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Abstract

We present a comparative study of a state-of-
the-art traditional modular Automatic Speech
Recognition (Kaldi ASR) and an end-to-end
ASR (wav2vec 2.0) for a well-resourced lan-
guage (Spanish) and a low-resourced language
(Irish). We created ASRs for both languages
and evaluated their performance under differ-
ent update regimes. Our results show that the
end-to-end wav2vec 2.0 outperforms the modu-
lar ASR for both languages in terms of Word
Error Rate (WER) but performs worst in terms
of real-time decoding. We also addressed the
issue of non-lexical words in wav2vec 2.0’s
output. We found that in wav2vec 2.0 by LM
integration with shallow fusion and increasing
LM weight to 0.7 and 0.8 respectively for the
Spanish and Irish provided the optimum ASR
performance by reducing non-lexical words.
However, this does not eliminate all non-lexical
words. Finally, our study found that Kaldi ASR
would perform best for real-time decoding for
longer audio inputs compared to wav2vec 2.0
model trained on the same dataset on the mini-
mal infrastructure, although wav2vec 2.0’s per-
formance can be improved with a GPU accel-
eration in backend. These results may have
significant implications for creating real-time
ASR services, especially for low-resourced lan-
guages.

1 Introduction

Traditional modular ASR frameworks decompose
the ASR task into acoustic, pronunciation, and lan-
guage modeling e.g. Povey et al. (2011). The
modular approach of ASR is knowledge-based and
provides flexibility in training one’s own acoustic
model (AM) and language model (LM), in com-
bination with a dedicated customised vocabulary.
The knowledge-based modular approach allows
adequate performance in specific domains like spe-
cific languages, dialects or speakers. A modular
ASR can be tailored to the specific domain or
task, which can lead to further improvement of

the performance of the system (Roy et al., Easy-
Chair, 2022). However, the traditional modular
approach of ASR requires a significant amount
of transcribed speech recording for training, large
text resources, and explicit grapheme-to-phoneme
(G2P) mappings or complete dictionaries as basic
requirements. This poses a significant challenge
for low-resourced languages that do not have a sig-
nificant digital footprint with a limited amount of
labeled data available (Srivastava et al., 2018).

Self-supervised learning (SSL) has emerged as
a powerful technique for settings where annotated
audio data is scarce. The key idea behind this ap-
proach is to learn (pretrained) general representa-
tions from substantial amounts of unlabeled source
data, and subsequently leverage them to improve
the performance (finetuning) on downstream target
tasks with a very limited amount of transcribed
data. This is particularly useful for tasks such
as speech recognition, where obtaining labeled
data can be a time-consuming and costly process.
Models based on SSL, e.g. wav2vec 2.0 (Baevski
et al., 2020), have shown their powerful representa-
tion ability and feasibility for ultra-low-resourced
speech recognition, making self-supervised end-to-
end models a desirable alternative to the flexible
and useful modular infrastructure.

This paper aims to evaluate and compare the per-
formance of two different approaches for develop-
ing ASR systems: modular Kaldi ASR e.g., Povey
et al., 2011 and end-to-end ASR based on wav2vec
2.0 (Baevski et al., 2020), for two languages: Span-
ish (well-resourced) and Irish (low-resourced). The
study not only assesses the performances of both
approaches in terms of WER but also addresses
challenges with wav2vec 2.0 such as generating
non-lexical word forms (such as ‘weekent’, ‘hal-
loo’) and the impact of LM weights. Additionally,
we examine the latencies and real-time factor (RTF)
while deploying both ASRs under the same client-
server network environment. In this way, we aim



to determine which approach is more effective for
developing ASR systems for different languages
and resource levels, specifically with minimal in-
frastructure.

