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Abstract

In this work, we present EASE, a simple but de-
pendable Data Augmentation (DA) technique
for Text Classification (TC) that has four easy
steps: Extract Units, Acquire Labels, Sift and
Employ. We extract meaningful units as aug-
mented samples from original data samples and
use powerful tools to acquire labels for them
before they are sifted and merged. Previous DA
techniques, like EDA-Easy DA (Wei and Zou,
2019) and AEDA-An Easier DA (Karimi et al.,
2021), excel with sequential, RNN-based mod-
els but struggle with BERT (Devlin et al., 2019)
and other transformer-based models that heav-
ily rely on token order. EASE, in contrast, per-
forms well with these models, demonstrating
stability, speed, and minimal adverse effects.
We tested our intuitive method on multiple chal-
lenging datasets sensitive to augmentation, and
experimental results have indicated the efficacy
of DA with EASE.

1 Introduction

DA is a fairly common technique in Machine Learn-
ing, especially in Computer Vision and Speech
Recognition, and there are many standard ways of
doing it. For example, simply flipping or rotating
an image and labeling it the same as the original
sample is quite logical. While these techniques
do involve elements of randomness, they can still
be regarded as logically labeled samples, distinct
from random noise. This distinction is essential
for enhancing the interpretability of complex deep
learning models, a challenge often encountered
in several notable NLP DA techniques, including
EDA (Wei and Zou, 2019) and AEDA (Karimi
et al., 2021), among others.

In EDA (Wei and Zou, 2019), four random op-
erations—Random Synonym Replacement, Ran-
dom Insertion, Random Swap, and Random Dele-
tion—are employed. These operations, when ap-
plied even moderately, can significantly alter the
original text’s meaning in text classification. A
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Figure 1: Averaged accuracy accross all datasets and
models used in the low-resource experiments.

single token replacement, for instance, can reverse
the sentiment of a sentence. Similarly, In AEDA
(Karimi et al., 2021), random punctuation marks
like question marks and periods are inserted into
samples, radically altering sentence structure and
causing confusion in the training model. Despite
their proven effectiveness in ideal situations, these
techniques often hinder performance. Particularly
in the era of Transformers (Vaswani et al., 2017),
where positional encodings are crucial and depend
on token order, random rearrangement disrupts the
models’ contextual understanding. Hence, the de-
mand for a DA method that accounts for this critical
aspect became apparent.

The rise of large language models, such as BERT-
base (110M parameters), necessitates a DA (DA)
technique that avoids substantial expansion of the
training set and the associated increase in train-
ing time. Notably, EDA and AEDA suggest a
substantial 9-10 times dataset size augmentation,
significantly impacting fine-tuning duration. Fur-
thermore, transformer-based models have eclipsed
RNN-based models, rendering experiments with
EDA or AEDA on the latter obsolete. These mod-
els’ potent bidirectional contextual representations



demand robust DA methods and more challenging
datasets. Given the substantial resources needed
for fine-tuning, a reliable DA approach that min-
imizes hyper-parameter search and ensures favor-
able outcomes is essential. Additionally, previous
complexities attributed to resource constraints, like
GPUs and user-friendly frameworks, are no longer
valid arguments, enabling the seamless application
of intricate processes to crucial tasks such as DA.

We developed a 4-step technique for text clas-
sification data augmentation that is time-efficient,
stable, intuitive and outperforms existing DA meth-
ods. Our experiments with five transformer-based
models and four datasets validate our approach,
showecasing its superior performance and reliability
(Figure 1 and 2).

2 Relevant Studies

In NLP, DA can be challenging due to the contex-
tual nature of the data. Preserving relative word
positions is crucial for contextual text embedding,
but many existing DA techniques disrupt coherence
by introducing random synonyms, punctuations, or
altering token order. Regarding ground truth, re-
search falls into two categories: one conserves the
original ground truth, while the other generates
ground truth based on the augmented sample, with
subsequent studies aligning with one of these ap-
proaches.

