

Abstract

Transformers, being the forefront of

Natural Language Processing and a pioneer

in the recent developments, we tweak the

very fundamentals of the giant Deep

Learning model in this paper. For long

documents, the conventional Full Self-

Attention exceeds the compute power and

the memory requirement as it scales

quadratically. Instead, if we use a Local

Self-Attention using a sliding window, we

lose the global context present in the input

document which can impact the

performance of the task in hand. For long

documents (ranging from 500 to 16K

tokens), the proposed Dispersed

Hierarchical Attention component captures

the local context using a sliding window

and the global context using a linearly-

scaled dispersion approach. This achieves

O(N) linear complexity, where N is the

length of the input sequence or document.

1 Introduction

Due to the advent of Transformers, the

technological world, especially in the field of

Natural Language Processing has grown by leaps

and bounds. The impact spans from the GPT

(Radford et al., 2018), (Radford et al., 2019),

(Brown et al., 2020), (Black et al., 2022) models

that have repeatedly made headlines in the main

stream media to Github’s Copilot

(https://copilot.github.com). Though it is

said that the Transformers model is a culmination

of many ideas such as transfer learning, stacked

neural networks, the basic fundamental concept

that revolutionized the ideology of transformers is

definitely the attention mechanism (Vaswani et al.,

2017).

Let us now look at the concept of attention

mechanism using a concrete example of abstractive

text summarization. Earlier, the task of abstractive

text summarization (Tunstall et al., 2022) was

achieved using the Encoder – Decoder framework

(Sutskever et al., 2014). It involves an encoder

stack which encodes the entire text document to be

summarized into a numerical representation called

the last hidden state. Taking this as input, the

summary of the input text document is given as

output by the decoder. For the task at hand, it is

nearly impossible for the last hidden state to

contain all the important information said in the

given input document. And since the last hidden

state is the only piece of information that the

decoder receives, the entire task in hand is

compromised.

Figure 1: Encoder-Decoder Framework for a pair of

RNNs demonstrating the information bottleneck.

To eradicate the shortcomings of the information

bottleneck which produces sub-optimal results, at

every stage, the encoder generates a hidden state,

mitigating the loss of important information. In the

process of overcoming the information bottleneck,

we end up moving from the frying pan into the fire.

It is realized that there is information overload by

creating a huge input corpus for the decoder while

using all the encoder-generated states

simultaneously. Therefore, there is a need for a

mechanism to prioritize the encoder states which

must be considered and given more attention by the

decoder.

Dispersed Hierarchical Attention Network for Machine Translation and

Language Understanding on Long Documents with Linear Complexity

Ajay Mukund S and K. S. Easwarakumar

Department of Computer Science and Engineering, Anna University, Chennai, Tamilnadu
ajaymukund1998@gmail.com, easwara@annauniv.edu

https://copilot.github.com/
mailto:ajaymukund1998@gmail.com
mailto:easwara@annauniv.edu

Figure 2: Encoder-Decoder framework for a pair of

RNNs with an attention mechanism.

Here is a preview. This paper aims at

1) elaborating extensively on the

formulation of different attention

mechanisms

2) proposing a new variation of attention

mechanism

3) discussing where the proposed attention

mechanism can be used as an application

4) evaluating the changes in complexity

which in turn leads to better performance.

2 Formulation

2.1 Self-Attention

The most predominantly used form of attention

mechanism is Self-Attention (Bahdanau et al.,

2014) also known as Intra-Attention. As the name

suggests, instead of using a fixed encoding scheme

for embedding every input token, self-attention

uses the entire input document to determine the

attention scores of every token present. For a

particular token t and for its corresponding

sequence of token embeddings t1,t2,…,tn, the

results after applying self-attention creates a new

sequence of embedding, t1
′ , t2

′ , … , tn
′ .

Figure 3: Based on the attention weights, the token ‘tear’

is giving more weightage to ‘paper’ and ‘pieces’

Every embedding present in the new sequence (ti
′)

is a linear combination of token embedding of the

jth token (tj):

ti
′ = ∑ wji tj

N

j̇=1
 (1)

ti
′ s are contextualized embeddings (Peters et al.,

2018) because for every token, the entire context of

the document is being used via the normalized

attention weights wji.

