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Abstract

Codemixing, the linguistic phenomenon where
a speaker alternates between two or more lan-
guages within a conversation or even a single
utterance, presents a significant challenge for
machine translation systems due to its syntac-
tic complexity and contextual nuances. This
paper introduces a set of advanced transformer-
based models fine-tuned specifically for trans-
lating codemixed text to English, more specifi-
cally, Hindi-English (colloquially referred to as
"Hinglish") codemixed text into English. Un-
like standard bilingual corpora, codemixed data
requires an understanding of the intricacies of
grammatical structures and cultural contexts
embedded within the language blend. Exist-
ing machine translation efforts in codemixed
languages have largely been constrained by
the paucity of robust datasets and models that
can capture the nuanced semantic and syntac-
tic interplay characteristic of such languages.
We present a novel dataset PACMANtrans for
Hinglish to English machine translation, based
on the PACMAN strategy, meticulously curated
to represent natural codemixing patterns. Our
generic fine-tuned translation models trained on
the novel data outperforms current state-of-the-
art Large Language Models (LLMs) by 38% in
terms of BLEU score. Further, when fine-tuned
on custom benchmark datasets, our focused
dual fine-tuned models surpass the PHINC
dataset BLEU score benchmark by 22%. Our
comparative analysis illustrates significant im-
provements in translation quality, showcasing
the potential of fine-tuning transformer models
in bridging the linguistic divide in codemixed
language translation. The success of our mod-
els reflects a promising step forward in the
quest to provide seamless translation services
for the ever-growing multilingual population
and the complex linguistic phenomena they
generate.

1 Introduction

Codemixing, the grammatical fusion of two or
more languages within a single utterance or dis-
course, is a pervasive linguistic practice among
bilingual and multilingual communities (Myers-
Scotton, 1995). It is a natural outcome of language
contact, often observed in societies where speakers
are fluent in both a local and a global language.
The Hindi-English codemixed language, widely
known as "Hinglish," is one such instance where
the syntactic, morphological, and lexical elements
of Hindi and English are interwoven, giving rise to
a rich tapestry of linguistic expression (Bhatia and
Ritchie, 2013).

Machine translation (MT) systems have tradi-
tionally been developed for well-defined language
pairs with substantial parallel corpora. However,
the translation of codemixed text poses unique chal-
lenges due to the absence of consistent grammatical
rules and the complexities introduced by the infor-
mal and spontaneous nature of codemixing (Singh,
2018). The machine translation of such codemixed
languages is relatively nascent and has been gain-
ing traction with the rise of neural machine trans-
lation (NMT) models that are better at handling
linguistic ambiguities (Johnson et al., 2017).

Despite the advances in NMT, the translation
quality for codemixed languages, particularly for
Hinglish to English, remains suboptimal. The ex-
isting models struggle with capturing the nuanced
interplay of linguistic features from both languages
and often fail to maintain the semantic integrity of
the source text (Pratapa et al., 2018). Recent efforts
in this domain have focused on creating more adept
systems through innovations in model architecture
and data resources (Aguilar et al., 2018).

In this work, we extend the existing body
of research by introducing a suite of fine-tuned
transformer-based models tailored for the Hinglish
to English translation task. Our approach bene-
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fits from a novel dataset specifically curated for
Hinglish, using the PACMAN strategy (Chatterjee
et al., 2022), reflecting various codemixing patterns
that are representative of authentic speech and writ-
ing in naturally observed contexts. Our proposed
fine-tuned models outperforms GPT4 by 38% and
the SOTA benchmark in Hinglish to English trans-
lation task, defined by the PHINC dataset (Khanuja
et al., 2020) by 22% in terms of BLEU Score, to
set a new standard for the field.

2 Related Work

The translation of codemixed text is an emerging
field of study within the domain of natural lan-
guage processing. Initial attempts to address the
translation of mixed-language text primarily fo-
cused on rule-based systems, which quickly proved
to be insufficient due to the unpredictable nature
of code-switching and mixing (Dhar et al., 2018).
With the advent of statistical machine translation
(SMT), researchers began exploring data-driven ap-
proaches, although the scarcity of parallel corpora
for codemixed languages remained a hindrance
(Solorio and Liu, 2008).