2 Related Work

Since the emergence of self-supervised learning
methods, various studies showcased the potential
of self-supervised end-to-end approaches in speech
technology across different languages and modal-
ities (Zuluaga-Gomez et al., 2023; Coto-Solano
et al., 2022; Al-Ghezi et al., 2021; Yi et al., 2021).
One such study by Zuluaga-Gomez et al. (2023)
examines the robustness of two end-to-end models
wav2vec 2.0 and XLS-R trained in a new domain,
air traffic control (ATC) communications. Their
findings show significant reductions in relative
WER ranging from 20% to 40% compared to the
hybrid-based ASR baseline, indicating the effec-
tiveness of self-supervised end-to-end approaches
in this domain. Another study by Coto-Solano
et al. (2022) was conducted on Cook Islands Maori
(CIM), a low-resourced indigenous language, to
compare the performance of three ASR models:
A traditional modular system (Kaldi; Povey et al.,
2011) and two deep learning-based systems (Deep-
Speech (Hannun et al., 2014) and XLSR-wav2vec
2.0 (Conneau et al., 2021)) and their results also
indicated that Deep Learning ASR systems XLSR-
wav2vec 2.0 are performing at the level of mod-
ular ASR methods on small datasets, and they
are also effective in dealing with extremely low-
resourced Indigenous languages like CIM. A study
on Swedish L2 learners by Al-Ghezi et al. (2021)
found that models pre-trained on large size of un-
transcribed L1 Swedish speech data give a compet-
itive performance to that of modular ASR without
the need for customized language and pronuncia-
tion models. Their best model managed to correctly
decode words that do not appear in the training
dataset whereas the modular ASR failed to do so.
In Enzell (2022), domain adaptation with an N-
gram LM is shown for Swedish, where the effects
of LM weights on end-to-end models are briefly
discussed.

3 Data

In our research, we utilized various open-source
datasets and public speech corpora. For the Spanish
ASR, we utilized the Common Voice (CV) Span-
ish (Ardila et al., 2020) dataset for the AM. The

CV dataset includes rich metadata such as speaker
age, accent, and gender, and consists of 213244
utterances for training, equating to 313.56 hours of
speech material. For building the LM, we utilized
the Spanish Billion Words Corpus (Cardellino,
2019) which has nearly 1.5 billion Spanish tokens
and 0.54 million types with a frequency higher than
10. For testing, we used the CV Spanish Dev and
Test sets, which consist of 26.1 and 25.9 hours of
speech, respectively. For pronunciation lexicons
we used a dedicated G2P tool based on SAMPA
(Speech Assessment Methods Phonetic Alphabet)
(Wells et al., 1997). It’s worth noting that obtaining
datasets for Spanish was relatively easy as it is a
well-resourced language with a substantial digital
footprint. See the Table 1.

Table 1: Overview of Common voice Spanish Datasets

Dataset #Utterances Duration #Word
Token

#Word
Type

Train 213244 313.56h 2124011 83604
Test 15440 26.1h 151681 23314
Dev 15440 25.9h 151819 23602

For Irish, the situation is essentially different.
Acquiring speech data for this language is a signifi-
cant challenge due to the scarcity of open-source
resources available for this language. To tackle
this scarcity problem, we combined multiple small
open-source Irish datasets. For the AM training we
utilized the CV Irish dataset (Ardila et al., 2020).
We used only the validated utterances from this
dataset and excluded those that were part of the
test set. Additionally, we used the “Living Audio"
dataset (Braude et al., 2019) which contributed an
additional hour of Irish speech data. We also in-
corporated all Irish utterances from the “Google
Fleurs" dataset (Conneau et al., 2023). After com-
bining these three datasets, we were able to train on
a total of 9,274 utterances equating to 13.5 hours of
speech. For testing, we used the CV Irish Test set,
containing 513 utterances (0.5 hours of speech), in
combination with a set of ‘Invalidated‘ CV Irish ut-
terances, with 282 utterances (0.3 hours of speech,
after removing speech samples with background
noise or no speech). The ’invalidated’ clips in the
CV dataset are the clips that have received more
downvotes than upvotes. In Table 2, the overview
of Irish datasets is provided.

