
 

 
 

Abstract 

Transformers, being the forefront of 

Natural Language Processing and a pioneer 

in the recent developments, we tweak the 

very fundamentals of the giant Deep 

Learning model in this paper. For long 

documents, the conventional Full Self-

Attention exceeds the compute power and 

the memory requirement as it scales 

quadratically. Instead, if we use a Local 

Self-Attention using a sliding window, we 

lose the global context present in the input 

document which can impact the 

performance of the task in hand. For long 

documents (ranging from 500 to 16K 

tokens), the proposed Dispersed 

Hierarchical Attention component captures 

the local context using a sliding window 

and the global context using a linearly-

scaled dispersion approach. This achieves 

O(N) linear complexity, where N is the 

length of the input sequence or document. 

1 Introduction 

Due to the advent of Transformers, the 

technological world, especially in the field of 

Natural Language Processing has grown by leaps 

and bounds. The impact spans from the GPT 

(Radford et al., 2018), (Radford et al., 2019), 

(Brown et al., 2020), (Black et al., 2022) models 

that have repeatedly made headlines in the main 

stream media to Github’s Copilot 

(https://copilot.github.com). Though it is 

said that the Transformers model is a culmination 

of many ideas such as transfer learning, stacked 

neural networks, the basic fundamental concept 

that revolutionized the ideology of transformers is 

definitely the attention mechanism (Vaswani et al., 

2017). 

 

Let us now look at the concept of attention 

mechanism using a concrete example of abstractive 

text summarization. Earlier, the task of abstractive 

text summarization (Tunstall et al., 2022) was 

achieved using the Encoder – Decoder framework 

(Sutskever et al., 2014). It involves an encoder 

stack which encodes the entire text document to be 

summarized into a numerical representation called 

the last hidden state. Taking this as input, the 

summary of the input text document is given as 

output by the decoder. For the task at hand, it is 

nearly impossible for the last hidden state to 

contain all the important information said in the 

given input document. And since the last hidden 

state is the only piece of information that the 

decoder receives, the entire task in hand is 

compromised. 

 
Figure 1: Encoder-Decoder Framework for a pair of 

RNNs demonstrating the information bottleneck. 

 

To eradicate the shortcomings of the information 

bottleneck which produces sub-optimal results, at 

every stage, the encoder generates a hidden state, 

mitigating the loss of important information. In the 

process of overcoming the information bottleneck, 

we end up moving from the frying pan into the fire. 

It is realized that there is information overload by 

creating a huge input corpus for the decoder while 

using all the encoder-generated states 

simultaneously. Therefore, there is a need for a 

mechanism to prioritize the encoder states which 

must be considered and given more attention by the 

decoder. 
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Figure 2: Encoder-Decoder framework for a pair of 

RNNs with an attention mechanism. 

 

Here is a preview. This paper aims at 

1) elaborating extensively on the 

formulation of different attention 

mechanisms 

2) proposing a new variation of attention 

mechanism 

3) discussing where the proposed attention 

mechanism can be used as an application 

4) evaluating the changes in complexity 

which in turn leads to better performance. 

2 Formulation 

2.1 Self-Attention 

The most predominantly used form of attention 

mechanism is Self-Attention (Bahdanau et al., 

2014) also known as Intra-Attention. As the name 

suggests, instead of using a fixed encoding scheme 

for embedding every input token, self-attention 

uses the entire input document to determine the 

attention scores of every token present. For a 

particular token t and for its corresponding 

sequence of token embeddings t1,t2,…,tn, the 

results after applying self-attention creates a new 

sequence of embedding, t1
′ , t2

′ , … , tn
′ .  

 
Figure 3: Based on the attention weights, the token ‘tear’ 

is giving more weightage to ‘paper’ and ‘pieces’ 

 

Every embedding present in the new sequence (ti
′) 

is a linear combination of token embedding of the 

jth token (tj): 

ti
′ = ∑ wji tj

N

j̇=1
  (1) 

ti
′  s are contextualized embeddings (Peters et al., 

2018) because for every token, the entire context of 

the document is being used via the normalized 

attention weights wji. 

For instance, in an input sequence, “She will tear 

the paper into pieces” with the entire context, we 

can determine that ‘tear’ is a verb and in another 

sequence, “A tear rolled down her cheek”, the same 

word is considered to be a noun with the provided 

contextual information. Likewise, the embedding 

for a token change drastically using Self-Attention 

which inherently takes context into account. 