The paradigm shift towards neural machine
translation (NMT) has opened up new avenues for
handling the complexities of codemixed language
translation. The flexibility of neural networks,
particularly the sequence-to-sequence models, has
shown promise in capturing the nuances of mixed-
language syntax (Singh and Shrivastava, 2018).
Transformer-based architectures, introduced by
Vaswani et al. (2017), have revolutionized NMT by
enabling models to consider the entire context of
the input sequence, which is particularly beneficial
for the disambiguation of codemixed text (Pratapa
et al., 2018).

In the context of Hinglish to English transla-
tion, Khanuja et al. (2020) introduced the PHINC
dataset, a benchmark for codemixed machine trans-
lation. While several works have utilized this
dataset, they have often fallen short in adequately
handling the linguistic subtleties of Hinglish (Sri-
vastava et al., 2020). Our work builds on these
foundations and introduces improvements both in
terms of the dataset and the transformer model fine-
tuning, leading to significant advancements over
the current state-of-the-art.

Another line of work that intersects with our re-
search is the exploration of pre-trained language
models for codemixed language processing. Mod-

els such as mBERT (Devlin et al., 2019a) and XLM-
R (Conneau et al., 2020) have been fine-tuned for
various codemixed NLP tasks with encouraging
results (Aguilar et al., 2020). However, their direct
application to machine translation for codemixed
languages is still an under-researched area, which
our study aims to address.

2.1 Transformer Models in NMT
Transformers have now become the de-facto stan-
dard in NMT due to their superior performance in
comparison to previous RNN and CNN based mod-
els (Vaswani et al., 2017). The self-attention mech-
anism inherent to transformers allows for a more
nuanced understanding of the source language, a
feature that is incredibly beneficial when dealing
with the complexities of codemixing (Winata et al.,
2019).

2.2 Datasets for Codemixed Translation
One of the primary challenges in machine transla-
tion for codemixed languages is the lack of high-
quality, large-scale datasets (Bali et al., 2014).
While synthetic datasets have been proposed to aug-
ment the available data (Rijhwani et al., 2020), they
often fail to capture the authentic use of language
in natural settings. Our novel dataset contributes to
filling this gap, providing a diverse and representa-
tive corpus for Hinglish to English translation.

In sum, our work not only extends the current lit-
erature in codemixed machine translation but also
addresses the limitations of existing datasets and
models. By leveraging the transformer architec-
ture’s strengths and introducing a novel, more rep-
resentative dataset, we aim to push the boundaries
of what is currently possible in the translation of
Hinglish text.

3 Dataset

As already discussed in the preceding sections, our
dataset lies at the core of this work. We created
a novel custom dataset generated using the PAC-
MAN strategy, as originally proposed by (Chatter-
jee et al., 2022). Unlike the authors of the PAC-
MAN dataset, we used the Samanantar Parallel
Corpus (Ramesh et al., 2021), which consists of
a substantially larger 94 million data samples, for
generating our novel English-Hinglish Parallel Cor-
pus. We named the dataset PACMANtrans.

The PACMAN strategy uses English-Hindi par-
allel sentences to generate Hinglish codemix sen-
tences following the Matrix Language Theory



(Joshi, 1982). We apply the same strategy and
pick the English source sentence and the result-
ing Hinglish sentence as parallel sentences for our
translation task. To ensure data quality and linguis-
tic fidelity for PACMANtrans, we performed several
pre-processing steps, as outlined below:

Dataset PACMANtrans PHINC
# samples 5866702 13738

Average sentence length 13.94 12.31
# samples acc. to sentence length

0-5 404669 1858
6-10 1937302 4713
11-15 1538731 3245
16-20 1010481 2076
21-25 731336 1203

26 and above 244183 643

Table 1: Comparison of statistics between PACMANtrans and
PHINC codemixed datasets. The key parameter to note here
is the average sample length.

1. Deduplication: To eliminate redundancy and
ensure diversity in the dataset, we conducted
a deduplication process to remove duplicate
sentences.

2. Language Consistency: Given the bilingual
nature of the corpus (comprising English and
Hindi sentences), we eliminated parallel sen-
tence pairs where English words appeared
within Hindi sentences. This step ensured that
each sentence pair maintained the integrity of
its respective language.