Fadaee et al. (2017) introduced Translation DA
for Neural Machine Translation (NMT) by re-
placing common words with unique words in
both source and target sentences. Sennrich et al.
(2016) used automatic translation of additional
monolingual data for NMT augmentation. Back-
translation techniques, as employed by Silfverberg
etal. (2017) and Yu et al. (2018), aimed to capture
paraphrases for various NLP settings. In addition
to EDA (Wei and Zou, 2019), other studies focused
on synonym replacements (e.g., Wang and Yang,
2015; Kolomiyets et al., 2011; Zhang et al., 2015).
Kobayashi (2018) replaced words with predicted
words from BERT, while Andreas (2020) replaced
sentence segments with similar contextual counter-
parts. Sun et al. (2020) used transformers to inter-
polate input sequences for generating new samples
and labels. Additionally, Karimi et al. (2021) com-
pared their work with Xie et al. (2017), viewing
it as a data-noising approach to enhance training
architectures in NLP.

Many of these approaches, such as AEDA

(Karimi et al., 2021) and the work by Xie et al.
(2017), often resemble data-noising methods rather
than true DA, lacking coherent sentence structures
in augmented samples. This falls short of achiev-
ing the clarity and human interpretability found in
computer vision’s approach. To address this, our
method extracts coherent, meaningful units from
samples, leading to logical samples that surpass ex-
isting techniques that disrupt token orders. While
most of our experiments focus on text classification
due to space constraints, our approach is adaptable
to various NLP tasks and holds the potential to
become an industry standard.
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Figure 2: EASE has significantly fewer negative-
impacts on performance with different hyper-parameters
compared to EDA & AEDA

3 EASE

DA with EASE has 4 easy steps that are intuitive
and effective.

Extracting Units: In EASE, the most critical
step involves extracting meaningful units as aug-
mented samples. The choice of unit depends on the
sample structure. For paragraphs, we recommend
extracting sentences using the NLTK library (Bird
et al., 2009). When dealing with sentences, we sug-
gest extracting "Facts" as introduced by Yuan et al.
(2020). These Facts represent coherent sentence
units containing logical information. They also pre-
serve token sequences crucial for attention mecha-
nisms in Transformer-based models. For detailed
information on extracting facts from sentences, we
refer readers to Yuan et al. (2020).

Label Acquisition: In the subsequent EASE
step, labels are obtained using pretrained models.
The extracted meaningful token sequences make it
straightforward for pretrained models to generate
high-quality labels without the need for additional
training. For our experiments, we employed the



Dataset Method | Accuracy
. Original | 86.94%
Large Movie —gpA~1"8¢ 729
Review  "™2EDA | 86.5%
Dataset = E A sE 1 87.64%
Original | 58.67%
Sentiment EDA 57.93%
140 AEDA 58.23%
EASE 60.20 %
Original | 84.50%
Financial EDA 85.20%
Phrase Bank | AEDA 84.72%
EASE 85.10%
Original | 88.55%
Customer EDA 88.54%
Review AEDA 88.32%
EASE 89.10%

Table 1: Comparing EASE, EDA, AEDA for four dif-
ferent datasets in low-resource scenarios by varying the
number of augmented samples from small to full size.
For Customer Review, the numbers represent average
accuracy over three different training subsets with one
model, for the other datasets the average is taken over 5
different models and augmentation size variations (Com-
plete detail available in Appendix D). Bold suggests the
best performance across each column for each dataset.