 

2.2 Scaled Dot-Product Attention 

 

Considering a BERT (Devlin et al., 2019) 

transformer model, every token present in the input 

sequence is embedded into a vector of 768 

dimensions. Therefore, if there are N unique tokens 

present in a sequence, the order of the entire corpus’ 

token embedding matrix will be N x 768. Being the 

most common form of Self-Attention, the Scaled 

Dot-Product Attention (Vaswani et al., 2017) 

projects every single token embedding of length 

768 into three different vectors namely Query (Q), 

Key (K) and Value (V) which are obtained via 

linear transformations on the input token 

embedding. 

 

The similarity between Query and Key is found by 

simply calculating the dot-product between Q and 

K via matrix multiplication. Each value of the 

resultant vector represents how much attention 

must be paid towards other tokens present in the 

corresponding position of the vector. For an input 

document having N unique tokens, the resultant 

matrix representing the attention scores is of the 

order N x N. The attention scores are normalized in 

such a manner that it now contains the attention 

weights wji. Eventually, the attention weights are 

used on the Self-Attention formulation discussed 

earlier to produce the newly updated token 

embedding where vj is the value vector v1,v2,…,vn 

of the jth token (tj). 

ti
′ = ∑ wji vj

N

j̇=1
  (2) 
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Figure 4: Visualization of computation of attention weights using Query (q) and Key (k) vectors2 

The visualization in Figure 4 helps in picturizing 

the entire process of Scaled Dot-Product Attention 

through the neuron_view module present in the 

BertViz Library (Vig, J., 2019). 

 

2.3 Multi-Headed Attention 

 

As discussed in section 2.2, Query (Q), Key (K) 

and Value (V) vectors are a result of the 

independent linear transformations acting on the 

input sequence token embeddings. The attention 

head, formed by the three vectors, is responsible for 

the resultant attention scores. In Multi-Headed 

Attention, the existing attention mechanism is 

improvised by using multiple attention heads and 

parallelizing the computation to form its 

corresponding Scaled Dot-Product Attention. 

 
Figure 5: Flow of the Multi-Headed Attention Layer 

 

Why is there a need to use multiple heads? These 

multiple heads can be compared to the numerous 

filters present in a typical Convolutional Neural 

Network (CNN) (Lecun et al., 1998) where each 

and every filter extracts a set of features from the 

given image. Likewise, in a Natural Language 

Processing setting, each and every attention head 

can be used to extract different dependencies and 

correlations from an input sequence ranging from 

evaluating the subject-verb agreement to finding 

articles, adverbs, adjectives, prepositions, 

conjunctions and interjections. 

 
Figure 6: Identification of ‘tear’ as a verb and a noun 

based on context and its corresponding dependencies via 

Multi-Headed Attention 

 

2.4 Sliding Window Attention 

 

Matrix multiplication being a very compute 

intensive task, finding the attention scores for all 

the tokens present in a long document having a 

very large corpus of length, say N, will result in an 

N x N matrix. To reduce the complexity of this 

operation and to take the local context instead of 

the global context into consideration, the Sliding 

Window Attention (Luong et al., 2015), also known 

as Local Self Attention, was proposed. 

 

In Sliding Window Attention, a window of fixed 

length, w is considered and the attention scores are 

calculated only for the neighboring tokens of any 

particular token. Exactly, for w/2 number of 

neighboring tokens on either side of the current 

token is to be taken as part of the local window. 

Through this, the complexity of the original 

attention which is O(N2) being quadratic, is 

reduced to O(N), thus becoming linear. This is 

achieved as there will only be N x w non-zero 

attention scores in the N x N attention matrix. 



 

 
 

2.5 Dilated Sliding Window Attention 

 

Inspired by the concept of Dilated CNNs (Lei et al., 

2019), a new attention mechanism was brought 

forth which came to be known as the Dilated 

Sliding Window Attention. It is computationally 

equivalent to the Sliding Window Attention 

discussed earlier but it has a larger receptive field. 

This difference is achieved by using fixed evenly 

size gaps of length d in between each neighboring 

token. If in a case, the fixed window size, w is 4 

and the fixed dilation size, d is 1, Figure 7 

pictorially represents the set of neighboring tokens 

that are considered for the calculation of attention 

scores with the entire input sequence, N spanning 

to 20 tokens. 