For the LM, we used the CC-100: Monolingual
datasets from Web Crawl Data (Conneau et al.,
2020), which includes data for over 100 languages



including Irish, with in total 84 million word to-
kens and 0.12 million word types having frequency
higher than 10. Lastly, for permitting the experi-
ments with Kaldi ASR, we trained a G2P model
based on Joint-sequence models (Bisani and Ney,
2008) using 13300 seed Irish pronunciations ac-
quired from Wikipron (Lee et al., 2020).

Table 2: Overview of Irish Datasets. CV, LA and GF ab-
breviated for Common Voice, Living Audio and Google
Fleurs respectively.

Dataset #Utterances Duration #Word
Tokens

#Word
Types

CV Train 4097 4.1h 27880 2341
LA Irish 1122 1h 11360 3542
GF Irish 1947 8.4h 48929 9866
CV Test 513 0.5h 3423 1109

CV Invalidated 282 0.3h 2230 707

4 Experiments

Our experiment setup is composed of four objec-
tives: 1. Evaluate the performance of both the mod-
ular and end-to-end ASR approaches in terms of
WER and Character Error Rate (CER), 2. Exam-
ine the influence of LM weights when integrating
with fine-tuned wav2vec 2.0 models 3. Evaluate
the presence of non-lexical words in the generated
transcriptions and 4. Measure the latency of the
ASR systems when deployed using both methods.

4.1 Modular ASR Training
We established the first baseline modular ASR for
Spanish and Irish languages, using the dataset spec-
ified in Section 3. For the Spanish ASR, the base-
line was built using a Kaldi (Povey et al., 2011)
chain model adapted from the Librispeech recipe1,
while for the Irish ASR, it was adapted from the
mini-Librispeech2 recipe. Both recipes follow a
similar training pattern, but the hyperparameters
such as the number of leaves, number of Gaussians,
neural network size, L2 regularization, learning
rate, and the number of epochs were optimized to
fit the data size. The AM in both recipes is a combi-
nation of a Time-Delayed Neural Network (TDNN)
and a Convolutional Neural Network (CNN). Ad-
ditionally, 4-gram statistical LMs for Spanish and
Irish were generated using the SRILM tool (Stol-
cke, 2002), based on the text resources for these
languages. Finally, the pronunciation lexicons were
created using a rule-based approach for Spanish

1
github.com/kaldi-asr/kaldi/blob/master/egs/librispeech/

2
github.com/kaldi-asr/kaldi/blob/master/egs/mini_librispeech/

and a data-driven approach for Irish as explain in
the section 3.

4.2 Finetuning with End-to-End Approach
We utilized a publicly released pre-trained wav2vec
2.0 model (Baevski et al., 2020), XLS-R (Babu
et al., 2022), which was trained on 436K hours
of publicly available speech audio and is avail-
able on HuggingFace3. During its self-supervised
pre-training, XLS-R learned contextualized speech
representations by randomly masking feature vec-
tors and passing them through a transformer net-
work. For fine-tuning on our speech recognition
task, we added a single linear layer on top of the
pre-trained network and finetuned the model on our
labeled speech data for both Spanish and Irish. We
used the 300 million-parameter version of XLS-R4,
which is among the smaller versions (mid 2023,
models range from 300 million to two billion pa-
rameters). The fine-tuning was performed on an
NVIDIA Tesla T4 GPU using the Adam optimizer,
with a learning rate starting with a warm-up for
500 steps, peaked at 3e−4 for all global steps, and
then decayed exponentially. The total number of
global steps for fine-tuning to Spanish and Irish
was 44415 and 7180, respectively. In our research,
the same language-dependent statistical LM was
used for the modular and on end-to-end approach,
for both Spanish and Irish. These LMs were ini-
tially created in ARPA format but were transformed
into binary using KENLM (Heafield et al., 2013) to
decrease the time required to load the models. The
integration of the LM with the AM was performed
using shallow fusion through the CTC decoder li-
brary pyctcdecode5.