3. POS Annotation: We employed the Stanza
tool (Qi et al., 2020) to perform Part-of-
Speech (POS) annotation on both the source
and target sentences. This enhanced the lin-
guistic information available for further anal-
ysis.

4. Alignment Generation: Building upon the
POS-annotated sentences, we generated align-
ments using Fast-Aligner proposed in (Dyer
et al., 2013) between the words in the matrix
language (Hindi) and Embedded Language
(English) sentences. These alignments facil-
itated subsequent transformations. In our re-
search, we have observed that Hindi is used
as the matrix language in an overwhelming
majority of Hinglish sentences. Consequently,
we nominated Hindi as the Matrix Language,
for our data generation process.

PACMAN Vs PHINCtrans

transPACMAN

Figure 1: Percentage-wise sample distribution based on sen-
tence length in PACMANtrans and PHINC datasets

.

Following the initial pre-processing steps, we
adopted the PACMAN strategy to handle word re-
placement. Specifically, we focused on words in
the dataset that exhibited one-to-one mapping be-
tween the Matrix Language and the Embedded Lan-
guage, with both words falling into the categories
of NOUN or ADJ. For such instances, we replaced
these words to ensure the linguistic compatibility
and cohesiveness of the dataset. This methodol-
ogy also ensures coverage of almost all consistent
codemixing patterns, making it authentic in terms
of alignment to naturally observed codemixing.

The PACMANtrans dataset consisted of size-
able 5.8 million entries, exclusively comprising
codemix sentences without monolingual samples,
with an average sentence length of 13.94 as shown
in Table 1.

We conducted a comparative analysis of the data
distribution between PACMANtrans and PHINC,
specifically focusing on the sentence length. Figure
1 provides a graphical representation of how these
two datasets differ with respect to the distribution
of samples across various sentence lengths. It is
evident from the graphical representation that the
PACMANtrans dataset predominantly consists of
samples falling within the 11 to 25 sentence length
range. This observation emphasizes the suitability
of PACMANtrans as a valuable dataset for real-life
scenarios, given that a significant proportion of
sentences in such scenarios tend to fall within this
particular length range.

4 Experimental Setup

In several related works discussed in section 2,
specifically with the closest body of research (Sri-
vastava et al., 2020), the authors have fine-tuned
pre-trained models like mBART, mT5, etc. on the



PHINC dataset. Since the PACMANtrans dataset
(5.2M samples) is significantly larger (around 45
times) than the PHINC dataset (13K samples), we
opted to first train domain-agnostic or generic mod-
els for our translation task. This stems from the
fact that the Samanantar Dataset spans several do-
mains (Ramesh et al., 2022).

Consequently, in order to compare against the
PHINC benchmark we followed a dual fine-tuning
strategy by fine-tuning our domain-agnostic trans-
lation models on the PHINC dataset. Through
this strategy, we were able to generate two sets
of transformer-based models, general-purpose and
focused. We also observed the role of dataset size
for the Codemix to English translation task, by
compiling separate models for varied dataset sizes.

4.1 Models
As mentioned, we explored various transformer-
based models for the translation task. We built
different versions of these models as well based
on the dataset size (train/validation/test) they were
built on. The transformer-based models we fine-
tuned are outlined below:

1. T5: The T5 model, introduced by Raffel
et al. (2020), stands for "Text-to-Text Transfer
Transformer" and represents a unifying frame-
work that converts all NLP problems into
a text-to-text format. The ingenuity behind
T5 is the simplification of the NLP pipeline,
where tasks like translation, question answer-
ing, and classification are all framed as gen-
erating text from text. This approach enables
the model to use the same model, loss func-
tion, hyperparameters, etc., across a diverse
range of tasks, potentially simplifying the pro-
cess of training and deploying NLP models
(Raffel et al., 2020). T5’s performance on
benchmark datasets has set new standards,
particularly on the GLUE and SuperGLUE
benchmarks, which are designed to test the
limits of NLP models’ understanding capabili-
ties (Wang et al., 2019b,a). This illustrates the
model’s generalization capabilities and its po-
tential as a powerful tool in the field of natural
language processing.