For instance, in an input sequence, “She will tear

the paper into pieces” with the entire context, we

can determine that ‘tear’ is a verb and in another

sequence, “A tear rolled down her cheek”, the same

word is considered to be a noun with the provided

contextual information. Likewise, the embedding

for a token change drastically using Self-Attention

which inherently takes context into account.

2.2 Scaled Dot-Product Attention

Considering a BERT (Devlin et al., 2019)

transformer model, every token present in the input

sequence is embedded into a vector of 768

dimensions. Therefore, if there are N unique tokens

present in a sequence, the order of the entire corpus’

token embedding matrix will be N x 768. Being the

most common form of Self-Attention, the Scaled

Dot-Product Attention (Vaswani et al., 2017)

projects every single token embedding of length

768 into three different vectors namely Query (Q),

Key (K) and Value (V) which are obtained via

linear transformations on the input token

embedding.

The similarity between Query and Key is found by

simply calculating the dot-product between Q and

K via matrix multiplication. Each value of the

resultant vector represents how much attention

must be paid towards other tokens present in the

corresponding position of the vector. For an input

document having N unique tokens, the resultant

matrix representing the attention scores is of the

order N x N. The attention scores are normalized in

such a manner that it now contains the attention

weights wji. Eventually, the attention weights are

used on the Self-Attention formulation discussed

earlier to produce the newly updated token

embedding where vj is the value vector v1,v2,…,vn

of the jth token (tj).

ti
′ = ∑ wji vj

N

j̇=1
 (2)

 1

Figure 4: Visualization of computation of attention weights using Query (q) and Key (k) vectors2

The visualization in Figure 4 helps in picturizing

the entire process of Scaled Dot-Product Attention

through the neuron_view module present in the

BertViz Library (Vig, J., 2019).

2.3 Multi-Headed Attention

As discussed in section 2.2, Query (Q), Key (K)

and Value (V) vectors are a result of the

independent linear transformations acting on the

input sequence token embeddings. The attention

head, formed by the three vectors, is responsible for

the resultant attention scores. In Multi-Headed

Attention, the existing attention mechanism is

improvised by using multiple attention heads and

parallelizing the computation to form its

corresponding Scaled Dot-Product Attention.

Figure 5: Flow of the Multi-Headed Attention Layer

Why is there a need to use multiple heads? These

multiple heads can be compared to the numerous

filters present in a typical Convolutional Neural

Network (CNN) (Lecun et al., 1998) where each

and every filter extracts a set of features from the

given image. Likewise, in a Natural Language

Processing setting, each and every attention head

can be used to extract different dependencies and

correlations from an input sequence ranging from

evaluating the subject-verb agreement to finding

articles, adverbs, adjectives, prepositions,

conjunctions and interjections.

Figure 6: Identification of ‘tear’ as a verb and a noun

based on context and its corresponding dependencies via

Multi-Headed Attention

2.4 Sliding Window Attention

Matrix multiplication being a very compute

intensive task, finding the attention scores for all

the tokens present in a long document having a

very large corpus of length, say N, will result in an

N x N matrix. To reduce the complexity of this

operation and to take the local context instead of

the global context into consideration, the Sliding

Window Attention (Luong et al., 2015), also known

as Local Self Attention, was proposed.

In Sliding Window Attention, a window of fixed

length, w is considered and the attention scores are

calculated only for the neighboring tokens of any

particular token. Exactly, for w/2 number of

neighboring tokens on either side of the current

token is to be taken as part of the local window.

Through this, the complexity of the original

attention which is O(N2) being quadratic, is

reduced to O(N), thus becoming linear. This is

achieved as there will only be N x w non-zero

attention scores in the N x N attention matrix.