4.3 Non-lexical Words
An ASR system based on CTC may produce non-
lexical word forms. In wav2vec 2.0, the output of
the model is represented as the probability distribu-
tion of the predicted phonemes at each time frame
(each 20ms) of the input signal. While the model
can generate both lexical and non-lexical word
forms through its sequence of phonemes, the use
of a (word-based) LM helps to refine non-lexical
predictions by incorporating information about the
likelihood of different sequences of phonemes that
form words (legal grapheme sequences or legal
phone sequences) in the language.

3
huggingface.co/docs/transformers/model_doc/wav2vec2

4
huggingface.co/facebook/wav2vec2-xls-r-300m

5
github.com/kensho-technologies/pyctcdecode/

github.com/kaldi-asr/kaldi/blob/master/egs/librispeech/
github.com/kaldi-asr/kaldi/blob/master/egs/mini_librispeech/
huggingface.co/docs/transformers/model_doc/wav2vec2
huggingface.co/facebook/wav2vec2-xls-r-300m
github.com/kensho-technologies/pyctcdecode/


In contrast, Kaldi’s lexicon search space is lim-
ited to the pronunciation lexicons. The HCLG
graph in Kaldi uses the lexicon FST (Povey et al.,
2011; Mohri et al., 2007) to determine the possible
words based on the AM’s predictions, effectively
restricting the search space to the words defined in
the lexicon. This ensures that Kaldi only produces
words that we provide, rather than generating non-
existing words, leading to more accurate results.

In wav2vec 2.0, we investigated the effect of
varying the weight of the LM during the shallow
fusion process, by calculating the number of unique
words (word types) in each experiment for different
values of LM weights ranging from 0 to 1, with
intermediate values of 0.1, 0.3, 0.5, 0.7, 0.8, 0.9,
and 1.0. The results of these experiments allowed
us to observe the effects of non-lexical words in
hypothesis transcripts generated by wav2vec 2.0.

4.4 ASR Usability in Deployment

The ASR created using both approaches was de-
ployed as a web service. The Kaldi-based ASR
pipeline is capable of processing most speech files
faster than real-time using only CPUs (Parikh et al.,
2022).

However, decoding with large wav2vec 2.0 mod-
els with an integrated LM is prohibitively slow on
a CPU and therefore requires the availability of at
least one GPU for real-time decoding. Addition-
ally, the wav2vec 2.0 models needed to be manually
loaded for the first time setup. The latency of the
ASR web service is an important feature for the
usability of the entire system and user satisfaction.
We calculated the latency results in terms of RTF
for audio files of varying durations for both Kaldi
ASR and wav2vec 2.0 models while maintaining
a consistent connection environment. Linear re-
gression was used to obtain equations. The linear
trendlines were obtained by fitting linear models
to each dataset using the Ordinary Least Squares
(OLS) method. The slope and intercept coefficients
of each line were calculated using the linear regres-
sion model.

5 Results

The initial evaluation of both systems is based on
WER. For the modular approach, we conducted
online decoding with Kaldi ASR, and for the end-
to-end wav2vec 2.0 approach, we computed the
WERs for the finetuned model and for the shallow-
fused model with various weights of LM.

Table 3: Experimental Results of Kaldi ASR using a
CNN-TDNN Architecture for AM: Testing Datasets and
Corresponding WER and CER

Spanish ASR
Dataset WER CER
CV Test 15.69% 5.89%
CV Dev 13.68% 4.90%

Irish ASR
CV Test 22.69% 11.54%

CV Invalidated 43.06% 24.44%

As shown in Table 3 and 4, the end-to-end
wav2vec 2.0 method outperformed the modular
Kaldi ASR approach. In Spanish ASR, with Kaldi,
we obtained WERs of 15.69% and 13.68% on the
CV Test and CV Dev sets, respectively, which were
improved to 10.63% and 9.38% by wav2vec 2.0
without an LM. Similarly, in Irish ASR, we ob-
tained WERs of 19.98% and 39.19% using the
wav2vec 2.0 without an LM on the CV Test and
Invalidated sets, compared to the Kaldi ASR with
WERs of 22.69% and 43.06%.