Dataset Method | Accuracy
.| Original | 53.37%
Large Movie g5 2356 57%
Review AEDA | 53.08%
Datasel I —FASE | 67.82%
Original | 44.15%
Sentiment EDA 44.91%
140 AEDA 45.69%
EASE 46.00 %
Original | 55.12%
Financial EDA 55.35%
Phrase Bank | AEDA 55.89%
EASE 56.22%

Table 2: Comparison among EASE, EDA, AEDA for
three different datasets in extremely low-resource sce-
narios (only 10 training samples). The performances
represent the average over 5 different models (Complete
detail available in Appendix D). Bold suggests the best
performance across each column for each dataset, and
parentheses suggest a negative impact on performance)

default pretrained DistilBERT model (fine-tuned
on the SST-2 dataset (Socher et al., 2013)) from the
HuggingFace library (Wolf et al., 2020) for label
generation. In the results section, we present abla-
tion studies to highlight the significance of this step.
Nevertheless, it is worth noting that our method can
yield promising results even without the label ac-
quisition process.

Sift & Employ : In the "Sift" step, we recom-
mend filtering out smaller-length samples. In our
experiments, we retained 10%, 25%, 50%, or 100%
of the augmented samples, but it rarely adversely af-
fects performance. This optional step underscores
the stability of our method, which is not a random
noise injector but a DA technique that complements
original training samples. Subsequently, in the
"Employ" step, the augmented samples are seam-
lessly integrated with the original ones completing
the final training set.

4 Experimental Setup

We view EDA & AEDA to be the most relevant to
our study and showcase performance comparisons
for these two methods. Fine-tuning for transform-
ers is usually performed for 5-15 epochs, and from
all our experiments, we observe that max valida-
tion accuracy is reached before the 30th epoch for
these models, but we still performed all the fine-
tuning for up to 50 epochs for completeness (More
detail on performance saturation in Appendix B).
The compared methods differ in augmentation pro-
cesses: they generate a fixed number of augmented
samples per original sample (recommended from 1
to 16), while our approach adapts to sample struc-
ture. On average, Fact extraction increases the
training dataset by 2.3 times, and sentence extrac-
tion by 5.92 times.

4.1 Datasets and Models

For our experiments we used four different senti-
ment classification datasets. Large Movie Review
Dataset IMDBS50K or IMDB) (Maas et al., 2011),
Financial Phrasebank (Malo et al., 2014), Customer
Review (Hu and Liu, 2004), and Sentiment 140
(Go et al., 2009). We used five different models
for our experiments. These are, Bert-base-cased,
Bert-base-uncased (Devlin et al., 2019), Distilbert-
base-cased, Distilbert-base-uncased (Sanh et al.,
2019) and Albert-base-v1 (Lan et al., 2020). We
used Huggingface’s (Wolf et al., 2020) implementa-
tion of these models, a popular Transformer library.



5 Results

5.1 Low-Resource Setting

The original datasets, comprising high number
of samples (e.g., 25,000 for IMDBS50K, 1.6 Mil-
lion for Sentiment 140), is adequate for high-
performing models like Transformers. To simulate
a low-resource scenario, we use only a small sub-
set (e.g., 1000 for Sentiment 140) of the original
training sets for data augmentation and generate
significantly lower amount of augmented samples
compared to EDA & AEDA. (DA) (Details in Ap-
pendix D).

In the Sentiment 140 dataset, we have observed
that EASE derives benefits from generating aug-
mented samples for the Neutral class, a class that is
absent in the original training set but exists in the
test set. This stands in contrast to EDA and AEDA.
Additionally, EASE demonstrates superior stability
and performance.

We observe higher accuracy gain and fewer neg-
ative impacts with EASE on average across the
board (table 1 & figure 2). Even though, on av-
erage, the accuracy gain seems to be higher for
EDA, we see the highest accuracy gain of 3.2% in
bert-base-cased and fewer negative-impacts with
our method for Financial Phrase Bank (Complete
table in Appendix D).

Although this study focuses on low-resource sce-
narios, we still show that our method has promise
in high-resource scenarios. Tests on the CR dataset
using different portions of the original dataset (500,
2000, and Full) shows that even with the com-
plete dataset, our method outperforms the two other
methods, with approximately 10-16x fewer num-
ber of augmented samples required (table 1, see
Appendix fig. 5 for details).