In our experimental evaluation, as presented
in Table2, we have leveraged two distinct con-
figurations of the T5 model. These configu-
rations are denoted as T51 and T52. T51 was
trained on a dataset comprising 2M samples,

using a training duration of 20 epochs and an
initial learning rate of 1e-3. In contrast, T52
underwent training on a larger dataset consist-
ing of 5.3M samples. The training for T52 also
spanned 20 epochs but employed a lower ini-
tial learning rate of 1e-4. These configurations
were instrumental in our investigations to ana-
lyze the model’s performance under varying
training conditions.

2. mT5: Building upon the success of the orig-
inal T5 model, Google introduced mT5, a
multilingual variant designed to handle tasks
across multiple languages (Xue et al., 2021).
The mT5 model extends the text-to-text frame-
work of T5 to over 100 languages, pre-trained
on a multi-lingual dataset derived from the
Common Crawl corpus. This adaptation al-
lows for the transfer of knowledge across lan-
guages and tasks, benefiting especially low-
resource languages that typically do not have
large dedicated datasets (Xue et al., 2021).

In our experimental setup, we employed the
mT5 small model, which was meticulously
trained over a span of 20 epochs on our
PACMANtrans dataset comprising 500K sam-
ples. The training process was carried out
with a learning rate of 1e-4, encapsulating
the critical configuration aspects of our model
training.

3. NLLB: META’s No Language Left Behind
(NLLB) project aims to develop a model that
offers high-quality machine translation capa-
bilities for the vast majority of the world’s lan-
guages, including those that are low-resource
and typically underrepresented in NLP re-
search (Costa-jussà et al., 2022). The NLLB
model has been trained on a dataset compris-
ing text from 200 languages, with a focus on
inclusivity and language equity. It represents
a significant step towards breaking the lan-
guage barriers in global communication and
information access (Costa-jussà et al., 2022).

In a parallel exploration akin to our investiga-
tion of T5 model variants, we also examined
different configurations of NLLB as shown
in Table 2. As previously mentioned, NLLB
exhibits proficiency in understanding context
across approximately 200 languages, with a
focus on low-resource languages (Goyal et al.,
2022). Our initial NLLB-based model, named



NLLB1, involved fine-tuning the model with
a modest dataset of 10k samples over 15
epochs. Building on this, we expanded the
dataset to 20k samples and increased the train-
ing duration by 10 additional epochs, yield-
ing NLLB2. Notably, the observed efficiency
improvements encouraged us to further ex-
tend our exploration. Thus, we augmented
the dataset to 100k samples and conducted 30
training epochs to create NLLB3. This pro-
gressive approach allowed us to harness the
potential of the NLLB model effectively on
fewer samples than the T5 variants.

4.2 Evaluation Metrics

1. Lexical Based Evaluation: For lexical eval-
uation (word-based evaluation) we used the
BLEU Score or Bilingual Evaluation Under-
study score, introduced by (Papineni et al.,
2002). It is a well-established metric for eval-
uating the quality of machine-generated text,
such as translations. This metric measures the
similarity between the generated text and ref-
erence text(s) using n-gram precision and in-
corporates a brevity penalty to account for the
length of the generated output. BLEU has be-
come a standard benchmark for assessing the
effectiveness of machine translation systems
and has been widely adopted in the natural
language processing community. It provides
an objective and quantitative measure of the
quality of the generated text, allowing for rig-
orous and reproducible evaluation of language
generation tasks.

2. Context Based Evaluation: In the context
of machine translation evaluation, BLEU has
long been regarded as a prominent metric for
assessing the quality of translations. How-
ever, our investigation, focused on codemixed
sentences, revealed an intriguing challenge.
When dealing with CM text, a single sentence
can have multiple correct monolingual trans-
lations. These translations are semantically
accurate but may exhibit less similarity to
the ground truth sentence, resulting in rela-
tively low BLEU scores for otherwise profi-
cient models. In light of this observation, we
extended our evaluation beyond BLEU and
incorporated an assessment of the semantic
similarity or relevance of the translations gen-
erated by the model with the ground truth. To

achieve this, we harnessed BERT-based em-
beddings (Devlin et al., 2019b), capitalizing
on BERT’s contextual understanding of words
in English sentences. Unlike models such
as Word2Vec, where each word possesses a
fixed representation, BERT dynamically ad-
justs word representations based on their sur-
rounding context. By computing the cosine
similarity between these embeddings, we in-
troduced a dual evaluation approach that al-
lows for a more comprehensive assessment of
translation quality in the intricate landscape of
codemix translation evaluation. This metric
draws resemblance with the BERTscore metric
introduced by (Zhang et al., 2019), but differs
in the fact that our context-based metric is
sentence/paragraph based, rather than word-
based as in BERTscore. We named this metric
BERTSemRel.