We also determined the impact of an LM on the
finetuned model with wav2vec 2.0. As described in
section 4.3, we computed the WER and CER for a
number of LM weight values. For the Spanish ASR,
the lowest WER of 6.73% and 5.92% on the CV
Test and CV Dev sets, respectively, was achieved
with an LM weight of 0.7. In the Irish ASR, the
lowest WER was obtained at an LM weight of 0.8,
with WERs of 13.78% and 30.85% on the CV Test
and CV Invalidated sets, respectively. These results
demonstrate a significant improvement in WER
compared to the baseline modular ASR, using the
same training data.

We evaluated the impact of the LM weight on the
non-lexical words in the hypothesis transcripts gen-
erated by Spanish and Irish wav2vec 2.0 models.
The non-lexical words were defined as words that
were not present in the unigrams of the LM shallow-
fused with the wav2vec 2.0 model. As seen in Table
5 initially, without using an LM, there were 6220
and 5770 non-lexical words in the Spanish CV Test
and Dev hypothesis transcripts, respectively. By
integrating an LM and increasing the weight of LM
to 0.5, the non-lexical words were reduced to a
minimum of 1317 and 1235 in CV Test and Dev
transcripts, respectively corresponding to a reduc-
tion of approximately 79% of the total non-lexical
words. Similarly in Irish ASR, without using an



Table 4: WER and CER of two test sets for Spanish and Irish ASR by wav2vec 2.0. We recorded WER and CER for
fine-tuned model integrated with different LM weights.

Dataset Evaluation
Matrix

No
LM

LM Weights
0 0.1 0.3 0.5 0.7 0.8 0.9 1

Spanish ASR

CV Test WER 10.63% 10.44% 9.03% 7.43% 6.85% 6.73% 6.82% 6.98% 7.20%
CER 3.09% 2.95% 2.73% 2.44% 2.34% 2.35% 2.39% 2.44% 2.49%

CV Dev WER 9.38% 9.06% 7.86% 6.53% 6.03% 5.92% 6.01% 6.15% 6.39%
CER 2.59% 2.47% 2.28% 2.03% 1.94% 1.93% 1.97% 2.01% 2.06%

Irish ASR

CV Test WER 19.98% 19.07% 17.23% 14.95% 13.96% 13.87% 13.78% 13.78% 13.87%
CER 7.24% 6.91% 6.52% 6.03% 5.79% 5.84% 5.85% 5.88% 5.89%

CV
Invalidated

WER 39.19% 39.95% 37.62% 33.45% 31.88% 31.07% 30.85% 31.07% 31.39%
CER 16.81% 16.54% 16.11% 15.39% 15.16% 15.20% 15.15% 15.23% 15.28%

Table 5: Count of non-lexical words in transcripts gen-
erated by wav2vec 2.0

LM
Weight

Test Dataset
Spanish Irish

CV Test CV Dev CV Test CV Invalidated
No LM 6220 5770 339 357

0 3408 3046 257 238
0.1 2440 2184 207 197
0.3 1538 1404 149 150
0.5 1317 1235 124 125
0.7 1404 1324 119 122
0.8 1555 1438 122 128
0.9 1769 1622 124 132
1 1999 1820 127 141

LM, in CV Test and Invalidated, there were 339
and 357 non-lexical words which were reduced to
119 and 122 using an LM with 0.7 weight corre-
sponding to a reduction of approximately 65% of
the total non-lexical words. Although the optimal
WER and CER were achieved with only marginal
differences at LM weights of 0.7 for Spanish and
0.8 for Irish, it can be said that there is still a pres-
ence of a small number of non-lexical homophones
in hypothesis transcripts. However, even with a
high LM weight, not all non-lexical words were
removed. A slight increase in the number of non-
lexical words was observed as the weight of the
LM was increased from 0.7. This highlights the
fact that even with low CER produced by wav2vec
2.0 models, there can still be a significant num-
ber of non-lexical words present in the generated
transcripts.