 
Figure 7: Dilated Sliding Window Attention containing 

number of tokens, N = 20 with window size, w = 4 and 

dilation, d = 1 

 

In the context of a Multi-Headed Attention 

mechanism, Beltagy et al., 2020 discusses that the 

performance of the transformer model improves 

while using a conventional Sliding window 

attention (without dilation) to capture the local 

context present in the input text document. On the 

other hand, in a different attention head, using a 

Dilated Sliding Window Attention mechanism with 

varying configurations help to capture the 

important tokens on a context much larger than the 

conventional one. 

 

 

3 Variation 

From the plethora of attention mechanisms (Niu et 

al., 2021) that have been explained in the previous 

sections, we find a commonality. If an attention 

mechanism tries to comprehend the entire input 

document using the Full (Global) Self-Attention, 

the computational requirements and the memory 

requirements increase in a quadratic manner. While 

processing long documents, the above stated 

methodology is rendered incompatible. Acting 

upon this, if we downsize the attention mechanism 

to Sliding Window or Dilated Sliding Window, 

though the complexity and the memory usage 

come down drastically, the global context of the 

entire input document is lost and only a local 

context is captured. 

 

Here is a variation in the attention component 

which tries to comprehend the global context of the 

entire document along with the local context. 

Intuitively, the neighboring tokens contain more 

weightage for any given token and therefore ideally 

these said tokens have to be given more attention. 

As we move away from the token, the importance 

of the respective tokens which are not in close 

proximity decreases. This intuition forms the 

theoretical basis of the proposed attention 

component – Dispersed Hierarchical Attention. 

Dispersed Hierarchical Attention is a combination 

of Sliding Window Attention along with a linearly-

scaled dispersion on either sides of the token 

embedding.  

 
Figure 8: Dispersed Hierarchical Attention containing 

number of tokens, N = 20 with window size, w = 4 



 

 
 

The sliding window contributes to the local context 

and the linearly-scaled dispersion considers token 

with reducing importance with respect to the 

decrease in proximity. This methodology still 

manages to capture the global context to some 

extent as well. From Figure 8, though it may not be 

evident for a small scope of N = 20 tokens, the 

dispersion occurs in a linear manner as we lose 

proximity with the corresponding token 

embedding thus reducing the quadratic complexity.  

AttWindow =  N + (N − w)w + 2 ∑ (w − i)
w/2

i̇=1
  (3) 

Equation (3) calculates the total number of tokens 

for which the attention scores are calculated while 

using the Sliding Window Attention (Figure 9) of 

size, w and the entire sequence length, N. 

 
Figure 9: Sliding Window Attention containing number 

of tokens, N = 20 with window size, w = 4 

 

 

Algorithm 1 – To find the calculated number of 

Attention Scores excluding the Sliding Window 

 

Input: 

1. N (integer) – Number of Tokens 

2. w (integer) – Size of the Sliding Window 

 

Output: 

Total_Attention (integer) – Number of 

scores to be calculated 

 

Description: This algorithm calculates the total 

number of attention scores that will be taken into 

account while using the Dispersed Hierarchical 

Attention Component excluding the tokens that are 

a part of the defined sliding window. 

 

Step 1: Read the input values N and w 

Step 2: Initialize variables 

a) count to 3 

b) num to 1 

c) i to 0 

d) sum to 0 

e) flag to True 

Step 3: While flag is True, repeat the following: 

a) for each j in the range of count 

(1) If i is equal to N - w, set flag to 

False and exit the loop 

(2) Increment i by 1 

(3) Add num to sum 

b) Increment num by 1 

c) Increment count by 1 

Step 4: Calculate the Total_Attention as 2*sum 

Step 5: Output (or) return the Total_Attention 

 

Taking the values from the figure shown above, we 

calculate the total number of attention scores to be 

calculated from the attention matrix by substituting 

the values in Equation (3) and the total number of 

attention score is found be 94. The total number of 

attention scores while using the Dispersed 

Hierarchical Attention can be found by adding the 

number of attention scores present in the sliding 

window from equation (3) and the number of 

attention scores that are given as output from 

Algorithm 1.  

 

We can also mathematically find the number of 

attention scores via the steps given below. If you 

notice the attention matrix of the Dispersed 

Hierarchical Attention mechanism, there is an 

innate series of number of tokens to either side of 

the token excluding the sliding window. 