2.5 Dilated Sliding Window Attention

Inspired by the concept of Dilated CNNs (Lei et al.,

2019), a new attention mechanism was brought

forth which came to be known as the Dilated

Sliding Window Attention. It is computationally

equivalent to the Sliding Window Attention

discussed earlier but it has a larger receptive field.

This difference is achieved by using fixed evenly

size gaps of length d in between each neighboring

token. If in a case, the fixed window size, w is 4

and the fixed dilation size, d is 1, Figure 7

pictorially represents the set of neighboring tokens

that are considered for the calculation of attention

scores with the entire input sequence, N spanning

to 20 tokens.

Figure 7: Dilated Sliding Window Attention containing

number of tokens, N = 20 with window size, w = 4 and

dilation, d = 1

In the context of a Multi-Headed Attention

mechanism, Beltagy et al., 2020 discusses that the

performance of the transformer model improves

while using a conventional Sliding window

attention (without dilation) to capture the local

context present in the input text document. On the

other hand, in a different attention head, using a

Dilated Sliding Window Attention mechanism with

varying configurations help to capture the

important tokens on a context much larger than the

conventional one.

3 Variation

From the plethora of attention mechanisms (Niu et

al., 2021) that have been explained in the previous

sections, we find a commonality. If an attention

mechanism tries to comprehend the entire input

document using the Full (Global) Self-Attention,

the computational requirements and the memory

requirements increase in a quadratic manner. While

processing long documents, the above stated

methodology is rendered incompatible. Acting

upon this, if we downsize the attention mechanism

to Sliding Window or Dilated Sliding Window,

though the complexity and the memory usage

come down drastically, the global context of the

entire input document is lost and only a local

context is captured.

Here is a variation in the attention component

which tries to comprehend the global context of the

entire document along with the local context.

Intuitively, the neighboring tokens contain more

weightage for any given token and therefore ideally

these said tokens have to be given more attention.

As we move away from the token, the importance

of the respective tokens which are not in close

proximity decreases. This intuition forms the

theoretical basis of the proposed attention

component – Dispersed Hierarchical Attention.

Dispersed Hierarchical Attention is a combination

of Sliding Window Attention along with a linearly-

scaled dispersion on either sides of the token

embedding.

Figure 8: Dispersed Hierarchical Attention containing

number of tokens, N = 20 with window size, w = 4

The sliding window contributes to the local context

and the linearly-scaled dispersion considers token

with reducing importance with respect to the

decrease in proximity. This methodology still

manages to capture the global context to some

extent as well. From Figure 8, though it may not be

evident for a small scope of N = 20 tokens, the

dispersion occurs in a linear manner as we lose

proximity with the corresponding token

embedding thus reducing the quadratic complexity.

AttWindow = N + (N − w)w + 2 ∑ (w − i)
w/2

i̇=1
 (3)

Equation (3) calculates the total number of tokens

for which the attention scores are calculated while

using the Sliding Window Attention (Figure 9) of

size, w and the entire sequence length, N.

Figure 9: Sliding Window Attention containing number

of tokens, N = 20 with window size, w = 4

Algorithm 1 – To find the calculated number of

Attention Scores excluding the Sliding Window

Input:

1. N (integer) – Number of Tokens

2. w (integer) – Size of the Sliding Window

Output:

Total_Attention (integer) – Number of

scores to be calculated

Description: This algorithm calculates the total

number of attention scores that will be taken into

account while using the Dispersed Hierarchical

Attention Component excluding the tokens that are

a part of the defined sliding window.

Step 1: Read the input values N and w

Step 2: Initialize variables

a) count to 3

b) num to 1

c) i to 0

d) sum to 0

e) flag to True

Step 3: While flag is True, repeat the following:

a) for each j in the range of count

(1) If i is equal to N - w, set flag to

False and exit the loop

(2) Increment i by 1

(3) Add num to sum

b) Increment num by 1

c) Increment count by 1

Step 4: Calculate the Total_Attention as 2*sum

Step 5: Output (or) return the Total_Attention

Taking the values from the figure shown above, we

calculate the total number of attention scores to be

calculated from the attention matrix by substituting

the values in Equation (3) and the total number of

attention score is found be 94. The total number of

attention scores while using the Dispersed

Hierarchical Attention can be found by adding the

number of attention scores present in the sliding

window from equation (3) and the number of

attention scores that are given as output from

Algorithm 1.