In Figure 1, we present a comparative analysis of
latency times and Real-Time Factors (RTF) for two
ASR systems, Kaldi and wav2vec 2.0. This analy-
sis covers audio files ranging from 5 to 102 seconds
in duration, all processed under identical testing
conditions, including network settings and beam

size. Additionally, we consider a scenario where
the wav2vec 2.0 model is utilized with a NVIDIA
Tesla T4 GPU with 15.36GB of memory. The key
observation is that both Kaldi and wav2vec 2.0
exhibit linearly increasing latency times as audio
duration extends. For Kaldi, the latency equation
is given by y = 0.1074x + 0.50190 (y: latency;
x: duration in seconds), while for wav2vec 2.0 on
the identical testing condition as Kaldi ASR, it is
y = 0.2380x− 0.8749. When using wav2vec 2.0
with GPU backend, the latency equation becomes
y = 0.0426x+ 0.8357. These equations describes
how the latency of ASR system increases as the du-
ration of the audio input increases. In summary, the
latency is same in all the ASRs for audio utterances
up to 10 seconds. It is also evident that all three
systems experience increased latency with longer
audio segments. Wav2vec 2.0 displays a higher lin-
ear increase, while Kaldi exhibits a slower rate of
increase, indicating greater efficiency with longer
audio. Notably, wav2vec 2.0 with GPU acceler-
ation demonstrates significantly reduced latency,
underscoring the advantages of GPU processing
for longer audio tasks. These insights are invalu-
able for selecting the ideal system for real-time or
near-real-time audio processing, considering ex-
pected processing times based on varying audio
durations.

The RTF values for both systems show an in-
verse relationship with audio file length. For Kaldi,
the estimated RTF is y = −0.0008x+ 0.1791 (y:
RTF; x: duration in seconds). Kaldi’s performance
is only 0.0161 times better (RTF = 0.129 for 20
seconds of audio to RTF = 0.113 for 102 seconds
of audio) for files from 20 to 102 seconds long. In
contrast, wav2vec 2.0 model when same system
as Kaldi ASR in backend gives an RTF estimated



Figure 1: Latency measured in terms of system time
for wav2vec 2.0 models and Kaldi vs. Audio Duration

Figure 2: Real-time Factors (system time/length of audio)
for wav2vec 2.0 models and Kaldi vs. Audio Duration

by y = 0.00079x+ 0.1588. In this case, the RTF
value is increasing with the audio duration, i.e. the
system’s processing time becomes relatively slower
as the audio duration becomes longer. This sug-
gests that the system might not be able to keep up
with the real-time demands of longer audio seg-
ments, and it could experience prohibitive delays
in processing or decoding longer audio. While this
issue can be solved with an acceleration at backend
as GPU and with GPU, wav2vec 2.0’s performance
is 3.5 times better for files from 20 to 102 seconds
long, with an RTF of y = −0.0009x + 0.1351.
The initial loading time of the wav2vec 2.0 model
(which takes around 10 to 20 seconds) is not taken
into consideration in the charts.

6 Discussion

From our experimental results, it is evident that
the end-to-end wav2vec 2.0 approach outperforms
the modular Kaldi ASR for both well-resourced
and low-resourced languages. In particular, we
found that in end-to-end wav2vec 2.0 during shal-
low fusion increasing the LM weight from 0.0 to
0.7 and 0.8 for Spanish and Irish, respectively, led
to a decrease in non-lexical words, WER, and CER,
resulting in optimum performance. Interestingly,
beyond a certain threshold, further increasing an
LM weight led to an increase in non-lexical words,
WER, and a decrease in performance. The wav2vec
2.0 model outputs a sequence of token probabili-
ties represented in an alphabet set and an arg-max
followed by a tokenizer provides sufficiently good
accuracy but when an LM is integrated on top of
it, words with lower probability and poor acous-
tic support are more likely to be overruled by the