On an average, we see the best accuracy improve-
ment in 3 out of the 4 datasets with EASE (figure
3). While the other two methods fail to achieve
performance boost on an average on 3 out of the
4 datasets, EASE steadily increases performance
across all the four different datasets, speaking to
the robust nature of our method.

5.2 Extremely Low-Resource Setting

We test the robustness of our method by simulating
extremely low-resource scenarios where only 10
training samples are available for fine-tuning and
therefore, augmentation. Table 2 demonstrates that
even in extremely low-resource setting our method
outperforms the other two methods.

EEDA
AEDA
mEASE
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CR IMDBS50K
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Figure 3: Average accuracy increase over different
datasets. EASE showing greater number of and more
stable accuracy improvement compared to EDA &
AEDA

6 Ablation Study

EASE EASE-A

Avg. Acc. Gain | 1.12% -0.50%
Neg. Impact 16% 60%
Pos. Impact 84% 40%

Table 3: Average Performance of EASE vs EASE with-
out Acquiring labels on IMDB50K & S140

As an ablation study, we try to measure how
important acquiring new labels for the augmented
samples is. We use IMDB50K & S140 dataset
and test our method by preserving labels. We use
the same augmented and original dataset partitions
used in typical experiments. The details are summa-
rized in table 3. See Appendix table 8 for details.

7 Conclusion

We introduced an efficient DA technique for TC
that improves accuracy without significantly ex-
tending training time. Our method outperforms
AEDA & EDA in performance, stability, and effi-
ciency. While currently tailored for TC, we envi-
sion its adaptation to various NLP tasks with mini-
mal modifications. For instance, equivalent units
can be derived from larger samples for Machine
Translation using the same technique as EASE to
feed the model augmented samples that provide a
more nuanced and granular understanding of the
training text. Future work will explore additional
extraction units and label acquisition methods.
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A Example Augmentations

Table 4 shows two different kinds of augmentated
samples with EASE.

Text Label
Fact Extraction

The monitor is simply amaz- | pos
ing, however, it does not sup-
port HDMI input
The monitor is simply amaz- | pos
ing, however,
it does not support HDMI in- | neg
put

Sentence Extraction
Actually I’m surprised there | pos
were sO many comments
about this movie. I saw it as
part of a Slavic film festival at
a major American University.
But nobody in USA has heard
of it, which is a real shame!
Actually I’m surprised there | pos
were sO many comments
about this movie.
I saw it as part of a Slavic film | pos
festival at a major American
University.
But nobody in USA has heard | neg
of it, which is a real shame!

Data

Orig.

Aug. 1

Aug. 2

Orig.

Aug. 1

Aug. 2

Aug. 3

Table 4: Original sentence and the augmented samples
generated and labelled through EASE using Fact or
Sentence Extraction.

—bert-base-cased

Accuracy

bert-base-uncased
0.65 distilbert-base-cased
0.6 distilbert-base-uncased

0.55 ——albert-base-v1

1357 91113151719212325272931333537394143454749
Epoch

Figure 4: Performance Saturation after 30 epochs for
the unaugmented IMDB50K dataset with 500 samples
over different models

B Performance Saturation

Since the transformer models are already pretrained
on unlabelled data, very little amount of fine-tuning
is required to gain good task-oriented performance
from them. It also must be noted that because of
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Original EASE EDA AEDA
Train  Test Small Med  Full Small Med  Full Small Med  Full
CR 500 451 56 282 564 500 2500 4500 | 500 4000 8000
CR 2000 451 216 1083 2167 | 2000 10000 18000 | 2000 8000 32000
CR 4067 451 443 2217 4434 | 4067 20335 36603 | 4067 32536 65072
IMDB | 500 25000 | 1000 - 5962 | 500 - 4500 | 500 - 4000
FinPB | 1000 485 123 - 1235 | 1000 - 8000 | 1000 - 9000
S140 | 1000 497 111 559 1118 | 1000 5000 9000 | 1000 4000 8000