 

The series is as follows:  

1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, … 

x = floor ((√2(N − w + 3) +
1

4
) −

1

2
) − 2  (4) 

Equation (4) will give us the value of x which 

denotes till which number the above series will go 

on given the sequence length, N and window size, 

w. Basically, all the numbers in the series must be 

summed up to find the number of attention scores 

to be calculated on either the lower triangular 

matrix or the upper triangular matrix of the 

Attention matrix.  

 



 

 
 

1 + 1 + 1 + 2 + 2 + 2 + 2 + 3 + 3 + 3 + 3 + 3 + … 

Let the xth term in the series be Tx and let Sx be the 

sum of all the terms present in the series, then 

Sx = 3 + 8 + 15 + 24 + ⋯ + Tx            (5) 

Since T1 = 1(1+2) = 3, T2 = 2(2+2), T3 = 3(3+2) 

We derive that, 

Tx = x(x + 2)  (6) 

Substituting (6) in (5), we get 

Sx = ∑Tx (7) 

Solving (7), 

Sx =
x(x+1)(2x+7)

6
 (8) 

One important point that has to be noted is that, 

based on the number of input tokens, N, there is a 

possibility that the series is never fully complete 

and therefore in that case a part of the last entry has 

to be removed and for that we do the further 

calculations given below. 

Remainder = ((N − w) − ∑ m) (d − 1)
d+2

ṁ=3
   (9) 

The remainder is a (negative) number that can be 

subtracted from Sx. Therefore, the final refined 

formula for finding the total number of attention 

scores, AttDispersed is given below via Equation (10) 

by combining the Equations (3), (8) and (9) 

AttDispersed =  AttWindow + Sx + Remainder   (10) 

4 Application 

In the previous section, the proposed variation for 

the attention component present in the transformer 

model was discussed. It also provided us with the 

formulation of the total number of attention scores 

for any given sequence of input length, N and 

window size, w. The next step is to create a function 

(Algorithm 2) for the Dispersed Hierarchical 

Attention Mechanism so that it can be replaced 

with the existing attention functions and can be 

imbibed in a transformer.  

 

The algorithm divides the sequence into local 

windows (sliding window) and calculates the 

attention scores within those windows to capture 

the local context. To capture the global context, 

attention scores for the dispersed tokens to the right 

and left of the local window are calculated. The gap 

sequence defined in Algorithm 2 spans from 2 to 

180 in order to accommodate the input sequence 

length up to 16470 tokens (Equation (11)). 

n(n+1)

2
+ 𝑛  (11) 

Since, the Longformer (Beltagy et al., 2020) 

Transformer can take documents containing tokens 

up to 16384, the specified gap sequence is the 

maximum that the proposed attention can span. 

 

Algorithm 2 – Dispersed Hierarchical Attention 

 

Input: 

1. sequence (2D array) – A sequence of 

input tokens where each token is a 1D 

array (token embedding). 

2. window_size (integer) – The size of the 

sliding window. 

Output: 

attention_matrix (2D array) – The 

matrix representing the attention scores 

between tokens in the input sequence. 

 

Description: The “Dispersed Hierarchical 

Attention” algorithm calculates attention scores 

between tokens present in the input sequence using 

a linearly-scaled dispersion approach. 

 

Step 1: Initialize variables 

a) sequence_len to length of the 

sequence 

b) Create an empty 2D array 

attention_matrix of size 

sequence_len x sequence_len and 

initialize all the elements to zero 

c) window_size to window_size integer 

divided by 2 

Step 2: For each token in the sequence, repeat the 

following: 

a) Initialize a loop for size in the range of 

window_size + 1 

i) Calculate the right index j as i + size 

ii) If j is less than sequence_len, 

attention_matrix[i, j] is the attention 

score calculated between token in index 

i (current token) and j 

iii) Calculate the reverse index rev as i – 

size 

iv) If rev is greater than or equal to 0, 

attention_matrix[i, rev] is the attention 

score calculated between the current 

token and the token present in index rev 

b) Create a list gap representing a gap 

sequence [2, 3, 4, …, 180] 

c) For each gap g, update j as j + g 



 

 
 

 

i) If j is less than sequence_len, 

attention_matrix[i, j] is the attention 

score calculated between token in index 

i (current token) and j 

d) Update j as i – window_size 

e) For each gap g, update j as j - g 

i) If j is greater than or equal to 0, 

attention_matrix[i, j] is the attention 

score calculated between token in index 

i (current token) and j 

Step 3: Return the attention_matrix containing 

attention scores between tokens 

 

Once the tokens are identified, say i and j, a range 

of similarity metrics such as a simple dot product 

of the 1D vectors, cosine similarity (Graves et al., 

2014), Euclidean distance, Manhattan distance or 

using more complex calculations like a custom 

similarity metric (Thongtan et al., 2019) can be 

used to calculate the actual attention score between 

token i and token j. 