LM. Hence a reduction in WER and non-lexical
words is found but after a certain limit for the LM-
weight, the LM starts replacing correctly identified
words resulting in an increase in WER. The default
weight of LM in pyctcdecode is 0.5, but finding
the optimum weight for the combination of LM and
AM is crucial for achieving the best performance.
In the modular ASR, after the decoding process
performing lattice rescoring with recurrent neural
LMs (Xu et al., 2018) can also further improve the
ASR performance.

The knowledge-based hybrid system and end-
to-end systems that we have compared here differ
in terms of WER. This does not at all imply that
the classical approach can defaultly be replaced
by an SSL end-to-end approach. In the experi-
ments reported on above, we observed that both sys-
tems often (but not always) make different errors,
which opens the possibility to consider them as
first-level audio-to-text transformations after which
both ’streams’ could be merged on a second level,
based on considering confidence measures associ-
ated to each word in the hypothesized outputs in
each stream. This stream-based merging of mul-
tiple different hypotheses is topic for a follow-up
investigation.

In terms of time performance, the fitted latency
and RTF lines are reliable indicators of trends in
the data and can be used for predictions and in-
sights. For real-time decoding, wav2vec 2.0 takes
considerably more time to decode the longer than
10 seconds audio, compare to Kaldi ASR in the
same network connection and server infrastructure
but with a GPU acceleration, wav2vec 2.0 decod-
ing times outperform Kaldi in all cases, but a first



model loading time must be taken into account in
the case of wav2vec 2.0.

7 Conclusion

We compared the performance of modular and end-
to-end approaches for creating ASR on a low and
well-resourced language and results showed that
the end-to-end wav2vec 2.0 ASR outperforms the
modular Kaldi ASR even without an LM. Incor-
porating an LM with weights of 0.7 and 0.8 for
Spanish and Irish languages, respectively, further
improves the performance of the end-to-end ap-
proach. However, we observed that the end-to-end
approach generates non-lexical words, which can
be partially resolved but not entirely eliminated
by integrating an LM. Also, a dedicated GPU is
required to achieve the best time performance for
end-to-end ASR, which is 3.5 times faster than
modular ASR. Therefore, modular ASR can still
be a relevant option for in-domain tasks with lower
CPU/GPU requirements.

Limitations

There are mainly three limitations with our study.
1. The main limitation of this study concerns the
data preparation phase, especially for low-resource
languages. Conducting experiments, as presented
in this paper, requires adequate linguistic resources.
It includes not only audio material but also essen-
tial components such as lexicons or a grapheme
to phoneme conversion system. The scarcity of
such linguistic resources for minority languages
can pose a significant challenge so the availability
of such an ASR system remains crucial for this
comparison. 2. Another significant limitation re-
lates to the availability of suitable large models,
such as Whisper, for the purpose of comparison.
Not all pre-trained end-to-end ASR systems encom-
pass support for every minority or low-resourced
language. So the availability of such an ASR sys-
tem remains crucial for this comparison. 3. Third
limitation is the hardware dependent performance.
In our case, AMD 32-Core Processor with a total
of 64 CPUs, which is also quite capable. However,
the performance of ASR systems can be impacted
by factors at server side such as CPU load, avail-
able memory, and system usage by other processes
and at network side such as bandwidth, processing
speed, and transmission protocol. This variability
can affect the latency and RTF of the ASR sys-
tem, meaning that the time it takes to process and

transcribe speech can vary under different system
conditions.

Acknowledgements

This work has been conducted in the SignON
project, funded by the European Union’s Horizon
2020 research and innovation programme under
grant agreement No 101017255.

