first equation that outputs of a network
at various time steps are independent of each other.
Yet, this assumption does not hold in the architec-
ture of modern End-to-End (E2E) speech encoders



such as Citrinet, Conformer, and Wav2vec2. These
models employ feedback loops that inherently link
different temporal outputs, creating a conditional
dependency between them. This characteristic in-
terconnection may contribute significantly to the
widespread adoption and effectiveness of E2E ASR
systems based on CTC methodology.

Many—to—one map B is defined as V' VST,
where V=7 refers to set of sequences of length less
than or equal to 7" over the original label vocab V.
To obtain read-able transcriptions we apply stan-
dard CTC rule of removing all blanks and repeated
labels. Finally, B is used to define the conditional
probability of an entity [ € V=" as sum of proba-
bilities of all the paths corresponding to it:

> plrlz) )

meB~1(e)

The foundational mathematical framework of
CTC loss, when combined with the contextualized
representations generated by a speech encoder, en-
ables us to refine outputs using previously unused
dummy tokens to denote specific event labels in an
input stream.

3.2 Pre-trained checkpoint and fine-tuning
details

We utilize readily available Conformer mod-
els(Gulati et al., 2020) accessible from the NeMo
library!, which have been pre-trained on a corpus
comprising 7,000 hours of transcribed public do-
main audio. These models employ a SentencePiece
tokenizer(Kudo and Richardson, 2018) configured
with a vocabulary size of 1024 tokens, denoted as
L. For the integration of dummy event labels, we
conduct an additional phase of fine-tuning focused
on transcription tasks. This fine-tuning leverages
a dataset amalgamating Fisher (Cieri et al., 2004),
GigaSpeech (Chen et al., 2021) and SwitchBoard
(Godfrey et al., 1992) corpora, which were also
part of the initial training set utilized by the pre-
trained model checkpoints. In our experiments L
event tokens are learnt directly on the event an-
notated fine-tuning data. We use a batch-size of
16 with an initial learning rate of .001. We use a
weight decay of .001 and update the model with 8
accumulated batches with adam back-propagation
algorithm. We use 3 A100 GPUs for pre-training
and 1 A100 GPU for fine-tuning purposes.The fi-
nal revision will include more details about the

"https://tinyurl.com/bdf38tmz

experiment configuration and models.

4 Dataset

We evaluate our method on the standardized SLUE-
voxpopuli (Wang et al., 2021) and SLURP corpus
(Bastianelli et al., 2020).

4.1 SLUE

The SLUE-voxpopuli corpus represents a substan-
tial multilingual collection of spontaneous speech
recordings from the European Parliament proceed-
ings. Named Entity (NE) annotations for a 15-hour
segment of its training subset and the entire stan-
dard development set were recently made available
by Shon et al.(Shon et al., 2022). While the anno-
tations for the test set are not publicly accessible,
we are able to evaluate our models on this set by
adhering to the submission guidelines provided by
the SLUE project®. Details pertaining to the distri-
bution of these data subsets are outlined in Table
1. For the scope of this study, we focus on using
combined entity labels, encompassing eight distinct
types, rather than employing the more detailed in-
tent labels.

Label Count of phrases
Raw Combined | Fine-tune Dev
GPE, LOC, PLACE 2012 642
CARDINAL,
ORDINAL
QUANTITY, QUANT 923 327
MONEY,
PERCENT
ORG ORG 864 259
DATE, TIME WHEN 762 260
NORP NORP 647 220
PERSON PERSON 272 51
LAW LAW 250 60
FAC, EVENT,
WORK_OF_ART,
PRODUCT, DISCARD
LANGUAGE
TOTAL Entities 5820 1862
Total Duration 5k (15hrs) 1.7k (Shr)

Table 1: Data Statistics of SLUE-voxpopuli corpus with
Named Entity annotations

The evaluation methodology adopted by the
SLUE framework (Shon et al., 2022) entails the
transformation of entity occurrences within an ut-
terance into a structured format that includes the
entity’s Type, its Phrase, and Frequency for both
the reference text and the system’s output. The

For submission guidelines, visit:

https://asappresearch.github.io/slue-toolkit/



selection of the phrase is determined by identify-
ing the beginning and end markers of an entity.
In this context, each entity type is signified by a
unique beginning token, whereas the end token is
standardized across all entity types for the purpose
of evaluation. The scores are then computed as
follows:

¢ Recall =

reference

Total — correct/Total —

e Precision =
system

Total — correct/Total —

* Flscore = 2 *
(Precision/Recall)/(Precision + Recall)

This evaluation metric does not report the tran-
scription accuracy. Therefore, we report standard
WER (after removing semantic event labels) for
our experiments.

4.2 SLURP Corpus

The Spoken Language Understanding Resource
Package (SLURP) dataset comprises a rich col-
lection of 72,000 audio clips, summing up to 58
hours of speech. These recordings simulate single-
turn interactions with a virtual home assistant and
are annotated across three semantic dimensions:
Scenario, Action, and Entities. The dataset is di-
verse, featuring 56 types of entities, 46 distinct
actions, and 18 different scenarios. For automation
purposes, action and scenario labels are typically
amalgamated to denote the user’s intent, resulting
in 93 unique intent labels.

The fine-tuning and assessment of the speech
encoder leverage the designated official splits for
training, validation, and testing from SLURP. We
present our findings using the SLURP-specific eval-
uation metrics, accessible via their official GitHub
repository. Unlike the standard SLUE evalua-
tion framework, our entity recognition accuracy
is gauged using the provided human-annotated en-
tity boundaries within the audio files. We evaluate
system performance by comparing the tuple (Type,
Phrase, Frequency) against the reference for each
time segment. The calculation of recall, precision,
and F-1 score follows the methodology outlined
in the preceding section, focusing on the correct
identification of entity tags and their corresponding
phrases. However, it is important to note that these
metrics do not consider the temporal accuracy of

the entity tags’ start and end points, which is cru-
cial for real-time applications like speech redaction
as discussed in Gouvea et al. (Gouvéa et al., 2023).