Table 5: Number of augmentations used in each experiments for each dataset and each method

the large size of the Transformer based models,
even fine-tuning for 50 epochs on multiple GPUs
using distributed strategies requires a long time.
We discuss more about this in the subsequent sec-
tion. In all our experiments, we have observed
that the validation accuracy in most scenarios sat-
urates after the 30th epoch. In figure 4 we show
how fine-tuning for more than 30 epochs is not
required. Nevertheless, we still performed all our
experiments for 50 epochs for completeness.

full

med

EASE

T

small

full

med

AEDA

small

full

med

EDA

small

Original

84.00% 85.00% 86.00% 87.00% 88.00% 89.00% 90.00% 91.00%

4067 (Full) ®m2000 =500

Figure 5: Performance comparison on CR dataset on
different training set size using bert-base-cased

C Discussion on Training Time

While GPUs are more accessible and distributed
training with tools like PyTorch Lightning (Fal-
con, 2019) has simplified, neural network mod-
els are growing larger to balance it out. Trans-
former models are notorious for taking a massive

amount of time for training. To put things into per-
spective, fine-tuning the Bert-base-cased model for
50 epochs with AEDA-full-augmented IMDB50K
dataset (4500 training samples & 25000 testing
samples) with 2 Nvidia Tesla P100 GPUs (Each
with 16GB Memory) required 12.6 Hours and
AEDA-full-augmented Customer Review dataset
(65,072 training samples and 451 testing samples)
required 26.3 hours. Naturally, searching hyper-
parameter (number of augmentation) to figure out
the optimal augmented dataset that boosts perfor-
mance is a non-trivial factor to consider while
choosing the data augmentation method. For the
Customer Review dataset, it took more than 2 days
of training to get the results for the different num-
ber of augmentation samples, while our method
took only 3.4 hours of training. After exploring
this vast search space, our method boosted perfor-
mance 8 out of 9 times, whereas AEDA boosted
performance 3 out of 9 times (average performance
gain is also in the negative for AEDA). In a low-
training-resource scenario, the amount of DA is
essential, so a dependable method is required. For
these reasons, although our method outperforms
EDA & AEDA, we also want to focus on the time-
efficient and stable nature of our method.

D Training Set Size and Performance
Details

To simulate low-resource settings, small subsets of
original training sets were used. Table 5 presents
these numbers for each dataset. Model-wise per-
formances are laid out in table 6 for low-resource
experiments, in table 7 for extremely-low resource
experiments, and in table 8 for the ablation study of
label preservation. Customer Review dataset were
partitioned into 3 different sets and the accuracy
comparisons are showcased in figure 5.



bert-base- bert-base- distilbert- distilbert- albert-base-
cased uncased base-cased base-uncased vl
Large Movie Review Dataset
Original 86.92% 89.20% 85.36% 88.38% 84.86%
+EDA-small 87.04% (88.58%) (85.03%) (86.84%) 85.17%
+EDA-full 87.26% (88.22%) (85.26%) (87.63%) 86.59%
+AEDA-small 87.31% (88.98%) (84.62%) (87.37%) 85.59%
+AEDA-full (85.83%) (88.26%) (84.98%) (86.50%) 85.52%
+EASE-small 87.74% 89.40% 85.47% (87.72%) 86.46%
+EASE-full 88.01% 89.60 % 86.80% (87.72%) 87.50%
Sentiment 140
Original 60.36% 60.56% 59.15% 57.75% 55.53%
+EDA-small 60.56% 61.77% 59.15% 57.95% 56.14%
+EDA-medium (58.35)% (58.95%) (57.34%) 58.15% (54.12%)
+EDA-full (57.75)% (58.55%) (57.95%) (57.55%) (54.73%)
+AEDA-small (58.95)% (60.36%) (58.55%) 58.55% 56.14%
+AEDA-medium | (59.96)% (60.36%) (58.35%) (56.94%) 56.74%
+AEDA-full (58.15)% (59.96%) (56.34%) 57.75% 56.34%
+EASE-small (59.76)% 63.18% (58.75%) 58.55% 57.75%
+EASE-medium | 60.97% 62.17% 59.96 % 60.36% 57.95%
+EASE-full 62.98 % 62.37% 59.96 % 61.97% 56.34%
Financial Phrase Bank
Original 84.12% 87.01% 83.71% 84.33% 83.30%
+EDA-small 85.36% (86.80%) 84.33% 85.77 % 84.12%
+EDA-full 84.95% 87.01% 85.98 % 85.77% (81.86%)
+AEDA-small 86.80% (84.95%) (83.30%) 84.33% (83.09%)
+AEDA-full (84.74%) 87.84% (83.09%) 85.36% 83.71%
+EASE-small 87.22% (84.74%) 83.92% 84.54% 83.92%
+EASE-full 86.19% 87.63% 84.54% 84.95% 83.30%