References
Ragheb Al-Ghezi, Yaroslav Getman, Aku Rouhe, Raili

Hildén, and Mikko Kurimo. 2021. Self-Supervised
End-to-End ASR for Low Resource L2 Swedish. In
Proc. Interspeech 2021, pages 1429–1433.

Rosana Ardila, Megan Branson, Kelly Davis, Michael
Kohler, Josh Meyer, Michael Henretty, Reuben
Morais, Lindsay Saunders, Francis Tyers, and Gre-
gor Weber. 2020. Common voice: A massively-
multilingual speech corpus. In Proceedings of the
Twelfth Language Resources and Evaluation Confer-
ence, pages 4218–4222, Marseille, France. European
Language Resources Association.

Arun Babu, Changhan Wang, Andros Tjandra, Kushal
Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh,
Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei
Baevski, Alexis Conneau, and Michael Auli. 2022.
XLS-R: Self-supervised Cross-lingual Speech Rep-
resentation Learning at Scale. In Proc. Interspeech
2022, pages 2278–2282.

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed,
and Michael Auli. 2020. wav2vec 2.0: A framework
for self-supervised learning of speech representations.
In Advances in Neural Information Processing Sys-
tems, volume 33, pages 12449–12460. Curran Asso-
ciates, Inc.

Maximilian Bisani and Hermann Ney. 2008. Joint-
sequence models for grapheme-to-phoneme conver-
sion. Speech Communication, 50(5):434–451.

David A. Braude, Matthew P. Aylett, Caoimhín Laoide-
Kemp, Simone Ashby, Kristen M. Scott, Brian Ó
Raghallaigh, Anna Braudo, Alex Brouwer, and Adri-
ana Stan. 2019. All Together Now: The Living Au-
dio Dataset. In Proc. Interspeech 2019, pages 1521–
1525.

Cristian Cardellino. 2019. Spanish Billion Words Cor-
pus and Embeddings.

Alexis Conneau, Alexei Baevski, Ronan Collobert, Ab-
delrahman Mohamed, and Michael Auli. 2021. Un-
supervised Cross-Lingual Representation Learning
for Speech Recognition. In Proc. Interspeech 2021,
pages 2426–2430.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco

https://doi.org/10.21437/Interspeech.2021-1710
https://doi.org/10.21437/Interspeech.2021-1710
https://aclanthology.org/2020.lrec-1.520
https://aclanthology.org/2020.lrec-1.520
https://doi.org/10.21437/Interspeech.2022-143
https://doi.org/10.21437/Interspeech.2022-143
https://proceedings.neurips.cc/paper/2020/file/92d1e1eb1cd6f9fba3227870bb6d7f07-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/92d1e1eb1cd6f9fba3227870bb6d7f07-Paper.pdf
https://doi.org/https://doi.org/10.1016/j.specom.2008.01.002
https://doi.org/https://doi.org/10.1016/j.specom.2008.01.002
https://doi.org/https://doi.org/10.1016/j.specom.2008.01.002
https://doi.org/10.21437/Interspeech.2019-2448
https://doi.org/10.21437/Interspeech.2019-2448
https://crscardellino.github.io/SBWCE/
https://crscardellino.github.io/SBWCE/
https://doi.org/10.21437/Interspeech.2021-329
https://doi.org/10.21437/Interspeech.2021-329
https://doi.org/10.21437/Interspeech.2021-329


Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Alexis Conneau, Min Ma, Simran Khanuja, Yu Zhang,
Vera Axelrod, Siddharth Dalmia, Jason Riesa, Clara
Rivera, and Ankur Bapna. 2023. Fleurs: Few-shot
learning evaluation of universal representations of
speech. In 2022 IEEE Spoken Language Technology
Workshop (SLT), pages 798–805.

Rolando Coto-Solano, Sally Akevai Nicholas, Samiha
Datta, Victoria Quint, Piripi Wills, Emma Ngaku-
ravaru Powell, Liam Koka’ua, Syed Tanveer, and
Isaac Feldman. 2022. Development of automatic
speech recognition for the documentation of Cook
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