S Experiments & Results
5.1 SLUE-Voxpopuli

In the two-step methodology, a text tagger, when
applied to human-transcribed speech, achieves the
highest accuracy for tagging entities. Past research
by Pasad et al. (Pasad et al., 2021) indicates that
when the Wav2Vec2 (W2V2) model is fine-tuned
for both transcription and tagging tasks, there is a
noticeable decline in performance. Although Pasad
et al. provide results using the W2V2 model, we
conducted our experiments using Conformer mod-
els. We discovered that employing unused vocab-
ulary labels during the fine-tuning process miti-
gates the performance degradation. Our proposed
method not only improves transcription results but
also enhances the accuracy of entity tagging. Our
findings also reveal that assigning separate tags
for the beginning of an entity is less effective com-
pared to other methods. It is observed that encoders
fine-tuned with Connectionist Temporal Classifica-
tion (CTC) outperform those using the sequence-to-
sequence RNNT optimization loss (Ghodsi et al.,
2020). The baseline results for these observations
are documented in the work by Shon et al. (Shon
et al., 2022).

Speech Model Text Model | WER NER-FI
Comb

Text NER
N/A DeBERTa-B | N/A 86.0

2-step Pipeline

W2V2-B-LS960 (165m) DeBERTa-B | 18.4 78.6

Conformer-CTC (115m) TPT 9.8 80.3
Conformer-RNNT (115m) TPT 9.2 82.1
1-step E2E
Baseline

W2V2-B-LS960 N/A 18.4 49.0
Conformer — CTC 11.0 65.2
Conformer — RNNT 12.1 67.2

| Ous-1SPU | ]
Conformer — CTC N/A 9.0 74.4
Conformer — RNNT 10.5 71.1

Table 2: Results for SLUE benchmark.

5.2 SLURP

Table 3 presents the outcomes for our one-step
model and benchmarks it against other E2E ap-
proaches.  Stutructed prediction Model from
NVIDIA? (no citation available) , employing an

3https://tinyurl.com/nemo-rnnt-structured



1-step output: CALENDER_SET put EVENT_NAME meeting END with PERSON paul END for DATE tomorrow END TIME ten am END

CALENDER_SET _put EVENTetAMENg END _with

_put

Probability

et

_with

PERS®AL | |

END for DATEtom or rowow ENMEyp  TIME ten

E2E ASR output: put meeting with paul for tomorrow ten am

_put _met et ing _with

Probability

_Payaul _for _tom or row ten

3
X axis = 50steps, step-size=80ms

Figure 2: Output of softmax probability for token predicted at every time-step. Steps with no visualized token
represent "empty" token being predicted. Blue tokens mark our system’s output which red tokens represent tokens
from pretrained E2E ASR. Our system learns to insert tags by generating less empty tokens and use them to mark

event labels instead.

Speech Model WER  Intent-Acc ~ Slurp-F1
Previous
E2E Encoder-Decoder

W2V2-B-LS960 22.3 83.0 65.2

Conformer-RNNT 14.2 90.1 77.22

| E2E Encoderonly | |

W2V2-B-LS960 19.2 82.0 59.2
Conformer-CTC 15.6 83.1 66
Proposed 1SPU
Conformer-CTC 14.5 85.5 69.3

Table 3: Results for SLURP corpus.

encoder-decoder framework that produces informa-
tion following a predetermined template, achieves
the best performance. In comparison, our encoder-
only model, which leverages CTC loss combined
with greedy decoding, outperforms prior models
with a similar encoder-only structure. It is im-
portant to note, however, that despite the superior
performance of the encoder-decoder approach, it
yields a structured output, which is not conducive
to streamed inference and thus restricts its applica-
tion to offline processing.

6 Observations

Figure 2 illustrates the token output from both a
two-step pipeline system and a single-step entity
recognition system at each time-step. Tokens from
the end-to-end automatic speech recognition (E2E
ASR) are marked in red, whereas tokens pertinent
to entities identified by the single-step system are
highlighted in blue.

In addition to these experiments, we also exper-
iment with propriety human-human dual channel
conversations between a caller and an agent. As-
suming negligible overlap in the audio from both
parties, we combine the two channels to create a

single-channel audio track. To denote transitions
between speakers, we introduce a unique label for
"Speaker-change.” A video demonstration, acces-
sible via the provided link*, showcases a sample
conversation displayed in a format akin to Figure 2.
From this, we notice an improvement in both the
accuracy of entity prediction and overall transcrip-
tion, which we attribute to the model’s capacity
to predict semantic events alongside the speech
content.

7 Conclusions

In our study, we demonstrate that simultaneous
high-quality event tagging (encompassing intent,
entities, and speaker changes) and transcription is
feasible with our proposed method. This technique
is adaptable across a broad spectrum of events,
making it suitable for extensive applications in
speech understanding and transcription tasks.

We are confident that this methodology can be
expanded to accommodate additional languages
and various domains due to its multi-tasking na-
ture, facilitated by a single, unified loss function.
This makes it an ideal candidate for comprehensive,
one-step, automated conversational systems. Cur-
rently, we are developing a multi-lingual version
of this system, which has the capability to perform
language translation while concurrently tagging
events. Additionally, we aim to refine end-to-end
automatic speech recognition (E2E ASR) systems
to respond to event recognition prompts based on
user-specified natural language queries.

*https://www.youtube.com/watch?v=10yte4Y UqW0
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