We can also mathematically find the number of

attention scores via the steps given below. If you

notice the attention matrix of the Dispersed

Hierarchical Attention mechanism, there is an

innate series of number of tokens to either side of

the token excluding the sliding window.

The series is as follows:

1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, …

x = floor ((√2(N − w + 3) +
1

4
) −

1

2
) − 2 (4)

Equation (4) will give us the value of x which

denotes till which number the above series will go

on given the sequence length, N and window size,

w. Basically, all the numbers in the series must be

summed up to find the number of attention scores

to be calculated on either the lower triangular

matrix or the upper triangular matrix of the

Attention matrix.

1 + 1 + 1 + 2 + 2 + 2 + 2 + 3 + 3 + 3 + 3 + 3 + …

Let the xth term in the series be Tx and let Sx be the

sum of all the terms present in the series, then

Sx = 3 + 8 + 15 + 24 + ⋯ + Tx (5)

Since T1 = 1(1+2) = 3, T2 = 2(2+2), T3 = 3(3+2)

We derive that,

Tx = x(x + 2) (6)

Substituting (6) in (5), we get

Sx = ∑Tx (7)

Solving (7),

Sx =
x(x+1)(2x+7)

6
 (8)

One important point that has to be noted is that,

based on the number of input tokens, N, there is a

possibility that the series is never fully complete

and therefore in that case a part of the last entry has

to be removed and for that we do the further

calculations given below.

Remainder = ((N − w) − ∑ m) (d − 1)
d+2

ṁ=3
 (9)

The remainder is a (negative) number that can be

subtracted from Sx. Therefore, the final refined

formula for finding the total number of attention

scores, AttDispersed is given below via Equation (10)

by combining the Equations (3), (8) and (9)

AttDispersed = AttWindow + Sx + Remainder (10)

4 Application

In the previous section, the proposed variation for

the attention component present in the transformer

model was discussed. It also provided us with the

formulation of the total number of attention scores

for any given sequence of input length, N and

window size, w. The next step is to create a function

(Algorithm 2) for the Dispersed Hierarchical

Attention Mechanism so that it can be replaced

with the existing attention functions and can be

imbibed in a transformer.

The algorithm divides the sequence into local

windows (sliding window) and calculates the

attention scores within those windows to capture

the local context. To capture the global context,

attention scores for the dispersed tokens to the right

and left of the local window are calculated. The gap

sequence defined in Algorithm 2 spans from 2 to

180 in order to accommodate the input sequence

length up to 16470 tokens (Equation (11)).

n(n+1)

2
+ 𝑛 (11)

Since, the Longformer (Beltagy et al., 2020)

Transformer can take documents containing tokens

up to 16384, the specified gap sequence is the

maximum that the proposed attention can span.

Algorithm 2 – Dispersed Hierarchical Attention

Input:

1. sequence (2D array) – A sequence of

input tokens where each token is a 1D

array (token embedding).

2. window_size (integer) – The size of the

sliding window.

Output:

attention_matrix (2D array) – The

matrix representing the attention scores

between tokens in the input sequence.

Description: The “Dispersed Hierarchical

Attention” algorithm calculates attention scores

between tokens present in the input sequence using

a linearly-scaled dispersion approach.