4.3 Data for Evaluation

1. PACMANtrans unobserved data: For evalu-
ating our domain-agnostic translation models,
we handpicked around 500 samples that con-
stitute a distinct subset of the PACMANtrans
dataset, deliberately chosen to be unfamiliar
to the model. We took care to ensure that
the training data did not overlap with this
subset. These samples encompass a wide
range of characteristics, including ones that
are straightforward, intricate, and tied to spe-
cific domains. This diversity is crucial for a
comprehensive evaluation of the model’s abil-
ity to handle various types of data. We also
selected these samples to pan across different
sentence lengths, CMI values, and representa-
tive of natural codemixing, ensuring fairness
in the experiments conducted. We call this
dataset PACMANunobserved

trans . We conducted a
comparative analysis of our generic transla-
tion models against state-of-the-art LLMs viz.,
Google NMT (Wu et al., 2016), GPT3.5, and
GPT4 (OpenAI, 2023) as baselines.

2. PHINC: Proposed by (Srivastava and Singh,
2020), PHINC is a valuable resource compris-
ing Hinglish with English translation pairs.
This dataset encompasses approximately 13K
parallel pairs, all presented in a Romanized
script. In addition, the authors have thought-
fully provided a set of 1.5K samples specif-
ically for testing. This dataset serves as a



PACMANunobserved
trans dataModels BERTSemRel BLEU-1 BLEU-2 BLEU-3 BLEU-4

T51 0.871 42.009 28.93 20.918 15.644
T52 0.9534 79.53 72.868 66.839 61.43
mT5 0.9723 78.8508 70.4945 62.3976 55.2857

NLLB1 0.9565 67.9977 57.1737 47.9628 40.3967
NLLB2 0.9626 71.8366 61.6381 52.6104 45.1445
NLLB3 0.9675 75.7942 66.321 57.5663 50.1878

Google NMT 0.8215 32.411 20.095 13.823 9.876
GPT3.5 0.9168 49.528 37.074 28.414 22.171
GPT4 0.933 57.347 45.06 35.928 28.847

Table 2: Performance of our cross-domain translation models against state-of-the-art Translation Engines and Large Language
Models on based on PACMANunobserved

trans data based on BLEU Scores and BERTSemRel as discussed in section 4.2. GPT4
exhibits the best performance among the LLMs. T52 stands out in terms of BLEU score. mT5 shows the highest BERTSemRel
score. NLLB3 although trained on significantly smaller data, performs at par with T52 and mT5 for both metrics.

benchmark, facilitating the evaluation of ma-
chine translation (MT) systems in the chal-
lenging domain of Hinglish to English transla-
tion. As already mentioned previously in this
section, we use our dual fine-tuning strategy
(fine-tune our domain-agnostic model) on the
PHINC dataset, for comparative benchmark-
ing of our translation models.

5 Results and Observations

The results of the performances of the models pro-
posed in section 4.1 on the evaluation datasets dis-
cussed in section 4.3 are shown in Table 2 and 4.

5.1 Domain-agnostic Translation Models
In our study, we conducted an evaluation of
several transformer-based models on our novel
PACMANtrans dataset, as detailed in Table2. No-
tably, our analysis reveals intriguing insights into
the performance of these models. Despite being
trained on a relatively smaller dataset of 500K
samples, mT5 demonstrates superior performance
in terms of semantic relevance. This can be at-
tributed to its multilingual proficiency, allowing
it to effectively capture contextual nuances across
languages. Conversely, T52 outshines in terms of
BLEU scores, which rely on n-grams, measuring
the alignment between generated text and ground
truth based purely on word sequence similarity. It
is also worth noting the comparative performance
of T5 and mT5, wherein mT5 holds its ground in
terms of BLEU scores despite its smaller training

dataset.
Furthermore, our exploration extends to different

configurations of the NLLB model, performaning
at par with the T5 variants across both metrics,
even on significantly smaller datasets. It is evident
that the performance of NLLB shows a notable
improvement as the size of the training dataset in-
creases. This observed trend could be attributed
to the model’s remarkable capacity to grasp con-
text across a wide spectrum of languages and do-
mains. Such adaptability potentially enhances its
ability to comprehend context and patterns more
effectively when adapting to new linguistic con-
texts. We intend to delve deeper into this model, as
it exhibits proficiency in generating semantically
enriched translations.