5 Evaluation 

To evaluate the performance of the proposed 

attention, we use a comparative approach (Table 1) 

with differing lengths of input sequences on Full 

(Global) Attention, Sliding Window Attention and 

Dispersed Hierarchical Attention. From the second 

column in Table 1, it is evident that, as the input 

sequence N increases, there is a massive surge in 

the number of attention scores computed which is 

the entire attention matrix while using the Full Self-

Attention exhibiting quadratic scaling.  

 
Figure 10: Difference between the above two quantities 

is the percent of Attention scores calculated to either 

sides of the Sliding Window 

 

From columns 3 and 4, it is observed that the 

Sliding Window Attention substantially decreases 

the aforementioned requirements. When the 

document length, N becomes greater than 500, the 

attention matrix is a very sparse matrix with less 

than 1% of the entire elements being non-zero. The 

sliding window does its role of reducing the 

complexity but it comes with the cost of not 

capturing the global context which plays a 

significant role in Natural Language Processing 

and Natural Language Understanding tasks   such 

as  Text Summarization and Sentiment Analysis.

Sequence 

Length / # 

Tokens in 

the input 

document, 

N 

Window Size, w = 4 

Full Attention 

O(N2) 

Sliding Window Attention 

O(N) – Local Context 

Dispersed Hierarchical Attention 

O(N) – Global + Local Context 

Total No. of 

Calculated Att. 

Scores 

Total No. of 

Calculated 

Att. Scores 

Deviation from 

Global Self 

Attention 

Total No. of 

Calculated 

Att. Scores 

Deviation from 

Global Self 

Attention 

10 100 44 44.000% 62 62.000% 

50 2500 244 9.760% 700 28.000% 

100 10000 494 4.940% 1962 19.620% 

500 250000 2494 0.998% 21524 8.610% 

1000 1000000 4994 0.499% 60550 6.055% 

5000 25000000 24994 0.100% 671500 2.686% 

10000 100000000 49994 0.050% 1895358 1.895% 

15000 225000000 74994 0.033% 3478806 1.546% 

16384 268435456 81914 0.031% 3970510 1.479% 
 Table 1: Comparative Analysis of Full, Sliding Window and Dispersed Hierarchical Attention with window size of 

4 and with varying sequence length, N
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Even if the sliding window size w is varied, the 

results don’t vary substantially in terms of 

deviation and therefore, the window size is 

normalized at w = 4. The proposed mechanism – 

Dispersed Hierarchical Attention – does a fair job 

of capturing the local and the global context. 

During which, it keeps the number of attention 

scores calculated in the resultant sparse attention 

matrix to a bare minimum. In the process, the 

newly defined attention component achieves linear 

complexity. On comparison, the deviation of 

Sliding Window and Dispersed Hierarchical 

Attention from the Full Self-Attention (Figure 10), 

it is visualized that even for very large documents 

for which the sequence length, N is up to 16384 

tokens, the Dispersed Self Attention gives 

approximately 1.5% of the entire attention matrix 

(~39 Lakh attention scores) that will intuitively 

give an overall picture of the entire document 

instead of relying on the Sliding Window Attention 

which gives a meager 0.03% of the attention matrix 

(~82K attention scores) that captures the local 

context. 

 

6 Conclusion and Future Work 

This novel work mainly focuses on reducing the 

complexity of the attention mechanism used in the 

transformer model. In the proposed attention 

mechanism, selective tokens which are linearly 

dispersed from the query are used as keys. This 

addresses the problem of considering the local and 

global context associated with large input 

documents while potentially lowering computing 

and memory costs. The solution proposed brings 

the understanding of both the local and global 

context to middle ground. In future, the proposed 

Dispersed Hierarchical Attention mechanism can 

be integrated with a series of transformer models 

replacing the existing attention mechanisms 

implemented and could be tested on the efficiency 

improved in performing various NLP tasks such as 

Text Summarization, Question Answering, 

Sentiment Analysis and Machine Translation. 
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