Step 1: Initialize variables

a) sequence_len to length of the

sequence

b) Create an empty 2D array

attention_matrix of size

sequence_len x sequence_len and

initialize all the elements to zero

c) window_size to window_size integer

divided by 2

Step 2: For each token in the sequence, repeat the

following:

a) Initialize a loop for size in the range of

window_size + 1

i) Calculate the right index j as i + size

ii) If j is less than sequence_len,

attention_matrix[i, j] is the attention

score calculated between token in index

i (current token) and j

iii) Calculate the reverse index rev as i –

size

iv) If rev is greater than or equal to 0,

attention_matrix[i, rev] is the attention

score calculated between the current

token and the token present in index rev

b) Create a list gap representing a gap

sequence [2, 3, 4, …, 180]

c) For each gap g, update j as j + g

i) If j is less than sequence_len,

attention_matrix[i, j] is the attention

score calculated between token in index

i (current token) and j

d) Update j as i – window_size

e) For each gap g, update j as j - g

i) If j is greater than or equal to 0,

attention_matrix[i, j] is the attention

score calculated between token in index

i (current token) and j

Step 3: Return the attention_matrix containing

attention scores between tokens

Once the tokens are identified, say i and j, a range

of similarity metrics such as a simple dot product

of the 1D vectors, cosine similarity (Graves et al.,

2014), Euclidean distance, Manhattan distance or

using more complex calculations like a custom

similarity metric (Thongtan et al., 2019) can be

used to calculate the actual attention score between

token i and token j.

5 Evaluation

To evaluate the performance of the proposed

attention, we use a comparative approach (Table 1)

with differing lengths of input sequences on Full

(Global) Attention, Sliding Window Attention and

Dispersed Hierarchical Attention. From the second

column in Table 1, it is evident that, as the input

sequence N increases, there is a massive surge in

the number of attention scores computed which is

the entire attention matrix while using the Full Self-

Attention exhibiting quadratic scaling.

Figure 10: Difference between the above two quantities

is the percent of Attention scores calculated to either

sides of the Sliding Window

From columns 3 and 4, it is observed that the

Sliding Window Attention substantially decreases

the aforementioned requirements. When the

document length, N becomes greater than 500, the

attention matrix is a very sparse matrix with less

than 1% of the entire elements being non-zero. The

sliding window does its role of reducing the

complexity but it comes with the cost of not

capturing the global context which plays a

significant role in Natural Language Processing

and Natural Language Understanding tasks such

as Text Summarization and Sentiment Analysis.

Sequence

Length / #

Tokens in

the input

document,

N

Window Size, w = 4

Full Attention

O(N2)

Sliding Window Attention

O(N) – Local Context

Dispersed Hierarchical Attention

O(N) – Global + Local Context

Total No. of

Calculated Att.

Scores

Total No. of

Calculated

Att. Scores

Deviation from

Global Self

Attention

Total No. of

Calculated

Att. Scores

Deviation from

Global Self

Attention

10 100 44 44.000% 62 62.000%

50 2500 244 9.760% 700 28.000%

100 10000 494 4.940% 1962 19.620%

500 250000 2494 0.998% 21524 8.610%

1000 1000000 4994 0.499% 60550 6.055%

5000 25000000 24994 0.100% 671500 2.686%

10000 100000000 49994 0.050% 1895358 1.895%

15000 225000000 74994 0.033% 3478806 1.546%

16384 268435456 81914 0.031% 3970510 1.479%
 Table 1: Comparative Analysis of Full, Sliding Window and Dispersed Hierarchical Attention with window size of

4 and with varying sequence length, N

1

0.000%

10.000%

20.000%

30.000%

40.000%

50.000%

60.000%

70.000%

Sliding Window Deviation Vs. Dispersed

Hierarchical Deviation

Sliding Window Deviation

Dispersed Hierarchical Deviation

Even if the sliding window size w is varied, the

results don’t vary substantially in terms of

deviation and therefore, the window size is

normalized at w = 4. The proposed mechanism –

Dispersed Hierarchical Attention – does a fair job

of capturing the local and the global context.

During which, it keeps the number of attention

scores calculated in the resultant sparse attention

matrix to a bare minimum. In the process, the

newly defined attention component achieves linear

complexity. On comparison, the deviation of

Sliding Window and Dispersed Hierarchical

Attention from the Full Self-Attention (Figure 10),

it is visualized that even for very large documents

for which the sequence length, N is up to 16384

tokens, the Dispersed Self Attention gives

approximately 1.5% of the entire attention matrix

(~39 Lakh attention scores) that will intuitively

give an overall picture of the entire document

instead of relying on the Sliding Window Attention

which gives a meager 0.03% of the attention matrix

(~82K attention scores) that captures the local

context.