Furthermore, our comparative analysis extends
to established models such as pretrained Google
NMT, GPT3.5, and GPT4. Notably, our model
mT5 surpasses the performance of GPT4 by 2.2%
in terms of semantic relevance and T5 outper-
formed GPT4 by 38.68% in terms of BLEU score .
This discrepancy may be attributed to their lack of
explicit training on codemix text, rendering them
less adept at generating coherent and contextually
appropriate sentences in this domain. Our find-
ings underscore the potential of our models and
the dataset in addressing the unique challenges
posed by codemix language translations. Table3
presents the performances of our models as well as
the baseline LLMs on a PACMANunobserved

trans sam-
ple. This table includes information on the gener-
ated translations, their corresponding BLEU scores,



Hinglish Sentence: Concerned rajya Electricity Boards ko ek specific form mein formal aavedan karnaa hoga.
Ground Truth (English Sentence): A formal application needs to be made in a specific form to the concerned State Electricity Boards.
Model Generated text BLEU-1 BERTSemRel

T51 rajya Electricity Boards. have to make formal avedan in a specific form. 38.46 0.81
T52 A formal application in a specific form has to be made by the concerned State Electricity Boards. 88.24 0.99

NLLB1 The concerned State Electricity Boards. have to make a formal application in a specific form. 58.34 0.95
NLLB22 The concerned State Electricity Boards have to submit a formal application in a specific form. 52.51 0.96
NLLB3 The formal application in a specific form has to be made by the concerned State Electricity Boards. 82.35 0.99

mT5 A formal application in a specific form has to be made by the concerned State Electricity Boards. 88.24 0.99
Google NMT Concerned State Electricity Boards will have to make a formal application in a specific form. 46.68 0.96

GPT3.5 Concerned State Electricity Boards will need to submit a formal application in a specific form. 46.68 0.97
GPT4 The concerned State Electricity Boards will have to make a formal application in a specific form. 52.84 0.97

Table 3: A sample comparison of translations generated by our domain-agnostic models v/s state-of-the-art LLMs.

Variants Models BLEU-1 Score BERTSemRel

Cross-Domain models
(Trained on PACMANtrans only)

T5 25.33 0.85
mT5 27.87 0.87

NLLB 24.3 0.86

Custom Dual Fine-Tuned Models mT5 36.64 0.9
NLLB 27.47 0.88

Baseline Models
PHINCS 15.3 -
mBART 25.3 -

mT5 29.5 -

Table 4: Performance of our dual fine-tuned custom translation model on PHINC dataset over baselines PHINCS(Srivastava and
Singh, 2020) mBART and mT5(Agarwal et al., 2021). Our mT5 dual fine-tuned model surpasses the existing benchmark by
22%.

and BERTSemRel w.r.to the ground truth sentences.
Considering the commendable performance of

our models, we proceeded to conduct a comprehen-
sive evaluation of both the models and the dataset
on the benchmark dataset, as presented in the fol-
lowing section.

5.2 Dual Fine-tuned Models for
benchmarking on PHINC

In light of our models’ robust performance on the
PACMANunobserved

trans dataset, we extended our eval-
uation to the well-established PHINC benchmark
dataset, the results of which are presented in Table
4. Our initial assessments were carried out using
models that had undergone explicit fine-tuning on
PACMANtrans data. Remarkably, our models T5,
mT5 and NLLB with 25.33, 27.87 and 24.3 BLEU
scores surpassed one of the PHINC baseline mod-
els in performance.

Further exploration involved fine-tuning our
PACMAN-trained models on the PHINC train-
ing set (dual fine-tuning), comprising 13K sam-
ples. In this phase, mT5 emerged as the top per-
former, achieving a BLEU score of 0.36 and a
BERTSemRel score of 0.90. These results highlight
the exceptional adaptability of PACMANtrans data.