Table 6: Comparing EASE, EDA, AEDA for the IMDBS50K, S140 & FinPB datasets in low-resource scenarios by
varying the number of augmented samples from small to full size. Bold suggests best performance across each
column for each dataset, and parentheses suggest negative-impact on performance



bert-base-cased bert-base- distilbert-base-  distilbert-base-  albert-base-v1
uncased cased uncased
Large Movie Review Dataset
Original | 51.85% 54.19% 52.36% 55.97% 52.49%
EDA 54.75% 58.67% 54.41% 61.92% 50.36%
AEDA (51.52%) (53.18%) 52.72% 56.11% (51.91%)
EASE 64.18% 74.85 % 69.27 % 72.16% 58.66 %
Sentiment 140
Original | 40.24% 60.00% 40.44% 40.04% 40.04%
EDA (37.22%) 60.00% 45.67% (37.83%) 43.86%
AEDA (37.63%) 60.62% 45.88% (39.64%) 44.67 %
EASE 40.44 % (59.79%) 46.88 % 41.05% 41.85%
Financial Phrase Bank
Original | 59.38% 36.61% 59.38% 60.83% 59.38%
EDA 59.38% 38.83% 59.38% 61.03% (58.14)%
AEDA 59.38% 39.64 % 59.38% 61.65% (59.18)%
EASE 59.38% 38.63% 61.86 % 61.86 % 59.38 %

Table 7: Comparing EASE, EDA, AEDA for the IMDBS50K, S140 & FinPB datasets in extremely low-resource
scenarios (10 Samples) over 5 different models. Bold suggests best performance across each column for each
dataset, and parentheses suggest negative-impact on performance

bert-base- bert-base- distilbert- distilbert- albert-base-
cased uncased base-cased base-uncased vl
Large Movie Review Dataset
Original 86.92% 89.20% 85.36% 88.38% 84.86%
+EASE-small 87.74% 89.40% 85.47% (87.72%) 86.46%
-A (86.48%) (88.93%) (84.30%) (87.16%) 86.02%
+EASE-full 88.01% 89.60 % 86.80% (87.72%) 87.50%
-A 87.13% 89.21% 85.41% (87.36%) 86.01%
Sentiment 140

Original 60.36% 60.56% 59.15% 57.75% 55.53%
+EASE-small (59.76)% 63.18% (58.75%) 58.55% 57.75%
-A (58.75%) 60.56% 59.36% 59.36% (54.53%)
+EASE-medium | 60.97% 62.17% 59.96 % 60.36% 57.95%
-A (58.35)% 60.76% (58.15%) 58.15% (53.52%)
+EASE-full 62.98 % 62.37% 59.96 % 61.97 % 56.34%
-A (58.95)% (59.15%) (55.73%) (56.94%) (54.93%)

Table 8: EASE’s performance after preserving labels (EASE vs EASE-A). Bold suggests the best performance
across each column of each dataset, and parentheses suggest a negative impact on performance.