6 Conclusion and Future Work

This novel work mainly focuses on reducing the

complexity of the attention mechanism used in the

transformer model. In the proposed attention

mechanism, selective tokens which are linearly

dispersed from the query are used as keys. This

addresses the problem of considering the local and

global context associated with large input

documents while potentially lowering computing

and memory costs. The solution proposed brings

the understanding of both the local and global

context to middle ground. In future, the proposed

Dispersed Hierarchical Attention mechanism can

be integrated with a series of transformer models

replacing the existing attention mechanisms

implemented and could be tested on the efficiency

improved in performing various NLP tasks such as

Text Summarization, Question Answering,

Sentiment Analysis and Machine Translation.

7 References

Alec Radford, Karthik Narasimhan, Tim Salimans, and

Ilya Sutskever. 2018. Improving language

understanding by generative pre-training.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,

Dario Amodei, and Ilya Sutskever. 2019. Language

models are unsupervised multitask learners. OpenAI

blog 1, no. 8 (2019): 9.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind

Neelakantan, Pranav Shyam, Girish Sastry, Amanda

Askell, Sandhini Agarwal, Ariel Herbert-Voss,

Gretchen Krueger, Tom Henighan, Rewon Child,

Aditya Ramesh, Daniel Ziegler, Jeffrey Wu,

Clemens Winter, Chris Hesse, Mark Chen, Eric

Sigler, Mateusz Litwin, Scott Gray, Benjamin

Chess, Jack Clark, Christopher Berner, Sam

McCandlish, Alec Radford, Ilya Sutskever, and

Dario Amodei. 2020. Language models are few-shot

learners. Advances in neural information processing

systems, 33, pp.1877-1901.

Sid Black, Stella Biderman, Eric Hallahan, Quentin

Anthony, Leo Gao, Laurence Golding, Horace He,

Connor Leahy, Kyle McDonell, Jason Phang,

Michael Pieler, USVSN Sai Prashanth, Shivanshu

Purohit, Laria Reynolds, Jonathan Tow, Ben Wang,

and Samuel Weinbach. 2022. Gpt-neox-20b: An

open-source autoregressive language model. arXiv

preprint arXiv:2204.06745.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob

Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz

Kaiser, and Illia Polosukhin. 2017. Attention is all

you need. Advances in neural information

processing systems, 30.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.

Sequence to sequence learning with neural networks.

Advances in neural information processing systems,

27.

Lewis Tunstall, Leandro von Werra, and Thomas Wolf.

2022. Natural Language Processing with

Transformers. United States: O'Reilly Media.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua

Bengio. 2014. Neural machine translation by jointly

learning to align and translate. arXiv preprint

arXiv:1409.0473.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt

Gardner, Christopher Clark, Kenton Lee, and Luke

Zettlemoyer. 2018. Deep Contextualized Word

Representations. In Proceedings of the 2018

Conference of the North American Chapter of the

Association for Computational Linguistics: Human

Language Technologies, Volume 1 (Long Papers),

pages 2227–2237, New Orleans, Louisiana.

Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. 2019. BERT: Pre-training of

deep bidirectional transformers for language

understanding. In Proceedings of the 2019

Conference of the North American Chapter of the

Association for Computational Linguistics: Human

Language Technologies, Volume 1 (Long and Short

https://www.mikecaptain.com/resources/pdf/GPT-1.pdf
https://www.mikecaptain.com/resources/pdf/GPT-1.pdf
https://insightcivic.s3.us-east-1.amazonaws.com/language-models.pdf
https://insightcivic.s3.us-east-1.amazonaws.com/language-models.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/abs/2204.06745
https://arxiv.org/abs/2204.06745
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://www.google.co.in/books/edition/Natural_Language_Processing_with_Transfo/nzxbEAAAQBAJ?hl=en&gbpv=0
https://www.google.co.in/books/edition/Natural_Language_Processing_with_Transfo/nzxbEAAAQBAJ?hl=en&gbpv=0
https://arxiv.org/pdf/1409.0473.pdf
https://arxiv.org/pdf/1409.0473.pdf
https://aclanthology.org/N18-1202.pdf
https://aclanthology.org/N18-1202.pdf
https://arxiv.org/pdf/1810.04805.pdf
https://arxiv.org/pdf/1810.04805.pdf
https://arxiv.org/pdf/1810.04805.pdf

Papers), pages 4171–4186, Minneapolis,

Minnesota.