The dataset’s consistency, error-free nature, and
readability have proven invaluable in imparting the
knowledge required for generating diverse sentence
types, particularly for Hinglish to English transla-
tion.

In Table 4, our study includes baseline mod-
els, namely, PHINC(Srivastava and Singh, 2020),
mBART and mT5(Agarwal et al., 2021). It is note-
worthy that these models underwent fine-tuning
using specific datasets. Google Translate was fine
tuned on PHINC dataset, while both mBART and
mT5 were intially fine-tuned on the dataset pro-
posed by (Zhou et al., 2018) consisting of roughly
10K English and Hinglish codemixed sentences fol-
lowed by fine-tuning on PHINC training dataset.
These tailored fine-tuning approaches were applied
to enhance the performance of these models in the
context of codemix language.

Our analysis illuminates the remarkable efficacy
of transformer-based models imbued with domain-
specific linguistic knowledge. Specifically, when
applied to the challenging task of translating code-
mixed sentences in pretrained languages, these
models demonstrate a marked superiority.

Our investigation underscores a fundamental
truth: The performance of these models is intrin-



sically tied to the nature of the datasets on which
they were meticulously trained. This relationship
is vividly exemplified in Table 4, where our state-
of-the-art (SOTA) model and the baseline model
exhibit striking disparities in their BLEU Scores
and semantic relevance. These discrepancies are
primarily attributed to the contrasting foundational
training datasets, accentuating the pivotal role of
data quality and consistency. Our curated dataset
for this task excels in these dimensions, boasting
grammatical correctness and a unique capacity to
facilitate optimal model learning, resulting in supe-
rior codemix to English translation.

6 Conclusion

In this work, we have presented a comprehensive
approach to the challenge of translating codemixed
text from Hinglish to English. Our contributions
and achievements are summarized as follows:

• We introduced a novel dataset for Hinglish
to English translation, which is more repre-
sentative of the linguistic nuances found in
codemixed social media text. This dataset is
expected to serve as a valuable resource for
future research in codemixed language pro-
cessing.

• Our fine-tuned transformer-based models
have demonstrated a marked improvement
over the existing benchmarks, specifically out-
performing the current state-of-the-art on the
PHINC dataset. This highlights the effective-
ness of our model architecture and training
methodologies.

• Our findings also indicate that the adaptabil-
ity of transformer models to the codemixing
phenomenon can be further improved through
targeted data augmentation strategies, suggest-
ing a new direction for future research.

• Notably, our investigation reveals a pivotal
strategy: Retraining a model initially trained
on generic data with a domain-specific dataset.
This approach yields outcomes that are not
merely improved, but demonstrably superior.

• Lastly, our work contributes to the understand-
ing of codemixing in machine translation, set-
ting the stage for more linguistically-informed
approaches to multilingual NLP.

In conclusion, the advancements presented in
this paper not only push the boundaries of machine
translation for codemixed languages but also pro-
vide insights that could inform the development of
more robust NLP systems capable of handling the
fluid dynamics of human language. We believe that
our contributions will pave the way for more nu-
anced and effective translation systems, fostering
better communication across language barriers.

7 Future Work

The promising results obtained from our current
research lay a solid foundation for several exciting
avenues of future work. We plan to extend our
efforts in the following directions:

• Expansion of the Hinglish Dataset: To fur-
ther enhance the robustness and applicability
of our translation models, we aim to expand
our novel dataset to capture a wider spectrum
of the Hinglish language, including regional
variations and different genres of communica-
tion.

• Inclusion of Other Codemixed Language
Pairs: Building on the success of our cur-
rent transformer-based models, we plan to ex-
plore their application to other codemixed lan-
guage pairs such as Spanish-English, Marathi-
English, Telugu-English etc.. By adapting
our approach to these new language pairs,
we hope to address the under representation
of such languages in machine translation re-
search.

• Cross-Lingual Transfer Learning: Inves-
tigating cross-lingual transfer learning tech-
niques is another area we are keen to ex-
plore. By leveraging models trained on
high-resource language pairs, we aim to im-
prove translation quality for low-resource
codemixed languages, which often suffer from
data scarcity.

By addressing these goals, we hope not only to
refine the translation mechanisms for Hinglish but
also to extend our methodologies to a broader array
of codemixed languages, promoting inclusivity and
linguistic diversity in the NLP community.
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