Jesse Vig. 2019. A multiscale visualization of attention

in the transformer model. arXiv preprint

arXiv:1906.05714. 12 Jun 2019.

https://doi.org/10.48550/arXiv.1906.05714

Yann Lecun, Leon Bottou, Yoshua Bengio, and Patrick

Haffner. 1998. Gradient-based learning applied to

document recognition. In Proceedings of the IEEE,

vol. 86, no. 11, pp. 2278-2324, Nov. 1998, doi:

10.1109/5.726791.

Minh-Thang Luong, Hieu Pham, and Christopher D.

Manning. 2015. Effective approaches to attention-

based neural machine translation. arXiv preprint

arXiv:1508.04025.

https://doi.org/10.48550/arXiv.1508.04025

Xinyu Lei, Hongguang Pan, and Xiangdong Huang.

2019. A dilated CNN model for image classification.

IEEE Access, 7, pp.124087-124095.

Iz Beltagy, Matthew E. Peters, and Arman Cohan.

2020. Longformer: The long-document transformer.

arXiv preprint arXiv:2004.05150.

https://doi.org/10.48550/arXiv.2004.05150

Zhaoyang Niu, Guoqiang Zhong, and Hui Yu. 2021. A

review on the attention mechanism of deep learning.

Neurocomputing, 452, pp.48-62.

https://doi.org/10.1016/j.neucom.2021.03.091

Alex Graves, Greg Wayne, and Ivo Danihelka. 2014.

Neural turing machines. arXiv preprint

arXiv:1410.5401.

https://doi.org/10.48550/arXiv.1410.5401

Tan Thongtan and Tanasanee Phienthrakul. 2019.

Sentiment Classification Using Document

Embeddings Trained with Cosine Similarity. In

Proceedings of the 57th Annual Meeting of the

Association for Computational Linguistics: Student

Research Workshop, pages 407–414, Florence,

Italy. Association for Computational Linguistics.

https://arxiv.org/pdf/1906.05714.pdf
https://arxiv.org/pdf/1906.05714.pdf
https://doi.org/10.48550/arXiv.1906.05714
https://ieeexplore.ieee.org/abstract/document/726791?casa_token=nQ1SqWP-baUAAAAA:9ul5xZpDSEitqrZGav-1eYNQsTCkE301h8LusWmsrFBYODfJTYg3NIH759ASShq9A1UouluE9y8
https://ieeexplore.ieee.org/abstract/document/726791?casa_token=nQ1SqWP-baUAAAAA:9ul5xZpDSEitqrZGav-1eYNQsTCkE301h8LusWmsrFBYODfJTYg3NIH759ASShq9A1UouluE9y8
https://arxiv.org/pdf/1508.04025.pdf
https://arxiv.org/pdf/1508.04025.pdf
https://doi.org/10.48550/arXiv.1508.04025
https://ieeexplore.ieee.org/abstract/document/8756165
https://arxiv.org/pdf/2004.05150.pdf
https://doi.org/10.48550/arXiv.2004.05150
https://www.sciencedirect.com/science/article/abs/pii/S092523122100477X
https://www.sciencedirect.com/science/article/abs/pii/S092523122100477X
https://doi.org/10.1016/j.neucom.2021.03.091
https://arxiv.org/pdf/1410.5401.pdf
https://doi.org/10.48550/arXiv.1410.5401
https://aclanthology.org/P19-2057v2.pdf
https://aclanthology.org/P19-2057v2.pdf

